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A method for numerically integrating the N-body gravitational problem is described. 
We take advantage of the fact that the force on a star can be divided into two parts 
which operate on different time scales. One part is due to the stars in the immediate 
vicinity of the star in question and another part due to the distant stars. The part of the 
force due to the far away stars changes much more slowly than the component due to 
the nearby stars. Hence that part of the force does not have to be recalculated as frequent- 
ly as that due to the nearby stars. For systems with large N, most of the stars constitute 
the “distant” stars and the considerable saving of computing time allows us to integrate 
systems with up to 1000 particles. 

1. INTRODUCTION 

Computer simulation of the N-body self gravitating problem has become a 
powerful tool for the investigation of stellar systems. The basic approach is that 
starting with the masses, positions, and velocities of N stars at a given time, one 
can calculate, by numerically solving the equation of motion, the state of the system 
at any later time. From a knowledge of the positions and velocities as a function 
of time one can study particular physical phenomena. Solving the equations of 
motion directly, as contrasted to using Monte Carlo schemes, has the advantage 
that it is assumption-free and includes all possible interactions. Unfortunately, at 
present the number of particles that can be evolved by directly integrating the 
equations of motion is small, although the improvement of both technique and 
computer speed has increased significantly the number of particles manageable. 
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Mathematically, the N-body gravitational problem involves the solution of N 
second order differential equations, 

d2l-i N . 
dt2 - - zl G Fi:2 i = 1,2 ,..., N, 

i#j (1) 

where ri and mi are the position and mass of the ith star, respectively, and G is the 
gravitational constant. This system is nonlinear and strongly coupled. There are 
two basic factors which lead to difficulty in integrating the system given by (1). 
First, close encounters lead to instabilities. Secondly, since the force on each star 
depends on the position of all other stars the time needed in calculating the force 
increases as the square of the number of particles being integrated. Computing time, 
therefore, increases at least as N2 and this has been the basic limitation of studying 
systems with large N. These difficulties limit the usefulness of conventional 
integration schemes, such as the Runge-Kutta method, for the numerical 
integration of the gravitational problem and have forced investigatros to look for 
new methods. 

A major advance was made by Aarseth [l] who introduced variable and 
individual time steps for each star. This means that all the particles are treated 
separately in the integration. The only coupling occurs at the time when the force 
on a particle is calculated. Also, the assignment of a time step to each star avoids 
the calculation of the force on every particle when only the recalculating of the 
force on a particular particle is required. This is particularly important during a 
close encounter when the force on a particle is changing very quickly and, hence, 
necessitates recalculation at much higher frequency than for the rest of the system. 
We shall describe below a further improvement on this idea by incorporating what 
Wielen [2] has called “double individual” time steps. It has been realized by a 
number of authors [2,3,4] that not all particles in the system are indeed responsible 
for the necessity of recalculating the force on the particular particle being 
considered. Our scheme takes advantage of this fact by dividing the force on a 
particle into two parts: a slowly varying part which is due to the “distant” stars, 
the regular force, and another component, the irregular force, due to the stars in 
the immediate neighborhood of the star in question. From the theoretical study 
of the gravitational force it is known that the highly fluctuating part of the force 
comes from few close neighbors [5]. As a practical working definition of the 
irregular force we have chosen the following method. Each particle is surrounded 
by a sphere of a given radius and the force due to the particles within that sphere 
on the particle in question is the irregular force. The size of the sphere and, hence, 
the number of neighbors is made variable depending on the local density. 
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A difficulty which arises is in the matching of the irregular and regular forces when 
the neighbors of a particle change. We have circumvented this difficulty by 
analytically calculating the contributions of the changing neighbors. The efficiency 
of the scheme arises from the fact that the regular force changes much more 
slowly than the irregular force and, therefore, the regular force does not have to be 
calculated as often as that due to the nearby stars. For systems with a large number 
of particles most of the stars constitute the distant stars and there is, hence, a 
considerable saving of time in the force calculation. Our basic integration format 
follows that of Aarseth. 

An integration method which uses double individual time steps and has certain 
similarities to ours is the category scheme of Hayli [4] and Henon. Stars are 
grouped into categories-the stars in the same category having near equal time 
steps. The aim of both schemes is to isolate those field particles which are res- 
ponsible for the highly fluctuating part of the force. In the category scheme this is 
achieved by not calculating the force due to stars which are in a category higher 
than the one in which the force is being calculated. Thus, a large number of 
unnecessary calculations is avoided. But it is clear that not all the particles in the 
lower categories are responsible for the necessity of recalculating the force. The 
advantage of our scheme is that it isolates, to a very great extent, only those particles 
which are indeed responsible for the rapid change in the force. 

2. METHOD OF INTEGRATION 

We surround each particle with a sphere of radius Ri and divide the total force, 
Fi , on the particle into two parts: the irregular force, Si , which is the sum of the 
forces due to the particles within Ri and the regular force, Ki , due to the rest of 
the system. If a star is approaching the ith star with a high velocity it will cause a 
rapid change in the irregular force, and it is, therefore, included as a neighbor 
even though it lies outside R, . If computer storage is at a premium it is prudent 
to limit the maximum number of stars to be neighbors. For systems containing 
1000 stars or less, a choice of Ri which gives approximately a maximum of 15 
neighbors has been found to be sufficient. Initially, all Ris are taken equal but in 
later stages of evolution high density in some regions usually forces a decrease in 
some of the RiS. We shall describe in the next section the effects on the integration 
of choosing different maximum values of R. 

As we have divided the force into two parts we shall have two different time steps 
associated with each particle. The regular time step, Ti , is the time from the last 
regular force calculation, for which the exact regular force is valid. Similarly, 
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fi applies to the irregular force. The regular time step is calculated from 

where & is the time derivative of the regular force and /3 is a constant which is used 
to control the accuracy of the integration. In cases where (2) yields a very large 
value for ATi , which may occur if Ki is very small, we choose [I ] the AT, to be 

(3) 

where (zP)~/~ is the root mean square velocity of the system. In practice, both 
(2) and (3) are calculated and the smaller of the two is chosen. 

The formulas used by Lecar and Gonzalez [3] in their analytic program are 
used to find the irregular time steps 

Sti = c4[min(rij)]“12, (4) 

where min(rij) is the distance between the ith particle and its closest neighbor, j. 
The constant 01, along with /3 of (2), serves as an error control of the integration. 

In case a neighbor of i has a very high velocity the irregular time step is obtained 
from 

6ti = 3 
min ‘ii 

2 
[J 

and is used if the 6ti given by (5) is indeed smaller than that given by (4). The square 
root of the mass is included in (5) rather than (4) for the sake of convenience. 
7 is constant which we have found to be best taken as 3.3. 

To evolve the positions and velocities from To to T a Taylor series up to the 
fourth order in the force derivatives is used 

ri(~) = I$T,) + v,(T,) AT + kF+ (AT)~ + i FI”)(KJW’)k+2 
k=l rndk + 2)! (6) 

vi(T) = QT,,) + ‘G AT+ i & ;f+“;, , AT= T- To (7) 
z k=l 

where Fi is the total force on the particle and Fj”’ is the kth derivative of the force 
with respect to time, evaluated at time To . The forces and their derivatives consist 
of the sum of the regular and irregular parts 

F!‘“’ = K(k) + S!k) 2 z z k = 0, 1, 2, 3,4. (8) 
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In between the regular force calculations the divided difference polynomial 
method is used to extrapolate the force and its derivatives. The force polynomial is 
defined as 

where T, , T1 , T, , T3 are the times, in decreasing order of the last four exact force 
calculations. The divided differences are defined as follows 

D[T T I = Wol - F(Td 
09 1 To - Tl ’ 

D2[T T] = W-o 3 TJ - WTI > T2l 
09 2 To - T, ’ 

j-,s[T T I = D"Po 3 T21 - D2[G 9 7-31 
09 3 To - T3 ’ 

D4[T T -, 
9 3 

= D3[T T21 - D”[To 3 T31 
T- T3 . 

(10) 

The advantage of using (9) and (10) is the ease in calculation, To obtain the force 
derivatives in terms of the divided differences we compare (9) with the Taylor 
expansion of the force 

F(T) = F(T,) + ; Ftk’ (T ;,““: 
k=l 

(11) 

to obtain 

F’l’ = D[T, , TJ + T;D2[To, T,] + T,‘T,‘D3[To, T,] + T;T;T3’D4[T, T,], 

F@’ = 2!{D2[To, T2] + (T,’ + T,‘)D3[To, T,] 
+ VT,' + T,'T,' + T,'T,')D4[T, 7'311, (12) 

F@’ = 3!(D3[T,, , Ts] + (T,’ + T,’ + T,‘) D4[T, T,J}, 

Ff4’ = 4!D4[T, T3], 
where T,’ = Tk - To for k = 1, 2, 3. It should be noted that to obtain the last 
term of (12) a semiiteration procedure is used. This is so since the calculation of 
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D*lrequires a knowledge of the force at time T, which of course is unknown at 
time TO , the time of the other Dtk) calculations. 

The positions and velocities are updated in two stages. First, they are revised 
using (6) up to the F3 term. The irregular force and its derivatives are then calcu- 
lated using the new positions, allowing the computation of D4(T, T3) for the 
irregular force. They are then corrected by including the F4 term and using D4 to 

[The position and velocity of that particle is updated to the 

I time t. +St. using the Ta lor series. Equations (6) and (7) 
to the'ten i = 3, since 0 4 is not known at this stage. The 
velocities and oositions will be further corrected in step 5. I 

The irregular force and its derivatives are calculated. 

The position and velocity are corrected using the semi-itera- 
tion procedure. Eqyation 12. 

I 
Determination of whether the regular force will still be 
valid durina the next uodatino of the "article. 

Extrapolation of the regular force and 

1-1 [Equation (6) up:tI'k = 2. 
Its first derivative t" the time tiJt< 

Update all particles t0 ti t8ti using 
Taylor seues to second order in force. 

Calculation of the total force and 
its first derivative. Equation 8. 

I 

Determine the new neighbors of the 
particle. 

I I 
I I 

Computation of the new irregular Calculate the regular, irregular and 
time ste" for Particle i. Equation total force on the particle. Equation 1. 

1 I I 
Check old and new neighbors. 

I 
1 

1 Calculate derivatives of the regular and 

I irregular force taking account of any 
change in neighbors. Equations (10) and 
(12). I 

I 

Computation of the new regular and ir- 
regular time steps. Equations (2) or (3) 
and (4) or (5). 

I 

FIG. 1. Flow diagram of the integration. Stars are updated one at a time. At the beginning 
of the loop the position and velocity of the ith particle are known at time ti but the positions and 
velocities of the other particles are not known at ii . They must, therefore, be synchronized so 
that the new force on the particle being taken through the loop can be calculated. Also, at the 
beginning of the loop the regular and irregular forces and their first three divided differences 
are known. 
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correct the contributions of the lower order derivatives. If the regular force had 
to be revised then the same procedure is followed as for the irregular force. 

The actual scheme then proceeds as follows. Figure 1 shows the flow of the 
program. Since. the particles are not synchronized, we choose the particle whose 
position and velocity is to be revised first by finding the minimum of ti + Sti . 
That is, the particle whose irregular force needs recalculation before all others. 
In a previous stage a check has already been made to assure that the regular force 
is still good at this stage. The position and velocity are updated to the time ti + St, 
using the Taylor expansion (6) and (7) but carrying it out to only third order in 
force. The fourth-order term is taken into account at a later stage by the semi- 
iteration procedure described before. 

The neighbors of i are updated to ti + St, using a Taylor series only up to first 
order in the force. This synchronization allows the calculation of the irregular 
force and its derivatives. We have found that for this purpose going to higher order 
in the Taylor series is not as efficient as controlling accuracy via 0~. The positions 
and velocities are then corrected by the semiiteration procedure to include the 
fourth-contribution term in the force. 

We now check whether the next time around the regular force would need 
revision. This is done by checking ti + 2St, against Ti + dTi . If the latter is 
greater, then the regular force polynomial and its derivative are extrapolated to 
ti + Sri . The new St, for that particle is determined and the loop is begun again 
by finding the new particle with the minimum ti + Sti . 

If the regular force polynomial has to be revised then all the particles are synchro- 
nized to ti + Sti using (6) only to first order in the force. The neighbors of i are 
determined and any change of the previous neighbors is noted. If there are no 
new neighbors and all of the old neighbors are still neighbors, one straight 
forwardly calculates forces and derivatives. If there has been a change in neighbors, 
the forces and derivatives are first calculated assuming there has been no change. 
Then these are corrected by using analytic formulas to calculate contributions 
from old neighbors which are no longer neighbors and/or the new neighbors. These 
are then subtracted and added, respectively. New d Ti and S Ti are calculated for 
the particle and the cycle is repeated. 

As the foregoing method is not self-starting, a separate initial routine is used to 
start the process. At each stage the main program requires a knowledge of force 
and its derivatives. The quantities are not known at t = 0 and are, thus, obtained 
from the analytic expression for force and its derivatives. This involves a straight- 
forward differentiation of (I). The explicit expressions can be found in Ref. [6]. 
Having calculated the force and derivatives for each particle the time steps 
and neighbors are then found and the main program is begun with these 
quantities as if they had been obtained through the procedure of the main 
program. 
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3. NUMERICAL RESULTS 

The scaling we have used is to choose the gravitational constant and the total 
mass of the system equal to one. The total energy of the system defined by 

(13) 

is taken to be -&. The advantage of scaling is to make most of the relevant physical 
quantities independent of the number of particles in the system. 

The basic time unit is taken to be the crossing time which is defined as 

Tc=;, (14) 

where R is the “radius” of the system and V is the root mean square velocity. 
Assuming the virial theorem, (14) is equal to 

T, = GM5J2(-2E)--3J2, (15) 

which equals 8 with our choice of units. 
The initial conditions for the tests described below were chosen from the 

following equilibrium distribution of position and velocity 

f(4 = A E < 60 
= 0 E > EIJ, 

(16) 

where 

E = iv2 + $@I, E,, = -MG/Ro (17) 

and $(r) is the potential energy per unit mass. A is a constant chosen so that the 
normalization offequals the total mass and R. is the radius 

R, = 2417, 

A = 0.01217. 

The mass distribution given by 

(18) 

is the Emden polytrope of index 312. Although p cannot be explicitly found the 
differential equation it satisfies (Poisson’s equation coupled with (19)) is readily 
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solved numerically. The advantage of using a distribution which is a function of 
E is that the macroscopic properties of the system do not change too violently. In 
practice the positions of the N stars are generated first by randomly distributing 
them from the Emden distribution. The velocity of each star is then chosen 
randomly from the distribution given by 

PW = A iv2 + #(r) < e. 

= 0 tu2 + #(r) > l o , 
cm 

where r is the already known position of the star. The positions and velocites are 
then linearly adjusted to conform to a total energy of -+. 

A. Computing Time as a Function of the Number of Particles 

Due to the N2 nature of the gravitational interaction, computing time for schemes 
based on individual time steps increase at least as fast as N2. Investigators have 
reported a dependence varying from N2 to N3. But these estimates of computing 
time are not based on extensive studies, for only a few values of N are used and the 
number of cases integrated for each N is small. A careful study would require an 
enormous amount of computing time not commensurate with the interest in 
knowing the precise dependence. Figure 2 shows the N dependence of computing 
time for the method described above. Many cases were integrated for the low values 
values of N but only a few for N = 600 and 1000. The logarithm of computing 
time per crossing time is plotted against the logarithm of the number of particles. 
The time for the 100 body case is taken to be 100 units of time. For the cases 
considered the energy error is constant within a factor of 2. 

If we assume a power law for computing time, C, , versus the number of particle, 
then approximately 

CT = y (g (21) 

where y is about 40 set for the CDC 6600 per crossing time and relative energy 
error of about 10-4. 

B. Computing Time as a Function of the Number of Neighbors 

As the operational definition of irregular force is the force due to the particles 
within a sphere of radius R surrounding each particle, there obviously must be an 
optimum value of R depending on the average density. Choosing a too small value 
for R would result in the regular force changing too rapidly and, hence, a too 
frequent recalculation of the regular force. This is due to particles which are near 
the particles in question but, nonetheless, being included as part of the regular 
force. Choosing an R too large increases the number of neighbors to the point 
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1 2 3 4 

L'qo N 

FIG. 2. Computing time as a function of the number of particles being integrated. The 
abscissa points represent the cases where N = 25, 50, 100, 200, 300, 600, and 1000, respectively. 
The computing times are relative with 100 units of time for the 100 body case. In each case, the 
system was integrated for one crossing time. 

that the time spent in updating the irregular force overwhelms the time saved by 
separation of the total force into two parts. Figure 3 shows a set of integrations for 
N = 50 and 200 where all the parameters of the program were kept the same except 
for maximum allowed number of neighbors. The number of neighbors is controlled 
by choosing different values of RS. In each case the figures show, as expected, that 
there is an optimum value of R which minimizes computing time. 

C. Error Analysis 

The analysis of the factors which contribute to errors in the numerical integration 
of the N-body problem is extremely difficult. As Miller [7, 81 has shown, two 
systems with slightly different initial conditions or two systems with identical 
initial conditions but integrated slightly differently will become increasingly 
divergent in phase space. The basic reason being that the instability is principally 
due to the errors caused by close encounters of two bodies. This was shown by 
Sandish [9] who repeated Miller’s experiments with a modified force, the Aarseth 
potential, which has the effect of weakening the force law at close distances. 
The effect of a weaker force was to decrease the divergence in phase space. The 
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N : 50 N=ZOO 
R3 - 

FIG. 3. Computing time as a function of R8. Computing times are relative. 

physical reason for the instability is that the positions and velocities of the particles 
after the encounter are very sensitive to the coordinates before the encounter. 
Thus, as a particle suffers subsequent encounters the error gets progressively 
amplified. The obvious measure of error, microscopic reversibility, is, hence, much 
too stringent a test and the impossibility of it in actual practice makes it a useless 
criterion. It is generally accepted that the microscopic instability is not reflected 
in the macroscopic properties of the solution. Although this may be more a belief 
than a proven fact there are indications [2,9] that this may be so. 

As an alternative to using microscopic reversibility as a criterion for error, the 
total energy of the system given by (13) has been adopted hy most investigators 
for measuring the error of integrations. But the use of energy as a measure is 
not totally satisfactory either. This is again due to the microscopic instabilities 
although the effect is not so great on the total energy as it is on positions and 
velocities. As an example of the situations which may arise we cite the following 
situation. Two cases with the same initial conditions may be integrated on the same 
computer, one in single precision and the other in double precision, but, 
nonetheless, the case done with double precision may show a larger error! This is 
usually due to the fact that single precision integration may have missed a close 
encounter, and, hence, its energy remained relatively stable. Due to the above facts 
one must therefore not expect exact relationships between the controls of the 
program and resulting errors. At best one would hope to find a general trend which 
may be a useful guide in practice. A detailed error analysis was made by Wielen 
for his method which uses single time steps. In our scheme we have two primary 
error control parameters, OL and fl, appearing in the regular and irregular time 

581/x2/3-8 
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steps. To study the dependence of the error parameter we kept one of the two 
parameters constant while integrating different cases of varying the other. In 
each instance the integrations were done for one crossing time and the energy was 
sampled eight times. We have used two different criteria for the energy error 

AE = i i [ Ei+l - Ei I 
I=1 

(TE = - ; [ i l (41 - @2]1'2, 

(22) 

(23) 

FIG. 4a, b. Error of integration as a function of the regular time step control parameter. 
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FIG. 5a, b. Error of integration as a function of the irregular time step control parameter. 

where Et is the energy at each of the samplings, E the average of the EiS and n is 
the number of samples taken. In (22), 12 equaled 8 but in (23), n = 9 as the initial 
energy, -0.1250 in our system of units, is used as one of the samples. 

Figures 4a, b and 5a, b show the relative error as a function of the irregular and 
regular time step control parameters appearing in (2) and (4). The figures show a 
general trend even though there is quite a high scatter. The trend is reliable and has 
appeared in most cases that we have seen. Of course, there may be times when 
the relative error becomes very large but after some time it returns to its average 
relative error. This is a well known [6] phenomenon in N-body integrations and 
is usually due to a very close encounter. 
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