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MORE CHAPTER 6, #3

Schrödinger’s Trick

The time-dependent Schrödinger equation for the harmonic oscillator is
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whose stationary, bound-state solutions are

 �1x,t2 = �1x2e-iEt>U 
where �(x) satisfies the time-independent equation
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It is not obvious how to solve Equation 2 for the allowed values of E and the 
 corresponding wave functions �(x). There are several general techniques for solving 
differential equations; however, this problem can be solved (exactly!) using a beauti-
ful trick invented by Schrödinger.

Recalling that � = 2K>m, we define y = 2m�>Ux and, correspondingly, 
dy = 2m�>U dx. Note that � is the classical oscillator’s angular frequency: 
x = x0 cos �t, which satisfies m1d2

 x>dt22 = -Kx. Therefore, substituting x and dx 
in terms of y and dy from above into Equation 2, we obtain
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This can be written as
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To see that this is true, note that
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So the Schrödinger equation for the harmonic oscillator becomes
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Operating on Equation 5 from the left with a d

dy
+ yb , we obtain

 a d

dy
+ yb a d

dy
- yb a d

dy
+ yb� = a1 -

2E

U�
b a d

dy
+ yb� 

But, for any function f
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This is true for any function f(y), in particular for f1y2 = a d
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+ yb�. Therefore,
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Rearranging this gives us
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But recalling Equation 3, which is
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we see that, if we define �� = a d

dy
+ yb� and E� = E - U�, then Equation 6 

becomes Equation 7:
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Thus, Equations 3 and 7 have the exact same form. This means that if we have found 
a solution �(y) corresponding to energy E, then ((d>dy) + y)� = (d�>dy) + y� is 
also a solution, and its corresponding energy will be 1E - U�2. We can just keep 
going like this and each time the energy is lowered by U�. This means that the spac-
ing of the energy levels of the quantum harmonic oscillator is U�.


