CALCULATION OF THE NUMBER OF MODES FOR WAVES IN A CAVITY

We wish to solve for the number of standing waves that fall within the frequency range from f to f + df for waves confined to a cubical cavity of side L. Because N(f) is known experimentally to be the same for a cavity of any shape and for walls of any material, we can choose the simplest shape —a cube — and the simplest boundary conditions — waves that vanish at the boundaries. Starting with Maxwell's equations, it can be shown that the electric field obeys a wave equation that may be separated into time-dependent and time-independent parts. The time-dependent equation has a simple sinusoidal solution with frequency ω , and each time-independent component of the electric field satisfies an equation of the type

$$\frac{\partial^2 E_x}{\partial x^2} + \frac{\partial^2 E_x}{\partial y^2} + \frac{\partial^2 E_x}{\partial z^2} + k^2 E_x = 0$$
(3.40)

where

$$E_x = E_x(x, y, z)$$

and

$$k = \frac{2\pi}{\lambda} = \frac{2\pi f}{c}$$

Assuming that $E_x = u(x)v(y)w(z)$, we can separate Equation 3.40 into three ordinary differential equations of the type

$$\frac{d^2u}{dx^2} + k_x^2 u = 0 ag{3.41}$$

where

$$k^2 = k_x^2 + k_y^2 + k_z^2$$

Equation 3.41 is the simple harmonic oscillator equation and has the solution

$$u(x) = B\cos k_x x + C\sin k_x x$$

Imposing the boundary condition that E_x or u is 0 at x = 0 and at x = L leads to B = 0 and $k_x L = n_x \pi$, where $n_x = 1, 2, 3, ...$, similar solutions are obtained for v(y) and w(z), giving

$$E_x(x, y, z) = A \sin(k_x x) \sin(k_y y) \sin(k_z z)$$

where

$$k^{2} = \frac{\pi^{2}}{L^{2}} \left(n_{x}^{2} + n_{y}^{2} + n_{z}^{2} \right)$$
(3.42)

and n_x , n_y , n_z are positive integers.

To determine the density of modes, we interpret Equation 3.42 as giving the square of the distance from the origin to a point in k-space, or "reciprocal" space. It is called reciprocal space because k has dimensions of $(\text{length})^{-1}$. As shown in Figure 3.30, the axes in k-space are k_x , k_y , and k_z . Because $k_x = n_x \pi/L$, $k_y = n_y \pi/L$, and $k_z = n_z \pi/L$, the points in k-space (or modes) are separated by π/L along each axis, and there is one standing wave in k-space per $(\pi/L)^3$ of volume. The number of standing waves, N(k),

Figure 3.30 A geometrical interpretation of $k^2 = (\pi^2/L^2)(n_x^2 + n_y^2 + n_z^2)$.

having wavenumbers between k and k + dk is then simply the volume of k-space between k and k + dk divided by $(\pi/L)^3$. The volume between k and k + dk is 1/8 the volume of a spherical shell of thickness dk, so that

$$N(k) dk = \frac{\frac{1}{2}\pi k^2 dk}{(\pi/L)^3} = \frac{Vk^2 dk}{2\pi^2}$$
(3.43)

where $V = L^3$ is the cavity volume.

For electromagnetic waves there are two perpendicular polarizations for each mode, so that N(k) in Equation 3.43 must be increased by a factor of 2. Therefore, we have for the number of standing waves per unit volume

$$\frac{N(k) \ dk}{V} = \frac{k^2 \ dk}{\pi^2}$$
(3.44)

To find N(f) we use $k = 2\pi f/c$ in Equation 3.44 to obtain

$$N(f) df = \frac{8\pi f^2}{c^3} df$$
(3.45)

N(λ), the number of modes per unit volume between λ and $\lambda + d\lambda$, may be obtained from Equation 3.45 by using $f = c/\lambda$ to give

$$N(\lambda) d\lambda = \frac{8\pi}{\lambda^4} d\lambda \tag{3.46}$$