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1 Fourier Analysis

There is a result in the theory of differential equations which tells us that we can construct

the solution to an ODE/PDE out of a set of orthogonal (or even orthonormal) basis functions.

One example of a set of basis functions are the oscillating exponential functions ψn(x) = eiknx

(maybe a more familiar set of basis functions is the set of functions {xn}, but they are not

orthogonal). Alternatively, we could just as well use the sin and cos functions. The words

‘basis function’ means that for a given function f(x), we can write it as a summation over

these ‘basis functions’

f(x) =
∞∑

n=−∞

cne
iknx =

∞∑
n=0

an cos knx+ bn sin knx

where an, bn, cn are coefficients, sometimes called the fourier coefficients, which depend only

on their label n and not on the variable x. Fourier series like this work well for functions

which are smooth and period. Periodic means f(x + nL) = f(x) for some period L with

n = ±1,±2, ... such as the functions sin or cos for example, which are periodic in 2π. Smooth

means that the function is not too spiky.

If the function is to be periodic, then our basis functions should exhibit the same periodicity.

So for a particular ψn, this means we require

eiknx = eikn(x+L) = eiknxeiknL =⇒ eiknL = 1

so we find that kn must be a multiple of 2π/L, so in otherwords we have that kn = 2πn/L.

Now we can discuss the orthogonality property: I claim that∫ L

0

dx ψ∗n(x)ψm(x) = Lδnm

When n = m, ψ∗ψ = 1 so we are just integrating 1 from 0 to L, which gives L. I leave it to

you to check that when n 6= m, the answer is zero for all combinations of integers n and m.

This is great, because it means we can take our function f(x) as defined above and integrate

it against e−iknx from 0 to L to extract the fourier coefficient cn:∫ L

0

e−iknxf(x) =

∫ L

0

e−iknx
∑
j

cje
ikjx =

∑
j

Lcjδjn = Lcn

so more directly the fourier coefficient cn for some function f(x) is given by

cn =
1

L

∫ L

0

ψ∗n(x)f(x)
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A couple of examples will be helpful. First,

consider the sawtooth function S(x) = x for

0 < x < 1, and S(x) = f(x − n) where

0 < x− n < 1, plotted at right. We want to

represent this function as a fourier series, so

we need the coefficients cn. We obtain them

using the formula above (with L = 1)

cn =

∫ 1

0

e−2πinxS(x) =
i

2πn

EXCEPT when n = 0 in which case the re-

sult is c0 = 1/2. If we evaluated the sum from minus infinity to infinity, we would recover

the exact function. Often we cannot do this though, but a partial summation suffices as

an approximation. Plotted below are the results from doing the sum from −N to N with

N = 3, 5, 10, overlayed on the original function itself.

We can see that asN increases, the approx-

imation becomes better. However there are

still some sharp wiggles in the function: the

sharp cusps are hard to approximate in this

way, and the resulting wiggles, or ‘ringing,’

are known as a Gibbs phenomenon. This is a

problem which one needs to confront in e.g.

signal processing. Exercise for the reader:

find the fourier series representation for the

square wave, which switches between +1 and

−1, shown at right. Another canonical ex-

ample is the triangle wave, which I will not

show here but you can easily find if interested.

At this point it may be useful to explain what the Fourier transform is in words. The Fourier

transformed function f̃(k) tells you how much of frequency k there is in the function f(x).

Remember the frequency is the inverse of the period. So it’s reasonable that any periodic

function can be written as the sum of other functions which have definite frequencies. Then
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the fourier transform tells you how “much” a particular frequency is represented in the

function. What’s not so obvious is that the same thing can be done for functions which are

not periodic (or periodic on an infinite domain).

What is the fourier representation good for? It allows us to solve partial differential equa-

tions, among other things. Consider the 1-dimensional wave equation

∂2t f(x, t) = c2∂2xf(x, t)

which could describe the height of a string at position x as a function of time t.

We can substitute in the fourier series representation for f(x, t) =
∑

n fn(t)eiknx where fn(t)

is the fourier coefficient of mode n, which now also depends on time. Then we can see that

∂xf(x, t) = ∂x
∑

fn(t)eiknx =
∑

fn(t)(ikn)eiknx

so acting with derivatives just pulls down factors of ikn. Then when we use the orthogonality

trick to isolate the coefficient of the n′th mode, we will be left with an algebraic equation.

This is (one of) the utility of the fourier series; it turns differential equations into algebraic

ones. Explicitly then, we can reduce our PDE for f(x, t) into an ODE for the coefficient

fn(t):

f̈n(t) = −c2k2nfn(t) = −ω2
nfn(t)

You may recognize the solutions to this equation as sines and cosines, or complex exponentials

e±iωt. We also need some boundary conditions in this case to specify the solution: suppose

that the string we are describing is fixed at positions x = 0 and x = L. The b.c. at

x = 0 implies fn(t) = −f−n(t) so we can add together the ±n fourier modes to obtain a sin

function. The boundary condition at x = L then determines k = nπ/L.

Suppose we also have some initial condition f(x, t = 0) = f0(x). Now we have a represen-

tation for our function

f(x, t) =
∑

(an cosωnt+ bn sinωnt) sin(knx)
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where ωn = ckn. At t = 0, we have

f(x, t = 0) =
∑

bn sin(knx)

which is supposed to be equal to f0(x). We can once again use the orthogonality of the sin

functions: ∫ L

0

dx sin(knx) sin(kmx) =
L

2
δnm

to extract the coefficient an:

an =
2

L

∫ L

0

dx f0(x) sin

(
2πnx

L

)
(notice that the factor in front of the integral here is 2/L rather than 1/L, why is that?). To

determine the coefficient bn, we need a condition on the derivative of f(x, t) at t = 0, we can

see that this will eliminate the cosine term and leave behind the coefficient bn to be solved

for. If our initial condition on the derivative is ḟ(0) = 0, then this determines bn = 0 for all

n. Otherwise, we again use orthogonality of the sin functions to determine the coefficients

bn.

There is a generalization as the domain of the function becomes infinite, which is that we

replace the sums by integrals. So we write the fourier transform

f̃(k) =

∫ ∞
−∞

dx f(x)e−ikx f(x) =
1

2π

∫ ∞
−∞

f̃(k)eikx

where the factor of (2π)−1 in front of the second integral is a matter of convention and the

orthogonality of the complex exponential function in this setting is realized as∫
e−inxeimx = 2πδnm

(notice the opposite signs in the exponentials of the fourier transform definitions).

When we study quantum mechanics, we will find an equation that is similar to the wave

equation, called the Schrodinger equation. Roughly speaking, we will have an equation

∂tf ∼ Ĥf

where Ĥ is an operator which acts on the function f . Some examples: if Ĥ = x, then

Ĥf(x) = xf(x). But we could have something more comlicated like Ĥ = x + ∂x in which

case Ĥf(x) = xf(x) + ∂xf(x). So we can try to do the same thing as we did above for the

wave equation, we need to find some basis functions ψn for which Ĥψn = λnψn. To make

contact with what we had previously, above we had ∂xe
iknx = ikne

iknx so λn = ikn in that

case. Then, we can construct the full solution to the PDE as a summation over the basis

functions.
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