Quantum Mechanics PHYS 212B

Problem Set 6

Due Tuesday, February 23, 2016

Exercise 6.1 Bound-Free absorption. Linearly polarized (direction $\hat{\epsilon}$ light with frequency ω falls on a hydrogen atom in state $|i\rangle$. Find the differential cross section for ejection of the electron into a plane wave state with momentum $\hbar \mathbf{k}_f$. Take the rest mass of the electron to be m_e , and the plane wave final sate for the electron to be normalized to square root of volume $L^{3/2}$ (i.e. in the denominator)

Exercise 6.2 Use the time-domain-to-energy-domain Fourier transform technique discussed in class to give an argument for the Lorentzian, *Breit-Wigner*, shape for the energy probability distribution for a state or particle with lifetime τ and width $\Gamma = \hbar/\tau$. This is a quantum mechanically "sketchy" argument because it uses linearity and completeness, hallmarks of the evolution in time of isolated unitary systems, to treat the *non-unitary* time evolution of a decaying system. Comments?