An unusual approach to Kepler’s first law
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Kepler's first law of planetary motion states that the orbits of planets are elliptical, with the sun at
one focus. We present an unusual verification of this law for use in classes in mechanics. It has the
advantages of resembling the simple verification of circular orbits, and stressing the importance of
Kepler's equation. ©2001 American Association of Physics Teachers.
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[. INTRODUCTION II. CIRCULAR ORBITS

Kepler’s first law of planetary motion states that a point We seek orbits of point masses that satisfy Newton’s sec-
mass moving in a central force field of the forin  ond law of motion in a central force field attracting inversely
=—(k/r?)(r/r) will have an orbit which is elliptical in as the square of the distance:
shape with focus at the origin if the motion is bounded. K r
There are many ways to derive this result for students who i=—— . (5)
have mastered only calculus. The purpose of this note is to rer
call attention to a method of showing that elliptical orbits Differentiating (1) twice we get
with the proper time dependence satisfy Newton’s second
law.

This approach does not seem to be used often, but is aomparing this last result wittb) we see that
pealing because it resembles closely the verification of cir-
cular orbits.(In this presentation we assume the orbitis el-  2_ k @)
liptical with focus at the center of attraction and that it 3
satisfies Kepler’s equation. We then show that this orbit sate
isfies Newton’s second law of motion in the central forceorbit [satisfies(5)] if the angular velocitye satisfies w?
field just described. That is, we do nderive the elliptical Lsatst . gufar yo @
orbits from the assumption of an inverse square force; thus /@ If T |52the per2|od 0; the orbit, them=2x/T and we
we prefer to describe this note as a “verification” rather thand€t from(7) T*=(4m/k)a”. This is Kepler's third law.

a “derivation.”)

The position vector describing circular motiofradiusa)
with uniform ang_ular velocityw and timet is described by || ELLIPTICAL ORBITS
the pair of equations

= — w?(acosoti+asinwtj) = — w?r. (6)

rom (7) we conclude that the circle of radias(1) is a true

_ ; P We will now show that the elliptical orbit described £3)

= + S .
r=acoski+asing], @ and (4) satisfies Newton’s second lai@) in much the same
E= wt. (2)  way that the circular orbit given by the pdit) and(2) does.

. L L . The calculations are a bit longer, but there are no tricks.
Motion on an elliptical orbit with eccentricitg and focus at From (3) we see that the length of the position veatds

the origin is described by the more complex pair given by
r=(acose—ae)i+bsinkj, 3 r2=(acosE—ae)?+ (b sinE)2.
E—esinE= wt. (4 Usingb?=a?—a’e? we get

Notice that whene=0 (and thusb=a), Egs. (3) and (4) r2=(acosE—ae)?+(a’—a%e?)sirt E

reduce to(1) and (2). The ellipse with position vector
=acosEi+bsinEj would have the origin of coordinates at
point C in Fig. 1. Our ellips€3) has been shifted the dis- r=a(l—ecosk). ®
tanceaeto the left so that the origin is at a focus. Equation
(4) is called Kepler’s equatiohKepler's equation is a ver-
sion of Kepler’s second law, that the radius veat@weeps
out equal areas in equal timggstronomers calE the ec- E(1—ecosE)=w, (9)
centric anomaly andwt the mean anomaly. The term .

anomalyhas been used fangle by astronomers for hun- @nd using(8) we have

dreds of years because of the irregularities in planetary po- . aw

sitions) A simple geometric derivation d#) is given in the E= T (10
Appendix to make this paper self-contained. WHilg and

(2) can be combined to express the position vector directly ipjfferentiating (9) and solving forE we get

terms of timey =a coswti+a sinwtj, this cannot be done in )

the elliptical case witl{3) and(4). We cannot solvé4) for E £ esinkE E)2

which simplifies to

Now we obtain nice expressions f&randE. Differenti-
ating Kepler’s equatiori4) we get

in terms oft using convenient elementary functions. - 1-ecosE
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Fig. 1. The elliptical orbit.
Using (8) and (10) we can rewrite this as
. alw’esinE
E=-——%— (11

Now we can find the acceleration along the elliptical orbit.
Differentiating (3) twice we get

i

asinEEi+b cosEEj

and
f=(—asinEE—acosE(E)?)i
+ (b cosEE—b sinE(E)?)j.

Next we useg(10) and(11) to replaceE andE. We get

!

a*w’esifE  a®w?cosE
r3 - r2

f=

a®bw2esinE cosE  a2bw?sinE
€1
r3 ' r2

Factoring out—a3w?/r® we have

alw?
r3

F=— [(—aESian-i-l' COSE)i

+

b
besinE cosE+ ar sinE)j] .
Using (8) to remover from {---} in the above expression we
get after simplifying
a3w2
f=-— —rg—{(acosE—ae)i+bsinEj}.
Finally, using(3), we have

alw?
r3

f=— r. (12
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Notice how (12) for the acceleration on the elliptical path
compares with(6), the acceleration on the circular orbit.
Substituting(12) into Newton’s second law5) we get

alw? k
S

Therefore the elliptical motion described by E¢3). and(4)
satisfies Newton’s second law if

, kK

w :ag. (13)

IV. FINAL REMARKS

(1) One shortcoming of this method is that it isvarifica-
tion, not aderivation We must know relation$3) and

(4) (which are mathematical statements of Kepler’s first
and second lawsefore we begin.

Historically, Kepler’s laws were known before Newton’s
laws of motion and gravity. Kepler’s first two laws make
their initial appearance in his “Astronomia Nova’of
16009. Initially, German astronomers, as well as Galileo,
were reluctant to abandon orbits composed of circular
motion for Kepler’s ellipse. Typical was the reaction of
David Fabricius’ a clergyman and amateur astronomer
who wrote: “With your ellipse you abolish the circular-
ity and uniformity of the motions, which appears to me
the more absurd the more profoundly | think about it. ...
If you could only preserve the perfect circular orbit, and
justify your elliptic orbit by another little epicycle, it
would be much better.” The first to realize the impor-
tance of Kepler's discoveries were the British. In New-
ton’s Principié (1687, he proves that if the orbit of the
planet is an ellipse, with one focus at the center of force,
then that force must vary inversely as the square of the
distance.

Our method emphasizes the importance of Kepler's
equation(4). This relation(4) enables us to locate the
position of the planet on the elliptical orbit as a function
of time. While (4) is always featured in advanced works
on celestial mechanics, it seems to be omitted in most
mathematical treatments of Kepler’s laws in courses in
elementary and intermediate mechanics. During the past
300 years, hundreds of papers have been published giv-
ing methods of solving4). The book by Colwefi traces
this remarkable history.

We recommend Koestler's biographgf Kepler for a
lively account of his remarkable achievements.

)
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APPENDIX: A DERIVATION OF KEPLER'S
EQUATION

We now derive Kepler's equatiot¥). Our derivation is
similar to Moulton’s® Refer to Fig. 1. Kepler's second law
states that the radius vectosweeps out equal areas in equal
times as the pland®? moves along the ellipse. Létbe the
time required for the planet to move frobhto P, and letT
be the time for a complete traversing of the ellipse. Then we
have from Kepler’s second law

Area ODP_ t

mwab T (14

T ’
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where we recall thatrab is the area of the full ellipse. Since Substituting this last relation int¢14) gives us Kepler's
our ellipse is the result of squashing the large circle of radiugquation
a in the vertical direction by the factdy/a, we see that

Area ODP= gArea ODA. (19 E—esinE=2?7Tt=wt.
Now
Area ODA=Area CDA—Area COA i)II:E.I%ﬁtr&rgﬁltrg:,i;r?slﬁrrgjﬁgvﬂz??guCeIestial Mechanic&nd ed.(Dover,
_ az_E_ (ae)(a SinE) ' (16) Zyvéﬁ.Yggl(r;atiz%oaaﬁ?‘%s Kepler, New Astronorf@ambridge U.P., Cam-
2 2 bridge, 1992

3A. Koestler, The WatershedDoubleday, Garden City, NY, 1980p. 164.
4. Newton, The Principig translated by Andrew MottgPrometheus

Combining(15) and (16) we see that

; Books, Amherst, NY, 1995 pp. 52-53.
Area ODP= ﬂE_ eabLnE 5P. Colwell, Solving Kepler’s Equation Over Three Centuriéd/illiam-
2 2 Bell, Richmond, VA, 1993
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