Chapter 3 Web Appendix

CALCULATION OF THE NUMBER OF MODES FOR WAVES IN A CAVITY

We wish to solve for the number of standing waves that fall within the frequency range from f to $f+d f$ for waves confined to a cubical cavity of side L. Because $N(f)$ is known experimentally to be the same for a cavity of any shape and for walls of any material, we can choose the simplest shape - a cube - and the simplest boundary conditions - waves that vanish at the boundaries. Starting with Maxwell's equations, it can be shown that the electric field obeys a wave equation that may be separated into time-dependent and time-independent parts. The time-dependent equation has a simple sinusoidal solution with frequency ω, and each time-independent component of the electric field satisfies an equation of the type

$$
\begin{equation*}
\frac{\partial^{2} E_{x}}{\partial x^{2}}+\frac{\partial^{2} E_{x}}{\partial y^{2}}+\frac{\partial^{2} E_{x}}{\partial z^{2}}+k^{2} E_{x}=0 \tag{3.40}
\end{equation*}
$$

where

$$
E_{x}=E_{x}(x, y, z)
$$

and

$$
k=\frac{2 \pi}{\lambda}=\frac{2 \pi f}{c}
$$

Assuming that $E_{x}=u(x) v(y) w(z)$, we can separate Equation 3.40 into three ordinary differential equations of the type

$$
\begin{equation*}
\frac{d^{2} u}{d x^{2}}+k_{x}^{2} u=0 \tag{3.41}
\end{equation*}
$$

where

$$
k^{2}=k_{x}^{2}+k_{y}^{2}+k_{z}^{2}
$$

Equation 3.41 is the simple harmonic oscillator equation and has the solution

$$
u(x)=B \cos k_{x} x+C \sin k_{x} x
$$

Imposing the boundary condition that E_{x} or u is 0 at $x=0$ and at $x=L$ leads to $B=0$ and $k_{x} L=n_{x} \pi$, where $n_{x}=1,2,3, \ldots$, similar solutions are obtained for $v(y)$ and $w(z)$, giving

$$
E_{x}(x, y, z)=A \sin \left(k_{x} x\right) \sin \left(k_{y} y\right) \sin \left(k_{z} z\right)
$$

where

$$
\begin{equation*}
k^{2}=\frac{\pi^{2}}{L^{2}}\left(n_{x}^{2}+n_{y}^{2}+n_{z}^{2}\right) \tag{3.42}
\end{equation*}
$$

and n_{x}, n_{y}, n_{z} are positive integers.
To determine the density of modes, we interpret Equation 3.42 as giving the square of the distance from the origin to a point in k-space, or "reciprocal" space. It is called reciprocal space because k has dimensions of (length) ${ }^{-1}$. As shown in Figure 3.30, the axes in k-space are k_{x}, k_{y}, and k_{z}. Because $k_{x}=n_{x} \pi / L, k_{y}=n_{y} \pi / L$, and $k_{z}=n_{z} \pi / L$, the points in k-space (or modes) are separated by π / L along each axis, and there is one standing wave in k-space per $(\pi / L)^{3}$ of volume. The number of standing waves, $N(k)$,

Cell in k - space
Figure 3.30 A geometrical interpretation of $k^{2}=\left(\pi^{2} / L^{2}\right)\left(n_{x}^{2}+n_{y}^{2}+n_{z}^{2}\right)$.
having wavenumbers between k and $k+d k$ is then simply the volume of k-space between k and $k+d k$ divided by $(\pi / L)^{3}$. The volume between k and $k+d k$ is $1 / 8$ the volume of a spherical shell of thickness $d k$, so that

$$
\begin{equation*}
N(k) d k=\frac{\frac{1}{2} \pi k^{2} d k}{(\pi / L)^{3}}=\frac{V k^{2} d k}{2 \pi^{2}} \tag{3.43}
\end{equation*}
$$

where $V=L^{3}$ is the cavity volume.
For electromagnetic waves there are two perpendicular polarizations for each mode, so that $N(k)$ in Equation 3.43 must be increased by a factor of 2. Therefore, we have for the number of standing waves per unit volume

$$
\begin{equation*}
\frac{N(k) d k}{V}=\frac{k^{2} d k}{\pi^{2}} \tag{3.44}
\end{equation*}
$$

To find $N(f)$ we use $k=2 \pi f / c$ in Equation 3.44 to obtain

$$
\begin{equation*}
N(f) d f=\frac{8 \pi f^{2}}{c^{3}} d f \tag{3.45}
\end{equation*}
$$

$N(\lambda)$, the number of modes per unit volume between λ and $\lambda+d \lambda$, may be obtained from Equation 3.45 by using $f=c / \lambda$ to give

$$
\begin{equation*}
N(\lambda) d \lambda=\frac{8 \pi}{\lambda^{4}} d \lambda \tag{3.46}
\end{equation*}
$$

