$E=300 \mathrm{keV}, \theta=30^{\circ}$
(a) $\Delta \lambda=\lambda^{\prime}-\lambda_{0}=\frac{h}{m_{e} c}(1-\cos \theta)=(0.00243 \mathrm{~nm})\left[1-\cos \left(30^{\circ}\right)\right]=3.25 \times 10^{-13} \mathrm{~m}$

$$
=3.25 \times 10^{-4} \mathrm{~nm}
$$

(b) $E=\frac{h c}{\lambda_{0}} \Rightarrow \lambda_{0}=\frac{h c}{E_{0}}=\frac{\left(4.14 \times 10^{-15} \mathrm{eVs}\right)\left(3 \times 10^{8} \mathrm{~m} / \mathrm{s}\right)}{300 \times 10^{3} \mathrm{eV}}=4.14 \times 10^{-12} \mathrm{~m}$; thus, $\lambda^{\prime}=\lambda_{0}+\Delta \lambda=4.14 \times 10^{-12} \mathrm{~m}+0.325 \times 10^{-12} \mathrm{~m}=4.465 \times 10^{-12} \mathrm{~m}$, and $E^{\prime}=\frac{h c}{\lambda^{\prime}} \Rightarrow E^{\prime}=\frac{\left(4.14 \times 10^{-15} \mathrm{eV} \mathrm{s}\right)\left(3 \times 10^{8} \mathrm{~m} / \mathrm{s}\right)}{4.465 \times 10^{-12} \mathrm{~m}}=2.78 \times 10^{5} \mathrm{eV}$.
(c) $\frac{h c}{\lambda_{0}}=\frac{h c}{\lambda^{\prime}}+K_{e}$, (conservation of energy)

$$
K_{e}=h c\left(\frac{1}{\lambda_{0}}-\frac{1}{\lambda^{\prime}}\right)=\frac{\left(4.14 \times 10^{-15} \mathrm{eV} \mathrm{~s}\right)\left(3 \times 10^{8} \mathrm{~m} / \mathrm{s}\right)}{\frac{1}{4.14 \times 10^{-12}}-\frac{1}{4.465 \times 10^{-12}}}=22 \mathrm{keV}
$$

(a) From conservation of energy we have $E_{0}=E^{\prime}+K_{e}=120 \mathrm{keV}+40 \mathrm{keV}=160 \mathrm{keV}$. The photon energy can be written as $E_{0}=\frac{h c}{\lambda_{0}}$. This gives

$$
\lambda_{0}=\frac{h c}{E_{0}}=\frac{1240 \mathrm{~nm} \mathrm{eV}}{160 \times 10^{3} \mathrm{eV}}=7.75 \times 10^{-3} \mathrm{~nm}=0.00775 \mathrm{~nm}
$$

(b) Using the Compton scattering relation $\lambda^{\prime}-\lambda_{0}=\lambda_{c}(1-\cos \theta)$ where $\lambda_{c}=\frac{h}{m_{e} c}=0.00243 \mathrm{~nm}$ and $\lambda^{\prime}=\frac{h c}{E^{\prime}}=\frac{1240 \mathrm{~nm} \mathrm{eV}}{120 \times 10^{3} \mathrm{eV}}=10.3 \times 10^{3} \mathrm{~nm}=0.0103 \mathrm{~nm}$.
Solving the Compton equation for $\cos \theta$, we find

$$
\begin{aligned}
-\lambda_{c} \cos \theta & =\lambda^{\prime}-\lambda_{0}-\lambda_{c} \\
\cos \theta & =1-\frac{\lambda^{\prime}-\lambda_{0}}{\lambda_{c}}=1-\frac{0.0103 \mathrm{~nm}-0.0075 \mathrm{~nm}}{0.00243 \mathrm{~nm}}=1-1.049=-0.049
\end{aligned}
$$

The principle angle is 87.2° or $\theta=92.8^{\circ}$.
(c) Using the conservation of momentum Equations 3.30 and 3.31 one can solve for the recoil angle of the electron.

$$
p=p^{\prime} \cos \theta+p_{e} \cos \phi
$$

$p_{e} \sin \phi=p^{\prime} \sin \theta$; dividing these equations one can solve for the recoil angle of the electron

$$
\begin{aligned}
\tan \phi & =\frac{p^{\prime} \sin \theta}{p-p^{\prime} \cos \theta}=\left(\frac{h}{\lambda^{\prime}}\right) \frac{\sin \theta}{\frac{h}{\lambda_{0}}-\frac{h}{\lambda^{\prime} \cos \theta}}=\left(\frac{h c}{\lambda^{\prime}}\right) \frac{\sin \theta}{\frac{h c}{\lambda_{0}}-\frac{h c}{\lambda^{\prime} \cos \theta}} \\
& =\frac{120 \mathrm{keV}(0.9988)}{160 \mathrm{keV}-120 \mathrm{keV}(-0.049)}=0.7232
\end{aligned}
$$

and $\phi=35.9^{\circ}$.

3-30 Maximum energy transfer occurs when the scattering angle is 180 degrees. Assuming the electron is initially at rest, conservation of momentum gives

$$
h f+h f^{\prime}=p_{e} c=\sqrt{\left(m_{e} c^{2}+K\right)^{2}-m^{2} c^{4}}=\sqrt{(511+50)^{2}}=178 \mathrm{keV}
$$

while conservation of energy gives $h f-h f^{\prime}=K=30 \mathrm{keV}$. Solving the two equations gives $E=h f=104 \mathrm{keV}$ and $h f=74 \mathrm{keV}$. (The wavelength of the incoming photon is $\lambda=\frac{h c}{E}=0.0120 \mathrm{~nm}$.

$$
\text { (a) } \begin{aligned}
E^{\prime} & =\frac{h c}{\lambda^{\prime}}, \lambda^{\prime}=\lambda_{0}+\Delta \lambda \\
\lambda_{0} & =\frac{h c}{E_{0}}=\frac{\left(6.63 \times 10^{-34} \mathrm{~J} \cdot \mathrm{~s}\right)\left(3 \times 10^{8} \mathrm{~m} / \mathrm{s}\right)}{0.1 \mathrm{MeV}}=1.243 \times 10^{-11} \mathrm{~m} \\
\Delta \lambda & =\left(\frac{h}{m_{e} c}\right)(1-\cos \theta)=\frac{\left(6.63 \times 10^{-34} \mathrm{~J} \cdot \mathrm{~s}\right)\left(1-\cos 60^{\circ}\right)}{\left(9.11 \times 10^{-34} \mathrm{~kg}\right)\left(3 \times 10^{8} \mathrm{~m} / \mathrm{s}\right)}=1.215 \times 10^{-12} \mathrm{~m} \\
\lambda^{\prime} & =\lambda_{0}+\Delta \lambda=1.364 \times 10^{-11} \mathrm{~m} \\
E^{\prime} & =\frac{h c}{\lambda^{\prime}}=\frac{\left(6.63 \times 10^{-34} \mathrm{~J} \cdot \mathrm{~s}\right)\left(3 \times 10^{8} \mathrm{~m} / \mathrm{s}\right)}{1.364 \times 10^{-11} \mathrm{~m}}=9.11 \times 10^{4} \mathrm{eV}
\end{aligned}
$$

4-1 F corresponds to the charge passed to deposit one mole of monovalent element at a cathode. As one mole contains Avogadro's number of atoms,
$e=\frac{96500 \mathrm{C}}{6.02 \times 10^{23}}=1.60 \times 10^{-19} \mathrm{C}$.
4-3 Thomson's device will work for positive and negative particles, so we may apply $\frac{q}{m} \approx \frac{V \theta}{B^{2} l d}$.
(a) $\frac{q}{m} \approx \frac{V \theta}{B^{2} l d}=(2000 \mathrm{~V}) \frac{0.20 \text { radians }}{\left(4.57 \times 10^{-2} \mathrm{~T}\right)^{2}}(0.10 \mathrm{~m})(0.02 \mathrm{~m})=9.58 \times 10^{7} \mathrm{C} / \mathrm{kg}$
(b) As the particle is attracted by the negative plate, it carries a positive charge and is a proton. $\left(\frac{q}{m_{p}}=\frac{1.60 \times 10^{-19} \mathrm{C}}{1.67 \times 10^{-27} \mathrm{~kg}}=9.58 \times 10^{7} \mathrm{C} / \mathrm{kg}\right)$
(c) $v_{x}=\frac{E}{B}=\frac{V}{\mathrm{~d} B}=\frac{2000 \mathrm{~V}}{0.02 \mathrm{~m}}\left(4.57 \times 10^{-2} \mathrm{~T}\right)=2.19 \times 10^{6} \mathrm{~m} / \mathrm{s}$
(d) As $v_{x} \sim 0.01 c$ there is no need for relativistic mechanics.

4-8
(a) From Equation 4.16 we have $\Delta n \infty\left(\frac{\sin \phi}{2}\right)^{-4}$ or $\Delta n_{2}=\Delta n_{1} \frac{\left(\frac{\sin \phi_{1}}{2}\right)^{4}}{\left(\frac{\sin \phi_{2}}{2}\right)^{4}}$. Thus the number of α 's scattered at 40 degrees is given by

$$
\Delta n_{2}=(100 \mathrm{cpm}) \frac{\left(\sin \frac{20}{2}\right)^{4}}{\left(\sin \frac{40}{2}\right)^{4}}=(100 \mathrm{cpm})\left(\frac{\sin 10}{\sin 20}\right)^{4}=6.64 \mathrm{cpm} .
$$

Similarly

$$
\begin{aligned}
\Delta n \text { at } 60 \text { degrees } & =1.45 \mathrm{cpm} \\
\Delta n \text { at } 80 \text { degrees } & =0.533 \mathrm{cpm} \\
\Delta n \text { at } 100 \text { degrees } & =0.264 \mathrm{cpm}
\end{aligned}
$$

(b) From 4.16 doubling $\left(\frac{1}{2}\right) m_{\alpha} v_{\alpha}^{2}$ reduces Δn by a factor of 4 . Thus Δn at 20 degrees $=\left(\frac{1}{4}\right)(100 \mathrm{cpm})=25 \mathrm{cpm}$.
(c) From 4.16 we find $\frac{\Delta n_{\mathrm{Cu}}}{\Delta n_{\mathrm{Au}}}=\frac{Z_{\mathrm{Cu}}^{2} N_{\mathrm{Cu}}}{Z_{\mathrm{Au}}^{2} N_{\mathrm{Au}}}, Z_{\mathrm{Cu}}=29, Z_{\mathrm{Au}}=79$.

$$
\begin{aligned}
& N_{\mathrm{Cu}}=\text { number of } \mathrm{Cu} \text { nuclei per unit area } \\
&=\text { number of } \mathrm{Cu} \text { nuclei per unit volume }{ }^{*} \text { foil thickness } \\
&=\left[\left(8.9 \mathrm{~g} / \mathrm{cm}^{3}\right)\left(\frac{6.02 \times 10^{23} \text { nuclei }}{63.54 \mathrm{~g}}\right)\right] t=8.43 \times 10^{22} t \\
& N_{\mathrm{Au}}=\left[\left(19.3 \mathrm{~g} / \mathrm{cm}^{3}\right)\left(\frac{6.02 \times 10^{23} \text { nuclei }}{197.0 \mathrm{~g}}\right)\right] t=5.90 \times 10^{22} t \\
& \text { So } \Delta n_{\mathrm{Cu}}=\Delta n_{\mathrm{Au}}(29)^{2} \frac{8.43 \times 10^{22}}{(79)^{2}}\left(5.90 \times 10^{2}\right)=(100)\left(\frac{29}{79}\right)^{2}\left(\frac{8.43}{5.90}\right)=19.3 \mathrm{cpm} .
\end{aligned}
$$

4-9 The initial energy of the system of α plus copper nucleus is 13.9 MeV and is just the kinetic energy of the α when the α is far from the nucleus. The final energy of the system may be evaluated at the point of closest approach when the kinetic energy is zero and the potential energy is $k(2 e) \frac{Z e}{r}$ where r is approximately equal to the nuclear radius of copper. Invoking conservation of energy $E_{i}=E_{f}, K_{\alpha}=(k) \frac{2 Z e^{2}}{r}$ or

$$
r=(k) \frac{2 Z e^{2}}{K_{\alpha}}=\frac{(2)(29)\left(1.60 \times 10^{-19}\right)^{2}\left(8.99 \times 10^{9}\right)}{\left(13.9 \times 10^{6} \mathrm{eV}\right)\left(1.60 \times 10^{-19} \mathrm{~J} / \mathrm{eV}\right)}=6.00 \times 10^{-15} \mathrm{~m} .
$$

