Schrödinger's Trick

The time-dependent Schrödinger equation for the harmonic oscillator is

$$
\begin{equation*}
-\frac{\hbar^{2}}{2 m} \frac{\partial^{2} \Psi}{\partial x^{2}}+\frac{1}{2} K x^{2} \Psi=i \hbar \frac{\partial \Psi}{\partial t} \tag{1}
\end{equation*}
$$

whose stationary, bound-state solutions are

$$
\Psi(x, t)=\psi(x) e^{-i E t / \hbar}
$$

where $\psi(x)$ satisfies the time-independent equation

$$
\begin{equation*}
-\frac{\hbar^{2}}{2 m} \frac{d^{2} \psi(x)}{d x^{2}}+\frac{1}{2} K x^{2} \psi(x)=E \psi(x) \tag{2}
\end{equation*}
$$

It is not obvious how to solve Equation 2 for the allowed values of E and the corresponding wave functions $\psi(x)$. There are several general techniques for solving differential equations; however, this problem can be solved (exactly!) using a beautiful trick invented by Schrödinger.

Recalling that $\omega=\sqrt{K / m}$, we define $y=\sqrt{m \omega / \hbar} x$ and, correspondingly, $d y=\sqrt{m \omega / \hbar} d x$. Note that ω is the classical oscillator's angular frequency: $x=x_{0} \cos \omega t$, which satisfies $m\left(d^{2} x / d t^{2}\right)=-K x$. Therefore, substituting x and $d x$ in terms of y and $d y$ from above into Equation 2, we obtain

$$
-\frac{\hbar^{2}}{2 m} \frac{1}{(\sqrt{\hbar / m \omega})^{2}} \frac{d^{2} \psi}{d y^{2}}+\frac{1}{2}\left(m \omega^{2}\right)\left(\sqrt{\frac{\hbar}{m \omega}}\right)^{2} y^{2} \psi=E \psi
$$

and

$$
\begin{equation*}
\frac{d^{2} \psi}{d y^{2}}-y^{2} \psi=-\frac{2 E}{\hbar \omega} \psi \quad \text { or } \quad\left[\frac{d^{2}}{d y^{2}}-y^{2}\right] \psi=-\frac{2 E}{\hbar \omega} \psi \tag{3}
\end{equation*}
$$

This can be written as

$$
\begin{equation*}
\left[\left(\frac{d}{d y}-y\right)\left(\frac{d}{d y}+y\right)-1\right] \psi=-\frac{2 E}{\hbar \omega} \psi \tag{4}
\end{equation*}
$$

To see that this is true, note that

$$
\begin{aligned}
\left(\frac{d}{d y}-y\right)\left(\frac{d}{d y}+y\right) \psi & -\psi=\left(\frac{d}{d y}-y\right)\left(\frac{d \psi}{d y}+y \psi\right)-\psi \\
& =\frac{d^{2} \psi}{d y^{2}}-y \frac{d \psi}{d y}+y \frac{d \psi}{d y}+y-y^{2} \psi-\psi=\frac{d^{2} \psi}{d y^{2}}-y^{2} \psi
\end{aligned}
$$

So the Schrödinger equation for the harmonic oscillator becomes

$$
\begin{equation*}
\left(\frac{d}{d y}-y\right)\left(\frac{d}{d y}+y\right) \psi=\left(1-\frac{2 E}{\hbar \omega}\right) \psi \tag{5}
\end{equation*}
$$

Operating on Equation 5 from the left with $\left(\frac{d}{d y}+y\right)$, we obtain

$$
\left(\frac{d}{d y}+y\right)\left(\frac{d}{d y}-y\right)\left(\frac{d}{d y}+y\right) \psi=\left(1-\frac{2 E}{\hbar \omega}\right)\left(\frac{d}{d y}+y\right) \psi
$$

But, for any function f

$$
\begin{aligned}
\left(\frac{d}{d y}-y\right)\left(\frac{d}{d y}+y\right) f & =\left(\frac{d}{d y}-y\right)\left(\frac{d f}{d y}+y f\right) \\
& =\frac{d^{2} f}{d y^{2}}+y \frac{d f}{d y}-y \frac{d f}{d y}-f-y^{2} f=\left(\frac{d^{2}}{d y^{2}}-y^{2}-1\right) f
\end{aligned}
$$

This is true for any function $f(y)$, in particular for $f(y)=\left(\frac{d}{d y}+y\right) \psi$. Therefore,

$$
\left(\frac{d^{2}}{d y^{2}}-y^{2}\right)\left(\frac{d}{d y}+y\right) \psi-\left(\frac{d}{d y}+y\right) \psi=\left(1-\frac{2 E}{\hbar \omega}\right)\left(\frac{d}{d y}+y\right) \psi
$$

Rearranging this gives us

$$
\begin{equation*}
\left(\frac{d^{2}}{d y^{2}}-y^{2}\right)\left[\left(\frac{d}{d y}+y\right) \psi\right]=-\frac{2(E-\hbar \omega)}{\hbar \omega}\left[\left(\frac{d}{d y}+y\right) \psi\right] \tag{6}
\end{equation*}
$$

But recalling Equation 3, which is

$$
\left[\frac{d^{2}}{d y^{2}}-y^{2}\right] \psi=-\frac{2 E}{\hbar \omega} \psi
$$

we see that, if we define $\psi^{\prime}=\left(\frac{d}{d y}+y\right) \psi$ and $E^{\prime}=E-\hbar \omega$, then Equation 6
becomes Equation 7 :

$$
\begin{equation*}
\left[\frac{d^{2}}{d y^{2}}-y^{2}\right] \psi^{\prime}=-\frac{2 E^{\prime}}{\hbar \omega} \psi^{\prime} \tag{7}
\end{equation*}
$$

Thus, Equations 3 and 7 have the exact same form. This means that if we have found a solution $\psi(y)$ corresponding to energy E, then $((d / d y)+y) \psi=(d \psi / d y)+y \psi$ is also a solution, and its corresponding energy will be $(E-\hbar \omega)$. We can just keep going like this and each time the energy is lowered by $\hbar \omega$. This means that the spacing of the energy levels of the quantum harmonic oscillator is $\hbar \omega$.

