PHYS 273, Winter 2016, Homework 2

Due date: Thursday, January 21st, 2016

1. Sequence length. How much information does the length of a sequence give about the content of a sequence? Suppose that we consider a Bernoulli ($1 / 2$) process $\left\{X_{i}\right\}$ i.e., for every i, X_{i} is 1 with probability $1 / 2$ and 0 with probability $1 / 2$. Stop the process when the first 1 appears. Let N designate this stopping time. Thus, X^{N} is an element of the set of all finite-length binary sequences $\{0,1\}^{*}=\{0,1,00,01,10,11,000, \ldots\}$. Find $I\left(N ; X^{N}\right), H\left(X^{N} \mid N\right), H\left(X^{N}\right)$.

Now consider a different stopping time. For this part, again assume that $X_{i} \sim$ Bernoulli($1 / 2$) but stop at time $N=6$ with probability $1 / 3$ and stop at time $N=12$ with probability $2 / 3$. Let this stopping time be independent of the sequence $X_{1} X_{2} \ldots X_{12}$. Find $I\left(N ; X^{N}\right), H\left(X^{N} \mid N\right), H\left(X^{N}\right)$.
2. The value of a question. Let $X \sim p(x), x=1,2, \ldots, m$. We are given a set $S \subseteq\{1,2, \ldots, m\}$. We ask whether $X \in S$ and receive the answer

$$
Y= \begin{cases}1 & \text { if } X \in S \tag{1}\\ 0 & \text { if } X \notin S\end{cases}
$$

Suppose that $\operatorname{Pr}(X \in S)=\alpha$. Find the decrease in uncertainty $H(X)-H(X \mid Y)$.
3. Noisy channel. Consider three random variables X, Y, Z which can each take values 0 or $1 ; x$ and y are independent with $\operatorname{Pr}(X=0)=p$ and $\operatorname{Pr}(Y=0)=q$ and

$$
z=(x+y) \quad \bmod 2
$$

a. If $q=1 / 2$, what is $\operatorname{Pr}(Z=0)$? What is $I(Z ; X)$?
b. For general p and q, what is $\operatorname{Pr}(Z=0)$? What is $I(Z ; X)$? This is an example of a single-bit noisy channel with $x=$ input, $y=$ noise and $z=$ output.
4. Mutual information of heads and tails.
a. Consider a fair coin flip. What is the mutual information between the top and bottom sides of the coin?
b. A six-sided fair die is rolled. What is the mutual information between the top side and the front face (the side most facing you)?

