Quantum Mechanics PHYS 212B

Problem Set 5

Due Tuesday, February 16, 2016

Exercise 5.1 Consider a heavy particle of mass M at rest in a particular frame. This particle decays into two particles, both of which can be regarded as moving near the speed of light c so that the energy of the first particle produced in the decay is $E_{1} \approx c p_{1}$, with p_{1} the magnitude of this particle's momentum and, likewise, for the quantities related to the second particle, $E_{2} \approx c p_{2}$.

In Part (b) below use Fermi's Golden Rule and assume that the relevant matrix element-squared of the potential which mediates this decay is $\left.\left|\left\langle\psi_{f}\right| \hat{H}_{\mathrm{int}}\right| \psi_{i}\right\rangle\left.\right|^{2}$ and can be taken as constant, 1.e. independent of E_{1} and E_{2}.
(a) In the frame in which the initial particle of M is at rest, what are E_{1} and E_{2} ? (Hint: use momentum conservation.)
(b) What is the total decay rate of this particle? Assume that the two particles in the final state are in plane wave state.
(c) If we double the mass of the initial particle what happens to the total decay rate? What happens to the energies E_{1} and E_{2} ?

Solution 5.1

(a) According to momentum conservation, we have

$$
0=\mathbf{p}_{1}+\mathbf{p}_{2}
$$

Then we know $p_{1}=p_{2}$, energy conservation,

$$
E_{1}+E_{2}=c\left(p_{1}+p_{2}\right)=M c^{2}
$$

therefore

$$
E_{1}=E_{2}=\frac{1}{2} M c^{2}
$$

(b) Fermi-Golden rule gives

$$
\left.\Gamma=\frac{2 \pi}{\hbar}\left|\left\langle\psi_{f}\right| \hat{H}_{\mathrm{int}}\right| \psi_{i}\right\rangle\left.\right|^{2} \delta\left(c p_{1}+c p_{2}-M c^{2}\right)
$$

Summation over all possible \mathbf{p}_{1} and \mathbf{p}_{2} direction

$$
\begin{aligned}
\Gamma_{\text {total }} & \propto \int \Gamma \delta\left(\mathbf{p}_{1}+\mathbf{p}_{2}\right) d^{3} \mathbf{p}_{1} d^{3} \mathbf{p}_{2} \\
& \propto \int \delta\left(2 c p_{1}-M c^{2}\right) 4 \pi p_{1}^{2} d p_{1} \\
& \propto\left(M c^{2}\right)^{2}
\end{aligned}
$$

(c) if $M^{\prime}=2 M$, then $\Gamma_{\text {total }}^{\prime}=4 \Gamma_{\text {total }}$, and $E_{1}^{\prime}=2 E_{1}, E_{2}^{\prime}=2 E_{2}$

Exercise 5.2 Consider the absorption of light by a hydrogen atom initially in its $1 s$ ground state, making a transition to the $2 p$ first excited state. The lifetime of a hydrogen atom in the $2 p$ state in vacuum is $\tau=\hbar / \Gamma \approx 1.6 \times 10^{-9} \mathrm{sec}$. Here Γ is the width.
(a) Let's say that the atom in its ground state is immersed in an isotropic radiation filed, roughly the situation that might obtain in the deep interior of a star. To calculate the absorption rate we are going to need to evaluate the matrix element-squared of the dipole operator, $|\langle 2 p| \mathbf{r} \cdot \mathbf{e}| 1 s\rangle\left.\right|^{2}$, where \mathbf{e} is the (unit) photo polarization vector. Show that averaging over the isotropic radiation field gives

$$
\left.\left.\left.\langle |\langle 2 p| \mathbf{r} \cdot \mathbf{e}|1 s\rangle\right|^{2}\right\rangle=\frac{1}{3}|\langle 2 p| \mathbf{r}| 1 s\right\rangle\left.\right|^{2}
$$

(b) In this radiation field, and using the above dipole operator, what is the $1 s \rightarrow 2 p$ absorption cross section as a function of frequency ω ? What is the peak value of this cross section?

The normalized radial wave functions for the hydrogen atom are

$$
\begin{aligned}
& R_{1 s}=R_{10}=2 a_{0}^{-3 / 2} e^{-r / a_{0}} \\
& R_{21}=\frac{1}{2 \sqrt{6}} a_{0}^{-5 / 2} r e^{-r / 2 a_{0}}
\end{aligned}
$$

Remember that

$$
n!=\int_{0}^{\infty} x^{n} e^{-x} d x
$$

and the Bohr radius is $a_{0}=\hbar^{2} /\left(m_{e} e^{2}\right) \approx 0.529 \times 10^{-8} \mathrm{~cm}$, with the electron rest mass $m_{e} c^{2} \approx 0.511 \mathrm{MeV}$.

Solution 5.1

(a) Take \mathbf{e} as z-direction, with the coordinate system of \mathbf{e},

$$
\langle 2 p| \mathbf{r} \cdot \mathbf{e}|1 s\rangle=\langle 2 p| r \cos \theta|1 s\rangle=\langle 2 p| r|1 s\rangle \cos \theta
$$

Average over all possible direction

$$
\begin{aligned}
\left.\left.\langle |\langle 2 p| \mathbf{r} \cdot \mathbf{e}|1 s\rangle\right|^{2}\right\rangle & =\frac{\left.\int_{0}^{2 \pi} d \phi \int_{0}^{\pi}|\langle 2 p| r| 1 s\right\rangle\left.\right|^{2} \cos ^{2} \theta \sin \theta d \theta}{\int_{0}^{2 \pi} d \phi \int_{0}^{\pi} \sin \theta d \theta} \\
& =|\langle 2 p| r| 1 s\rangle\left.\right|^{2} \frac{\int_{0}^{2 \pi} d \phi \int_{0}^{\pi} \cos ^{2} \theta \sin \theta d \theta}{\int_{0}^{2 \pi} d \phi \int_{0}^{\pi} \sin \theta d \theta} \\
& \left.=\frac{1}{3}|\langle 2 p| \mathbf{r}| 1 s\right\rangle\left.\right|^{2}
\end{aligned}
$$

(b) The cross section (see class notes)

$$
\left.\sigma(\omega)=\frac{4 \pi^{2} \alpha}{m^{2} \omega}|\langle 2 p| \mathbf{r} \cdot \mathbf{e}| 1 s\right\rangle\left.\right|^{2} \delta\left(\omega_{f i}-\omega\right)
$$

Average all possible directions

$$
\left.\langle\sigma(\omega)\rangle=\frac{4 \pi^{2} \alpha}{m^{2} \omega} \frac{1}{3}|\langle 2 p| r| 1 s\right\rangle\left.\right|^{2} \delta\left(\omega_{f i}-\omega\right)
$$

Considering the with Γ, the $\delta\left(\omega_{f i}-\omega\right)$ can be approximated by Breit-Wigner shape

$$
\delta\left(\omega_{f i}-\omega\right)=\frac{\Gamma / 2 \pi \hbar}{\left(\omega-\omega_{f i}\right)^{2}+(\Gamma / 2 \hbar)^{2}}
$$

Evaluation of $\langle 2 p| r|1 s\rangle$,

$$
\begin{aligned}
\langle 2 p| r|1 s\rangle & =\int_{0}^{\infty} d r \int_{0}^{2 \pi} d \phi \int_{0}^{\pi} 2 a_{0}^{-3 / 2} e^{-r / a_{0}} \frac{1}{2 \sqrt{6}} a^{-5 / 2} r e^{-4 / 2 a_{0}} r r^{2} \sin \theta \\
& =\frac{4 \pi a_{0}^{-4}}{\sqrt{6}} \int_{0}^{\infty} r^{4} e^{-3 r / 2 a_{0}} d r \\
& =\frac{2^{19 / 2}}{3^{9 / 2}} \pi a_{0}
\end{aligned}
$$

Finally,

$$
\langle\sigma(\omega)\rangle=\frac{4 \pi^{2} \alpha}{3 m^{2} \omega} \frac{2^{19}}{3^{9}} \pi^{2} a_{0}^{2} \frac{\Gamma / 2 \pi \hbar}{\left(\omega-\omega_{f i}\right)^{2}+(\Gamma / 2 \hbar)^{2}}
$$

It reaches it maximum when

$$
\omega=\omega_{f i}=\frac{E_{2 p}-E_{1 s}}{\hbar}=\frac{3 e^{2}}{8 a_{0} \hbar}
$$

