
Contents

0. Contacts/History
1. Installation
2. Sequential Usage

2.1 Q-Scale
2.2 Search Techniques
2.3 GOP
2.4 Slices
2.5 Search window
2.6 IPB pattern
2.7 Specifying Input Files
2.8 Original or Decoded
2.9 Bit-rate Control
2.10 User-data
2.11 Compression Decision List (CDL)
2.12 Gamma Correction
2.13 Encoding GOPs at a time
2.14 Encoding Frames at a time
2.15 Stats and other info

3. Parallel Usage
3.1 Architecture
3.2 Specifying slave machines
3.3 Remote Shell
3.4 Scheduling Algorithms
3.5 Parallel Problems

4. Performance
5. Other Options

5.1 Custom Quantization Tables
5.2 Aspect Ratio
5.3 Frame Rate

6. Other Tools
6.1 ppmtoeyuv
6.2 jmovie2jpeg
6.3 movieToVid

6.4 yuvtojpeg
6.5 blockrun
6.6 vidtoppm
6.7 vidtojpeg
6.8 vidtoeyuv

7. Frequently Asked Questions
7.1 Questions
7.2 Answers

0. Contacts/History

The Berkeley MPEG encoder was written by Kevin L.
Gong in the Berkeley Plateau Multimedia Research group,
headed by Professor Lawrence Rowe. It has since been
modified by Stephen Smoot, Eugene Hung, and Darryl
Brown. Please use the following e-mail addresses to reach
us:
mpeg-bugs@plateau.cs.berkeley.edu (bug reports and ques-
tions) larry@cs.berkeley.edu (research funding!)

1. Installation

To install, read the directions in doc/INSTALL.
Note that the bin/ directory contains binaries for

several different platforms. The program has been success-
fully ported to the following platforms:

SunOS 4.x
DEC Alpha running OSF1
DECstation 5000 running Ultrix
HP 9000 series

If you are successful in porting to a new platform, or
have problems installing, please let us know (at the address
above).

2. Sequential Usage

The encoder is invoked in the following manner:
mpeg_encode <options> parameter_file

Berkeley MPEG-1 Video Encoder

User’s Guide

Plateau Research Group
Computer Science Division

University of California
Berkeley, California 94720

mpeg-bugs@cs.berkeley.edu

Last Updated: 30 January 1995

2

Here is a description of the different command-line
options available and parameter-file options available in
sequential (one-machine) encoding. You should defi-
nitely read sections 2.1-2.9. The other sections are
optional.

In the following, whenever a space in the parameter file
appears, it can be represented by any amount of
whitespace (tabs or spaces).

2.1 Q-Scale (parameter file)

The quantization scale values (Q-Scale) give a
trade-off between quality and compression. Using dif-
ferent Q-Scale values has very little effect on speed. The
Q-Scale values can be set separately for I, P, and B-
frames.

Usage:
IQ-Scale num
PQ-Scale num
BQ-Scale num

num in all three cases is a number from 1 to 31.

Larger numbers give better compression, but
worse quality. In the following, the quality numbers are
peak signal-to-noise ratio, defined as:

where MSE is the mean squared error.

Tables one and two show the Q-scale vs. Quality
relationship for the flower-garden sequence.

Note that when rate-control (Section 2.9) is in
use, the rate control mechanism will change the Q-scale
throughout the blocks of the frame, so these specified
values are merely starting points.

Table 1: Q-Scale vs. Quality (SNR)

Q-Scale I-Frames P-Frames B-Frames

1 43.2 46.3 46.5

6 32.6 34.6 34.3

11 28.6 29.5 30.0

16 26.3 26.8 28.6

21 24.7 25.0 27.9

26 23.5 23.9 27.5

20log10
255

MSE

2.2 Search Techniques (parameter file)

There are several different motion vector search
techniques available for both P-frame search and B-
frame search. Using different search techniques present
little difference in quality, but a large difference in com-
pression and speed.

There are 4 types of P-frame search: Exhaustive,
TwoLevel, SubSample, and Logarithmic.

There are 3 types of B-frame search: Exhaustive,
Cross2, and Simple.

The suggested search techniques are TwoLevel
and Logarithmic for P-frame search, and Cross2 and
Simple for B-frame search. Tables three and four com-
pare the different search methods:

a. Smaller numbers mean better compression
b. Larger numbers mean faster execution
c. Larger numbers mean better quality

31 22.6 23.0 27.3

Table 2: Q-Scale vs. Compression

Q-Scale I-Frames P-Frames B-Frames

1 2:1 2:1 2:1

6 7 10 15

11 11 18 43

16 15 29 97

21 19 41 173

26 24 56 256

31 28 73 330

Table 3: P-frame Motion Vector Search
(Normalized)

Technique Compressiona Speedb Qualityc

Exhaustive 1000 1000 1000

SubSample 1008 2456 1000

TwoLevel 1009 3237 1000

Logarithmic 1085 8229 998

Table 1: Q-Scale vs. Quality (SNR)

Q-Scale I-Frames P-Frames B-Frames

3

For some reason Simple seems to give better com-
pression, but it depends on the image sequence.

Usage:

PSEARCH_ALG ptechnique
BSEARCH_ALG btechnique

where ptechnique is one of {LOGARITHMIC,
SUBSAMPLE, TWOLEVEL, EXHAUSTIVE}

where btechnique is one of {EXHAUSTIVE,
CROSS2, SIMPLE}

2.3 GOP (parameter file)

A Group of Pictures (GOP) is a roughly indepen-
dently decodable sequence of frames. An MPEG video
stream is made of one or more GOPs. You may specify how
many frames each GOP should be. A GOP must start with
an I-frame, and the encoder will enforce that by taking your
number as the minimum number of frames in a GOP.

Usage:

GOP_SIZE num
where num = the number of frames in a GOP

2.4 Slice (parameter file)

A slice is an independently decodable unit in a frame.
It can be as small as one macroblock, or it can be as big as
the entire frame. Barring transmission error, adding slices
does not change quality or speed; the only effect is slightly
worse compression. More slices are used for noisy transmis-
sion so that errors are more recoverable. Because most
transmission systems have more sophisticated error correct-
ing routines, we usually just use one slice per frame.

Usage:

SLICES_PER_FRAME num
where num is the number of slices in a frame

Note: Some MPEG playback systems require that

Table 4: B-frame Motion Vector Search
(Normalized)

Technique Compression Speed Quality

Exhaustive 1000 ? 1000

Cross2 975 1000 996

Simple 938 1765 991

each slice must consist of whole rows of macroblocks. If
this is the case, then if the height of the image is H pixels,
then you should set the SLICES_PER_FRAME to some
number which divides H/16. For example, if H = 240, then
you should only use SLICES_PER_FRAME values of 15,
5, 3, or 1.

Note to the note: these MPEG playback systems are
really at fault, since the MPEG standard says this doesn’t
have to be so.

2.5 Search Window (parameter file)

The search window is the window in which motion
vectors are searched for. The window is a square. You can
specify the size of the square, and whether to allow half-
pixel motion vectors or not.

Usage:

PIXEL <FULL or HALF>
RANGE num [numB]

HALF means that half-pixel vectors are allowed. The
search window is +/- num pixels in the X and Y directions.
It is usually important that you use HALF, because it results
in both better quality and better compression. It is only
undesirable for computer-generated images.

num should probably be set to at least 8 or 10 pixels.
This number depends on the image. Using much larger
numbers such as 20 or 30 doesn’t seem to help much, and
increases the CPU cost drastically. The optional numB is in
case you wish to specify different ranges for predicted
frames (P-frames, num), and Bi-directional frames (B-
frames, numB). B-frame limits are optional as indicated by
the braces above (so “RANGE 10 6” is a valid command as
is “RANGE 9”).

2.6 IPB Pattern (parameter file)

You can set the sequence of I, P, and B-frames.
Later versions will allow you to do more than set a repeat-
ing IPB pattern. The pattern affects speed, quality, and
compression. Table five shows some of the trade-offs.

(this is given a certain Q-scale)

Table 5: Comparison of I/P/B-Frames
(Normalized)

Frame
Type

Compress
ion

Speed Quality

I-frames 1000 1000 1000

P-frames 409 601 969

B-frames 72 260 919

4

A standard sequence is IBBPBBPBBPBBPB
Usage:

PATTERN <IPB pattern>

Note that if the last frame in an encoding is a B-
frame, it will not be encoded (since it has no future frame to
reference from). Pre-I patters like BBIBBP are legal, but
seem to have bugs, so watch out! To insure that every frame
is encoded, the encoder can force the last frame to be an I-
frame.

Usage:

FORCE_ENCODE_LAST_FRAME

2.7 Specifying Input Files (parameter file)

The encoder can accept five base types of input files:
PPM, PNM, JMOVIE, JPEG, and YUV. Note that PPM is a
subset of PNM; the PPM option is available because it is
faster to read if the files are known to be PPM. JMOVIE is
the format created by the Parallax video grabber. JPEGs are
a standard image format. YUV formats are described below.

If you use YUV format, you must specify the pixel
size of the image in the parameter file and the YUV_FOR-
MAT.

Usage:

BASE_FILE_FORMAT format
YUV_SIZE widthxheight
YUV_FORMAT yuv_format

format is one of {YUV, PPM, PNM, JMOVIE,
JPEG}

width and height are integers (like 320x240)
yuv_format is one of {ABEKAS, EYUV,

PHILLIPS, UCB, {SPECIAL}}, where SPECIAL
is a specification of the pattern of Y, U, and V, such as
UYVY for ABEKAS. The pattern can be of any
length, or order, but must consist only
of Ys, Us, andVs, and must represent two
pixels of data (thus YUVYUV for 4:4:4
source).

You must specify the directory in which the input
files are located. You can use ‘.’ to specify the current direc-
tory.

Usage:

INPUT_DIR directory

You must also specify the names of the files them-
selves. You list them sequentially, one per line, in display
order. There are shortcuts, however, which allow you to

condense many files into one line.
Usage:

INPUT
file1
file2
...
filen
END_INPUT

filei can be either a file name, a single-star
expression followed by a bracketed expansion for star, or a
command to be executed. There are two types of bracketed
expansions. For example:

sflowg.*.yuv [0-10]

is expanded to:

sflowg.0.yuv
sflowg.1.yuv
sflowg.2.yuv
sflowg.3.yuv
sflowg.4.yuv
sflowg.5.yuv
sflowg.6.yuv
sflowg.7.yuv
sflowg.8.yuv
sflowg.9.yuv
sflowg.10.yuv

sflowg.*.yuv [0-10+3]

is expanded to:

sflowg.0.yuv
sflowg.3.yuv
sflowg.6.yuv
sflowg.9.yuv

Also, the encoder will pad with 0’s if necessary:

sflowg.*.yuv [00-10]

is expanded to:

sflowg.00.yuv
sflowg.01.yuv
sflowg.02.yuv
sflowg.03.yuv
sflowg.04.yuv
sflowg.05.yuv
sflowg.06.yuv

5

sflowg.07.yuv
sflowg.08.yuv
sflowg.09.yuv
sflowg.10.yuv

If there is no star, then the file name is simple
repeated the appropriate number of times ([1-10] is 10
times).

Commands can be used to dynamically create the
list of files, for example:

INPUT
‘ls July-*.ppm‘
‘cat file-list‘
END_INPUT

The command(s) will be executed in the direc-
tory named by INPUT_DIR if it appears before INPUT
in the parameter file. Note that the encoder-provided
filling in of *’s is not supported in this mode.

The encoder allows you to use other file formats
by providing an input conversion specifier. You must
describe how to convert the input format into one of the
base file types.

Usage:

INPUT_CONVERT conversion

conversion must be a multi-star expression.
If conversion is simply ‘*’, then no conversion takes
place. Otherwise, each of the file lines are replaced by
the conversion line with the file name wherever there is
a ‘*’. The conversion line must send the output to std-
out. For example, suppose we have a bunch of GIF files.
Then we would do:

BASE_FILE_FORMAT PPM
INPUT
pictures.*.gif [0-10]
END_INPUT
INPUT_CONVERT giftoppm *

Another example: Suppose we have separate Y,
U, and V files (where the U and V have already been
subsampled). Then we might have:

BASE_FILE_FORMAT YUV
INPUT
pictures.* [0-10]
END_INPUT
INPUT_CONVERT cat *.Y *.U *.V
YUV_FORMAT UCB
As you can see, the “files” between INPUT and

END_INPUT don’t have to be files at all! This can be
very useful.

To read data from standard input, set:
INPUT_DIR stdin
Note that you cannot use the stdin option when

coding in parallel. (Use GOPINPUTDIR or FRAMEIN-
PUTDIR if combining frames/GOPs.)

The output file is specified by:
OUTPUT filename
for example:
OUTPUT /u/keving/mpg/flowers.mpg

2.8 Original or Decoded (parameter file)

The encoder can use either the original frames as
reference frames, or the decoded frames. Using the
decoded frames gives better playback quality, but is
slower and seems to give worse compression. It also
causes some complications with parallel encoding. (see
the section on parallel encoding) One recommendation
is to use original, and lower the q-scale if the quality is
not good enough. Table six shows the trade-offs.

Usage:

REFERENCE_FRAME ORIGINAL

2.9 Bit-rate Control (parameter file)

The default encoding uses variable bit rate. To
limit the bit rate, the MPEG-2 Standard’s algorithm has
been implemented (suitably adjusted). There are two
parameters which must be set to use bit-rate control:

BUFFER_SIZE N (in bits)
BIT_RATE M (in bytes/sec)
N sets the largest required buffer, M specifies the

continual rate. N is set in number of bits, the buffer is
actually in 16bit ints.

2.10 Userdata (parameter file)

An identification string is added by default to the
Sequence layer user-data field. It is “UCB Encoder
Vers” (where Vers is replaced by the encoder version

Table 6: Original or Decoded? (Normalized)

Reference
Compress

ion
Speed

Quality
I/P/B

Decoded 1000 1000 1000/969/919

Original 885 1373 1000/912/884

6

number). This field entry can be changed by adding a
USER_DATA parameter whose vale is the name of a file
continuing the data to add to the header.

Usage:

USER_DATA ./user_data.txt

2.11 Compression Decision List (CDL, also
Specifics File (parameter file))

If you want to be very exact in what is set during the
encoding, use CDL_FILE (the older SPECIFICS_FILE is
supported as well) to point to a file describing the exact set-
tings wished for the encoding. The version 1.0 of CDL sup-
port has the following format:

version 1
frame FN T Q
slice SN Q
block BN Q | BN Q skip | BN Q bi fx fy bx by |

BN Q forw fx fy | BN Q back bx by
FN, SN, and BN signal which frame/slice/block

number the command applies to. Note that if you have a
block or slice command, must be proceeded by a frame
command for that frame. T sets the type of the frame (I, P,
B, or - to not set). Q sets the q-scale (1-31 or +N -N for rela-
tive scaling, or 0 for no change). The detailed block specifi-
cations set the motion vectors (in half-pixel units). See
specifications.c for more information.

Version 2 CDL files have relative Qscales, so “2
“means decrease the Qscale by 2, “2” means increase it.
Unsigned numbers like “4” set the Qscale (to 4).

Usage:

CDL_FILE filename
CDL_DEFINES string
where filename contains the specifics, and string

(optional) are defines to be passed to the C preprocessor to
use on the file (-Db=block for example).

2.12 Gamma Correction (parameter file)

If your movies are too light or too dark for your play-
back system, you can pre-gamma correct them.

Usage:

GAMMA gamma-val
gamma-corrects by raising each luminance fraction

to the power gamma-val (a float)
This works by converting the luminance (brightness)

of the input image to a fraction zero to one, and then raises it
to the power gamma-val. Thus values less than 1 brighten,
and greater than 1 dim. If your output device has good
brightness controls, it is better to control brightness at that
end.

2.13 Encoding GOPs at a Time (command line)

Instead of encoding an entire sequence, you can
encode a single GOP. GOPs can later be joined together
with the encoder to form an MPEG file.

Usage:
-gop num
This only encodes the numbered GOP (which are

numbered beginning at 0.
The output file will be the normal output filename

with the suffix “.gop.<gop_num>”

GOP files can be joined at any time using the fol-
lowing command-line argument.

Usage:
-combine_gops
This causes the encoder to simply combine some

GOP files into a single MPEG stream. A sequence header/
ender are inserted. In this case, the parameter file need only
contain the YUV_SIZE value, an output file, and perhaps a
list of input GOP files. If no list of input GOP files is used,
then the encoder assumes you’re using the same parameter
file you used with the -gop option, and calculates the cor-
responding gop filenames itself. If this is not the case, you
can specify input GOP files in the same manner as normal
input files -- except instead of using INPUT_DIR, INPUT,
and END_INPUT, use GOP_INPUT_DIR, GOP_INPUT,
and GOP_END_INPUT. If no input GOP files are speci-
fied, then the default is to use the output file name with suf-
fix “.gop.<gop_num>” starting from 0 as the input files.

Thus, to summarize, unless you’re mixing and
matching GOP files from different sources, you can simply
use the same parameter file for the -gop and -combi-
ne_gops options.

2.14 Encoding Frames at a Time (command line)

Instead of encoding an entire sequence, you can
encode individual frames. These frames can later be joined
together to form an MPEG file.

Usage:
-frames first_frame last_frame
This causes the encoder to encode the numbered

frames in the given range, inclusive.
The output will be placed in separate files, one per

frame, with the filenames being the normal output file with
the suffix “.frame.<frame num>”

The frame files can later be combined as follows:
Usage:
-combine_frames
This causes the encoder to simply combine some

frames into a single MPEG stream. Sequence and GOP
headers are inserted appropriately. You can either use the
same parameter file for -frames and -combine_frames, or

7

you can specify frame files to combine.
The parameter file may specify input frame files in

the same manner as normal input files -- except instead of
using INPUT_DIR, INPUT, and END_INPUT, use
FRAME_INPUT_DIR, FRAME_INPUT, and
FRAME_END_INPUT. If no input frame files are speci-
fied, then the default is to use the output file name with suf-
fix “.frame.<frame_num>” starting from 0 as the input files.

2.15 Stats and Other Options (command line)

There are several options for printing or suppressing
useful information.

The encoder always prints (to stdout) parameter file
information and statistics about how many I, P, and B
frames there were, and information about compression and
quality. You can send these statistics, in addition to the
screen, to a file.

Usage:
 -stat stat_file

This appends the parameter file info and stats to
stat_file

Normally, the statistics do not include any informa-
tion about quality. This is because computing the quality
takes a little more time. If you wish to have the quality
included in the statistics, use the -snr command line argu-
ment.

Usage:
-snr
This prints the signal-to-noise ratio (snr) and peak

snr.

An additional statistic measure is mean squared
error. If you wish to see the per-block mean squared error,

use the -mse command line flag (sets -snr as a side effect).
Usage:
-mse
This prints the MSE for each block encoded
Another set of data which can be useful is a histo-

gram of the motion vectors. The encoder can keep track of
P-frame motion vectors and forward and backward B-frame
motion vectors. The output is in the form of a matrix, each
entry corresponding to a motion vector in the search win-
dow. The center of the matrix represents (0,0) motion vec-
tors.

Usage:
-mv_histogram

During normal execution, the encoder outputs two
kinds of information. It prints a single line for each frame,
summarizing block type and time info. It also prints, after
each frame, an estimate of the remaining running time. You
can modify how often or if this information is to be shown.

Usage:
 -quiet num
 -no_frame_summary
-realquiet

If num is negative, the time estimate is never shown;
otherwise, it reports a time estimate no more often than
every num seconds (unless the time estimate rises, which
will happen near the beginning of the run). The default is
num = 0, which means report after every frame.

If -no_frame_summary is given, then informa-
tion about each frame is not printed.

-realquiet stops all printing,
other than error messages.

Another nice feature is that the encoder can output
the bit rate, on both a frame-to-frame scale, and also an I-

Master Server

Slave SlaveSlaveSlave

Combine Server

Decode Server

Figure 1: Network Model

Disk

8

frame-to-I-frame scale.
Usage:
-bit_rate_info rate_file
This puts the bit rate info into the specified file
(order of info, etc.)

3. Parallel Usage

In parallel execution there are slave processes. You
can have those processes run nicely if you want.

Usage:
-nice
This makes all slave processes run nicely. This

means that interactive users take precedence, so they don’t
feel like they’re running in molasses. If you want to be mean
to them, don’t use this option. :-)

3.1 Architecture Overview

Figure 1 shows a diagram of the system architecture. The
slaves exist on the different slave machines which you spec-
ify (see Section 3.2). The server processes all live on the
machine you run the encoder on.

3.2 Specifying Slave Machines (both)

You specify the slave machines in the parameter file.
For each slave you must specify the username to use, as well
as the executable mpeg_encode program. If a slave does not
have NFS access, then it is REMOTE and you must also
specify where the parameter file is.

Usage:
PARALLEL
slave_specification
END_PARALLEL

slave_specification can be either:
machine username executable
or
REMOTE machine username executable

param_file

You must have an account with the given username
on each machine, and you must place your machine/login in
the appropriate .rhosts files.

To make it easier to run experiments with varying
numbers of processors, there is a command-line argument
which limits the number of slave machines.

Usage:
-max_machines num_machines

This means that the encoder will use no more than
num_machines machines as slaves.

3.3 Remote Shell (parameter file)

To run processes on the slave machines, mpeg_en-
code uses the remote shell command. On most machines
this is the command rsh. On HP machines, however, rsh is
the restricted shell; on HP machines, the right command to
use is remsh, rather than rsh.

Usage:

RSH <rsh command>

3.4 Scheduling Algorithms (parameter file)

The encoder provides 3 different scheduling algorithms to
schedule which processors get which frames.

The first scheduling algorithm simply assigns N/P
frames to each processor, where N is the number of frames
and P is the number of processors. This has the advantage
of minimal overhead, but only works well when all the pro-
cessors run at nearly the same speed. Also, since most pro-
cessors will finish at about the same time, you will have to
wait at the end while the Combine Server gathers all the
frame files together.

Usage:
PARALLEL_PERFECT

The second scheduling algorithm first assigns S
frames to each processor. When a processor is finished, it is
assigned T seconds of work (the scheduler estimates this
based on previous performance). S should be at least 3,
preferably at least 5 or 6, to insure a good estimate of each
processor’s speed.

Usage:
PARALLEL_TEST_FRAMES S
PARALLEL_TIME_CHUNKS T

The third scheduling algorithm is probably the best.
It also first assigns S frames to each processor. Subse-
quently, however, whenever a processor finishes, it is
assigned enough work to keep it busy until almost every-
thing is done. Effectively, a processor is assigned many
frames, and then fewer and fewer frames as more work gets
done. This insures good load balancing, while limiting
scheduling overhead.

Usage:
PARALLEL_TEST_FRAMES S
PARALLEL_CHUNK_TAPER

3.5 Parallel problems (parameter file)
There are some unsupported features using

REMOTE to specify slaves: The ‘command‘ form of gener-

9

ating input files must work on the remote machine. Also the
USER_DATA and CDL_FILE files must be available on
the remote sites as specified in the parameter file. This
should be fixed in future versions.

4. Performance

Table seven shows a comparison of sequential per-
formance on different machine types.

Parallel performance is dependent not only on pro-
cessor performance, but network performance. If you are
using a 10 Mb/s Ethernet, don’t expect to get better than 4 or
5 frames per second -- no matter how fast your processors
are.

Parallel performance is also greatly dependent on
how big the input files are (YUV is better than PPM, and
JPEG is better than both), and how big the output files are
(better compression will lead to less I/O).

5. Other Options

This section gives example of some more rarely used
options in the parameter file, such as customizing the Quan-
tization tables, or setting the aspect ratio.

5.1 Custom Quantization Tables (parameter file)

You can specify your own custom quantization tables.
Currently you can only do this once per MPEG file. You can
specify both Intra- and Non-intra quantization tables. If you
don’t specify them, then the default tables are used (c.f. page
D-16, D-17 of the standard).

Usage:

IQTABLE
table row 1
table row 2
...
table row 8

a. Macroblocks per second; a
320x240 pixel image is 300
macroblocks per frame.

Table 7: Machine Comparison

Machine MPSa

HP 9000/755 280

DEC 3000/400 247

HP 9000/750 191

Sparc 10 104

DEC 5000 68

This specifies the intra-coding quantization table (I
frames and I-blocks in P and B frames). Each table row
is simply 8 integers, separated by tabs and/or spaces.

Usage:

NIQTABLE
table row 1
table row 2
...
table row 8

This specifies the non-intra-coding quantization
table (difference vectors in P and B frames).

5.2 Aspect Ratio (parameter file)

You can specify the aspect ratio to be one of the
fourteen legal values as specified in the standard (c.f.
Section 2.4.3.2). This sets the requested aspect ration for
playback.

Usage:
ASPECT_RATIO float
float is one of {1.0, 0.6735, 0.7031, 0.7615,

0.8055, 0.8437, 0.8935, 0.9157, 0.9815, 1.0255, 1.0695,
1.0950, 1.1575, 1.2015}.

5.3 Frame Rate (parameter file)

You can specify the frame rate to be one of the eight
legal values (c.f. Section 2.4.3.2). This is used by some
playback systems to gauge the playback rate.

Usage:
FRAME_RATE float
float is one of {23.976, 24, 25, 29.97, 30, 50,

59.94, 60}.

5.4 Floating Point DCT (command line)
The encoder normally uses a quick algorithm for

forward and reverse DCTs. However, in sequences with
many P frames, this can result in errors when decoded ref-
erence frames are used. To use the (slow) double precision
accurate dcts, use the following flag:

Usage:
mpeg_encode -float_dct

6. Other Tools

The misc/ directory contains several useful tools.

6.1 ppmtoeyuv

10

Usage:
ppmtoeyuv < input.ppm > output.yuv

This takes as input a ppm file and outputs a subsam-
pled yuv file suitable for the encoder.

6.2 jmovie2jpeg

Usage:
jmovie2jpeg infile outfile start-

frame end-frame

infile is a version 2 Parallax J_Movie
outfile is a base file name for the output files
start-frame and end-frame are the starting

and ending frame numbers

This takes as input a J_Movie and creates separate
JFIF compatible JPEG files with the names base<num>.jpg,
where base is outfile, and <num> are the frame numbers.

jmovie2jpeg was written by Jim Boucher
(jboucher@flash.bu.edu).

6.3 movieToVid

Usage:
movieToVid movieFile dataDir

indexDir srcHostName

This program is used to convert a Parallax J Movie
into a “.vid” file, which is video only. vid files are used by
some of the programs described later.

See the README file in misc/mtv/ for more details
on usage.

movieToVid was written by Brian Smith (bsmith@-
cs.berkeley.edu)

6.4 eyuvtojpeg

Usage:
eyuvtojpeg infile outfile

This takes as input an encoder yuv file and outputs a
jpeg file. It uses cjpeg to do the compression.

6.5 blockrun

Usage:
blockrun command num_args firstnum

lastnum skip arg1 ... argn

This runs the given command (which has
num_args args), with the args arg1 ... argn, where
any ’=’ character is replaced by a number from firstnum
to lastnum skipping by skip. For example:

blockrun eyuvtojpeg 2 13 19 3
flow=.yuv flow=.jpg

will run:

eyuvtojpeg flow13.yuv flow13.jpg
eyuvtojpeg flow16.yuv flow16.jpg
eyuvtojpeg flow19.yuv flow19.jpg

6.6 vidtoppm

Usage:
vidtoppm filename width height

start end outbase [quality]

This takes as input a .vid file of given height and
width, and turns them into a bunch of ppm files named
outbase.N, where N is a number from start to end.

6.7 vidtojpeg

Usage:
vidtojpeg filename width height

start end outbase [quality]

This is the same as vidtoppm, except it outputs
JPEG files instead of PPM files.

6.8 vidtoeyuv

Usage:
vidtoeyuv filename width height

start nth outbase [quality]

This takes as input a .vid file of given height and
width, and turns them into a bunch of yuv files named
outbase.N, where N is a number from start to end,
skipping by nth.

6.8 PBMPLUS

There is a very useful package called pbmplus avail-
able for ftp (ee.utah.edu:/pbmplus for example). This has
conversions from TIFF, GIF, and many other common for-
mats to PPMs, which the encoder can read. You can even
keep the originals in their own format, and do conversions
via INPUT_CONVERT.

11

7. Frequently Asked Questions

7.1 Questions

1. How do I encode a sequence that can be
played by the Xing player?

2. I’m using the Parallax XVideo card to
digitize; how do I MPEG-encode the resulting
data?

3. How do I convert the MPEG-encoder
YUV files into PPM files?

7.2 Answers

1. The XING player samples video at 160x120 and
expands to output 320x240. This is where their
speed comes from. The player cannot buffer a
320x240 and thus had data overruns. The xing
player would ’theoretically’ handle 160x120 I
frames.

Thus, to encode, use PATTERN I and 160x120
frames.
(jboucher@flash.bu.edu)

2. Use the type JMOVIE, or use the jmovie2jpeg
utility in the misc/ directory.

3. Stanford’s CVv1.2.2.tar.Z includes
cyuv2ppm.c.
Which after you split the Y, U, and V components
out, works fine. (curly@hsn.cftnet.com)

This can be ftp’d from
havefun.stanford.edu, in the directory /
pub/cv/.

