Quantum Mechanics PHYS 212B

Problem Set 1

Due Tuesday, January 12, 2016

Exercise 1.1 Consider two identical linear oscillators each with spring constant k. Additionally, those oscillators are coupled by an interaction term $a x_{1} \cdot x_{2}$, where x_{1} and x_{2} are the oscillator (displacement) variables, and a is a constant. Find the energy levels for this system. Hint: transform to new coordinates.

Solution 1.1 The Hamiltonian of the system is

$$
H=\frac{p_{1}^{2}}{2 m}+\frac{p_{2}^{2}}{2 m}+\frac{1}{2} k\left(x_{1}^{2}+x_{2}^{2}\right)+a x_{1} x_{2}
$$

Perform coordinate transformation to get rid of the cross term $a x_{1} x_{2}$ with

$$
x_{1}=\frac{\sqrt{2}}{2}\left(x_{1}^{\prime}+x_{2}^{\prime}\right), \quad x_{2}=\frac{\sqrt{2}}{2}\left(x_{1}^{\prime}-x_{2}^{\prime}\right)
$$

and p 's also satisfy the same transformation

$$
p_{1}=\frac{\sqrt{2}}{2}\left(p_{1}^{\prime}+p_{2}^{\prime}\right), \quad p_{2}=\frac{\sqrt{2}}{2}\left(p_{1}^{\prime}-p_{2}^{\prime}\right) .
$$

The Hamiltonian can be expressed as

$$
H=\frac{p_{1}^{\prime 2}}{2 m}+\frac{p_{2}^{\prime 2}}{2 m}+\frac{1}{2}(k+a) x_{1}^{\prime 2}+\frac{1}{2}(k-a) x_{2}^{\prime 2}
$$

which is composed by two independent oscillators with different spring constants $k \pm a$, respectively, with angular frequencies

$$
\omega_{1}=\sqrt{\frac{k+a}{m}} \text { and } \omega_{2}=\sqrt{\frac{k-a}{m}}
$$

where $|a| \leq k$. Therefore the energy level will be

$$
E_{n_{1}+n_{2}}=\left(\frac{1}{2}+n_{1}\right) \hbar \omega_{1}+\left(\frac{1}{2}+n_{2}\right) \hbar \omega_{2}
$$

where $n_{1}=0,1,2, \ldots, n_{1}=0,1,2, \ldots$
Exercise 1.2 Consider an operator A obeying the commutation relations,

$$
\begin{gathered}
{\left[A, J_{z}\right]=\frac{1}{2} A} \\
{\left[\left[A, \mathbf{J}^{2}\right], \mathbf{J}^{2}\right]=\frac{1}{2}\left(A \mathbf{J}^{2}+\mathbf{J}^{2} A\right)+\frac{3}{16} A}
\end{gathered}
$$

where \mathbf{J} is the angular momentum of a system. Operators such as A arise in the decay of systems which emit particles of half-integral spin. By employing these commutation relations find "selection rule" for the operator A in a matrix representation which makes the z-component of angular momentum J_{z} and \mathbf{J}^{2} diagonal (corresponding eigenvlues of m and $j(j+1)$, respectively). In other words, which matrix elements $\left\langle j^{\prime} m^{\prime}\right| A|j m\rangle$ can be non-zero? (To simplify things let $X_{j}=j(j+1)$.)

Solution 1.2 For J_{z} and \mathbf{J}^{2}, we have

$$
J_{z}|j m\rangle=m|j m\rangle, \quad \mathbf{J}^{2}|j m\rangle=j(j+1)|j m\rangle
$$

Using the first commutation relation,

$$
\left\langle j^{\prime} m^{\prime}\right|\left[A, J_{z}\right]|j m\rangle=\frac{1}{2}\left\langle j^{\prime} m^{\prime}\right| A|j m\rangle
$$

with $J_{z}|j m\rangle=m|j m\rangle$, the equation above can be simplified as

$$
\left(m-m^{\prime}-\frac{1}{2}\right)\left\langle j^{\prime} m^{\prime}\right| A|j m\rangle=0
$$

Therefore, the selection rule for m is $\Delta m=1 / 2$.
Using the second commutation relation, we have

$$
\left\langle j^{\prime} m^{\prime}\right|\left[\left[A, \mathbf{J}^{2}\right], \mathbf{J}^{2}\right]|j m\rangle=\left\langle j^{\prime} m^{\prime}\right| \frac{1}{2}\left(A \mathbf{J}^{2}+\mathbf{J}^{2} A\right)+\frac{3}{16} A|j m\rangle
$$

with $\mathbf{J}^{2}|j m\rangle=X_{j}|j m\rangle$, the equation above can simplified as

$$
\left[\left(X_{j}-X_{j^{\prime}}\right)^{2}-\frac{1}{2}\left(X_{j}+X_{j^{\prime}}\right)-\frac{3}{16}\right]\left\langle j^{\prime} m^{\prime}\right| A|j m\rangle=0
$$

Then, the selection rule is

$$
\left(X_{j}-X_{j^{\prime}}\right)^{2}-\frac{1}{2}\left(X_{j}+X_{j^{\prime}}\right)-\frac{3}{16}=0
$$

Exercise 1.3 An electron is initially spin up along the \hat{z}-axis. This state is then rotated by an angle θ about an axis $\hat{\theta}$, where $\vec{\theta}=\theta \hat{\theta}=\theta_{x} \hat{x}+\theta_{y} \hat{y}+\theta_{z} \hat{z}$ and $\theta=\sqrt{\vec{\theta}} \cdot \vec{\theta}$.
(a) What is the probability (not amplitude) that the electron is still spin up along the original \hat{z}-axis? Spin down along this axis?
(b) Now suppose that an electron initially spin up along the \hat{z}-axis is sequentially rotated first by θ_{z} about \hat{z}, then by θ_{y} about \hat{y}, and finally by θ_{x} about \hat{x}. What is the probability that the electron is spin up along the original \hat{z}-axis?

Solution 1.3

(a) Consider rotation operator

$$
\begin{aligned}
R(\theta) & =\exp \left[-\frac{\vec{\theta} \cdot \vec{\sigma}}{2}\right] \\
& =\cos (\theta / 2) I-i \sin (\theta / 2) \hat{\theta} \cdot \hat{\sigma} \\
& =\left(\begin{array}{cl}
\cos \left(\frac{\theta}{2}\right)-i \sin \left(\frac{\theta}{2}\right) \frac{\theta_{z}}{\theta} & -i \sin \left(\frac{\theta}{2}\right)\left(\frac{\theta_{x}}{\theta}-i \frac{\theta_{y}}{\theta}\right) \\
-i \sin \left(\frac{\theta}{2}\right)\left(\frac{\theta_{x}}{\theta}+i \frac{\theta_{y}}{\theta}\right) & \cos \left(\frac{\theta}{2}\right)+i \sin \left(\frac{\theta}{2}\right) \frac{\theta_{z}}{\theta}
\end{array}\right)
\end{aligned}
$$

The amplitude that find electron spinning up
$\langle\uparrow| R(\theta)|\uparrow\rangle=\binom{1}{0}^{T}\left(\begin{array}{cc}\cos \left(\frac{\theta}{2}\right)-i \sin \left(\frac{\theta}{2}\right) \frac{\theta_{z}}{\theta} & -i \sin \left(\frac{\theta}{2}\right)\left(\frac{\theta_{x}}{\theta}-i \frac{\theta_{y}}{\theta}\right) \\ -i \sin \left(\frac{\theta}{2}\right)\left(\frac{\theta_{x}}{\theta}+i \frac{\theta_{y}}{\theta}\right) & \cos \left(\frac{\theta}{2}\right)+i \sin \left(\frac{\theta}{2}\right) \frac{\theta_{z}}{\theta}\end{array}\right)\binom{1}{0}=\cos \left(\frac{\theta}{2}\right)-i \sin \left(\frac{\theta}{2}\right) \frac{\theta_{z}}{\theta}$,
and then

$$
P(\uparrow)=|\langle\uparrow| R(\theta)| \uparrow\rangle\left.\right|^{2}=\cos ^{2}\left(\frac{\theta}{2}\right)+\sin ^{2}\left(\frac{\theta}{2}\right) \frac{\theta_{z}^{2}}{\theta^{2}}
$$

Similar for

$$
P(\downarrow)=|\langle\downarrow| R(\theta)| \uparrow\rangle\left.\right|^{2}=\sin ^{2}\left(\frac{\theta}{2}\right) \frac{\theta_{x}^{2}+\theta_{y}^{2}}{\theta^{2}}
$$

(b) The rotation operator becomes

$$
R=e^{i \sigma_{x} \theta_{x}} e^{i \sigma_{y} \theta_{y}} e^{i \sigma_{z} \theta_{z}}
$$

Let us calculate $e^{i \sigma_{x} \theta_{x}} e^{i \sigma_{y} \theta_{y}}$ first,

$$
\begin{aligned}
e^{i \sigma_{x} \theta_{x}} e^{i \sigma_{y} \theta_{y}} & =\left[\cos \left(\frac{\theta_{x}}{2}\right)+i \sin \left(\frac{\theta_{x}}{2}\right) \sigma_{x}\right]\left[\cos \left(\frac{\theta_{y}}{2}\right)+i \sin \left(\frac{\theta_{y}}{2}\right) \sigma_{y}\right] \\
& =\cos \left(\frac{\theta_{x}}{2}\right) \cos \left(\frac{\theta_{y}}{2}\right) I+i \sin \left(\frac{\theta_{x}}{2}\right) \cos \left(\frac{\theta_{y}}{2}\right) \sigma_{x}+i \cos \left(\frac{\theta_{x}}{2}\right) \sin \left(\frac{\theta_{y}}{2}\right) \sigma_{y}-i \sin \left(\frac{\theta_{x}}{2}\right) \sin \left(\frac{\theta_{y}}{2}\right) \sigma_{z} \\
& =\left(\begin{array}{cc}
\cos \left(\frac{\theta_{x}}{2}\right) \cos \left(\frac{\theta_{y}}{2}\right)-i \sin \left(\frac{\theta_{x}}{2}\right) \sin \left(\frac{\theta_{y}}{2}\right) & i \sin \left(\frac{\theta_{x}}{2}\right) \cos \left(\frac{\theta_{y}}{2}\right)+\cos \left(\frac{\theta_{x}}{2}\right) \sin \left(\frac{\theta_{y}}{2}\right) \\
i \sin \left(\frac{\theta_{x}}{2}\right) \cos \left(\frac{\theta_{y}}{2}\right)-\cos \left(\frac{\theta_{x}}{2}\right) \sin \left(\frac{\theta_{y}}{2}\right) & \cos \left(\frac{\theta_{x}}{2}\right) \cos \left(\frac{\theta_{y}}{2}\right)+i \sin \left(\frac{\theta_{x}}{2}\right) \sin \left(\frac{\theta_{y}}{2}\right)
\end{array}\right)
\end{aligned}
$$

where $\sigma_{x} \sigma_{y}=i \sigma_{z}$ is used. We know $|\uparrow\rangle$ is the eigenstate of z rotation,

$$
e^{i \sigma_{z} \theta_{z}}|\uparrow\rangle=\left[\cos \left(\frac{\theta_{z}}{2}\right)-i \sin \left(\frac{\theta_{z}}{2}\right)\right]|\uparrow\rangle
$$

Then

$$
\begin{aligned}
& \langle\uparrow| e^{i \sigma_{x} \theta_{x}} e^{i \sigma_{y} \theta_{y}} e^{i \sigma_{z} \theta_{z}}|\uparrow\rangle=\left[\cos \left(\frac{\theta_{z}}{2}\right)-i \sin \left(\frac{\theta_{z}}{2}\right)\right]\left[\cos \left(\frac{\theta_{x}}{2}\right) \cos \left(\frac{\theta_{y}}{2}\right)-i \sin \left(\frac{\theta_{x}}{2}\right) \sin \left(\frac{\theta_{y}}{2}\right)\right] \\
& \langle\downarrow| e^{i \sigma_{x} \theta_{x}} e^{i \sigma_{y} \theta_{y}} e^{i \sigma_{z} \theta_{z}}|\uparrow\rangle=\left[\cos \left(\frac{\theta_{z}}{2}\right)-i \sin \left(\frac{\theta_{z}}{2}\right)\right]\left[i \sin \left(\frac{\theta_{x}}{2}\right) \cos \left(\frac{\theta_{y}}{2}\right)-\cos \left(\frac{\theta_{x}}{2}\right) \sin \left(\frac{\theta_{y}}{2}\right)\right]
\end{aligned}
$$

The final probability

$$
\begin{aligned}
& \left.P(\uparrow)=\left|\langle\uparrow| e^{i \sigma_{x} \theta_{x}} e^{i \sigma_{y} \theta_{y}} e^{i \sigma_{z} \theta_{z}}\right| \uparrow\right\rangle\left.\right|^{2}=\cos ^{2}\left(\frac{\theta_{x}}{2}\right) \cos ^{2}\left(\frac{\theta_{y}}{2}\right)+\sin ^{2}\left(\frac{\theta_{x}}{2}\right) \sin ^{2}\left(\frac{\theta_{y}}{2}\right) \\
& \left.P(\downarrow)=\left|\langle\downarrow| e^{i \sigma_{x} \theta_{x}} e^{i \sigma_{y} \theta_{y}} e^{i \sigma_{z} \theta_{z}}\right| \uparrow\right\rangle\left.\right|^{2}=\sin ^{2}\left(\frac{\theta_{x}}{2}\right) \cos ^{2}\left(\frac{\theta_{y}}{2}\right)+\cos ^{2}\left(\frac{\theta_{x}}{2}\right) \sin ^{2}\left(\frac{\theta_{y}}{2}\right)
\end{aligned}
$$

