Show all steps in your calculations. Justify all answers. Write clearly.

$$
\begin{aligned}
& h c=12,400 \mathrm{eVA}, k_{B}=1 / 11,600 \mathrm{eV} / \mathrm{K}, \quad m_{e} c^{2}=511,000 \mathrm{eV}, \quad \mu_{B}=5.79 \times 10^{-5} \mathrm{eV} / T \\
& k e^{2}=14.4 \mathrm{eVA}, \quad \hbar c=1973 \mathrm{eVA}, \quad m_{p} c^{2}=938.28 \mathrm{MeV}, \quad \hbar^{2} /\left(2 m_{e}\right)=3.81 \mathrm{eV} A^{2}
\end{aligned}
$$

Problem 1 (15 pts)
An electron is in the ground state of the 1-dimensional potential shown in the figure

$$
\begin{aligned}
& V(x)=\infty \text { for } x<0 \\
& V(x)=0 \text { for } 0<x<2 A \\
& V(x)=7.62 e V \text { for } x>2 A .
\end{aligned}
$$

(A means Angstrom $=10^{-10} \mathrm{~m}$)
(a) Find its energy in eV , accurate to 2 decimal places. Use continuity of wavefunction and derivative.
(b) At which position x is this electron most likely to be found?
(c) Find its wavefunction for all x , including normalization.
(d) If you check whether the electron is or is not in this 'box' (i.e. in the region $0<x<2$ A)

1000 times, how many times are you going to find that the box is empty?
(e) How much more likely is it to find this electron in the region $1 \mathrm{~A}<x<2 \mathrm{~A}$ than in the region $0<x<1 \mathrm{~A}$?

Problem 2 (15 pts+3 extra credit)
An electron moves in a three-dimensional potential $\mathrm{V}(\mathrm{x}, \mathrm{y}, \mathrm{z})$ given by
$V(x, y, z)=\alpha\left(x^{2}+y^{2}\right) \quad$ for $0<z<a$, any x, y
$\mathrm{V}(\mathrm{x}, \mathrm{y}, \mathrm{z})=\infty \quad$ for $\mathrm{z}<0$ or $\mathrm{z}>\mathrm{a}$, any x, y
With $\alpha=2 \mathrm{eVA}^{-2}, \mathrm{a}=5 \mathrm{~A}$.
(a) Show that the wavefunction is separable.
(b) Find the ground state energy in eV .
(c) Find the ground state wavefunction $\Psi(x, y, z)$ expressed in terms of α, a and m_{e} (electron mass). You don't have to give normalization, leave it as a constant.
(d) For the electron in the ground state, how much more likely is it to find it at $(\mathrm{x}, \mathrm{y}, \mathrm{z})=(0,0,2.5)$ than at $(\mathrm{x}, \mathrm{y}, \mathrm{z})=(1,1,1.25)$?
(e) Suppose there are 10 electrons in this potential, assume they don't interact with each other, they have spin but ignore spin-orbit coupling. Find the total energy of the system in eV .
(f) Same as (e) for 10α-particles, The mass of an α-particle is $\mathrm{m}_{\alpha}=3,727 \mathrm{MeV}$, the spin is 0 .
(g) For extra credit: find the energy (in eV) and the wavefunction of the lowest energy state for one electron in this potential that has orbital angular momentum in the z direction $L_{z}=\hbar$. Justify your answer.

