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We have learned that when it comes to Fermionic particles, the full wavefunction must be

antisymmetric under exchange of any two particles. For two particles, we have

Ψ(x1, x2) = −Ψ(x2, x1)

This has several dramatic effects, one of which is the following, called exchange energy.

Suppose we have two particles which interact via a repulsive force, so that their potential

energy is large when the particles are nearby. Quantum mechanically, this means the energy

is large when the probability density |Ψ(x1, x2)|2 is large for x1 is close to x2. For an

antisymmetric spatial wavefunction, Ψ(x1, x2) → 0 as x1 approaches x2, which can be seen

by plugging x1 = x2 into the first equation. The probability density is also small when x1
is near x2 therefore. This reflects the tendency of fermionic particles to ‘spread out,’ which

will lead to a lowering of their potential energy.

Here is an example using spin 1/2 particles in a harmonic oscillator potential. Schematically,

we want to consider a situation like

H =
p21
2m

+
p22
2m

+
1

2
mω2(x21 + x22) + V (|x1 − x2|)

Generically, the presence of the additional potential V means that we will no longer be able

to solve the problem. We can approximate the effects of the interaction by first solving the

problem without the interaction and then calculating the expectation value of the interaction

energy in the eigenstates of the solvable problem. This will tell us approximately how much

the energy of each state shifts due to the potential.

If we erase V , we just have a quantum harmonic oscillator, which we have already solved.

The first two wavefunctions are φ0(x) ∼ e−mωx2/2~ and φ1(x) ∼ xe−mωx2/2~ (neglecting some

normalization constants). Our particles also have spin, which in this case just acts as another

label which goes along for the ride.

A single particle wave function is therefore specified by n and s in φns(x). For notational

simplicity, I will write the two values of s and + and − rather than +1/2 and −1/2. So

there are two ground state wave functions φ0+(x) and φ0−(x). The dependence on x is the

same.
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Because the particles are fermionic, their total wave function must be antisymmetric. This

leads us to two possibilities: one is that the spatial part is symmetric and the spin part

is antisymmetric, the other is that the spatial part is antisymmetric and the spin part is

symmetric.

Let us now write the first four states for the two-particle case. The energy is ε = ~ω(n1 +

n2 + 1) so the lowest energy state has n1 = n2 = 0. The Pauli exclusion principle states that

no two fermions can have the same set of quantum numbers, so if the two electrons have

the same n, they must have different spin. Together with the overall antisymmetry of the

wavefunction, this determines the ground state to be

Ψgs(x1, x2) = φ0+(x1)φ0−(x2)− φ0+(x2)φ0−(x1)

You should verify that Ψ→ −Ψ if you exchange x1 and x2. There is a fourfold degeneracy

of the first excited energy level. The states participating are

Ψ1(x1, x2) = φ1+(x1)φ0+(x2)− φ1+(x2)φ0+(x1)

Ψ2(x1, x2) = φ1−(x1)φ0−(x2)− φ1−(x2)φ0−(x1)

Ψ3(x1, x2) = φ1+(x1)φ0−(x2) + φ1−(x1)φ0+(x2)− φ0+(x1)φ1−(x2)− φ0−(x1)φ1+(x2)

Ψ4(x1, x2) = φ1+(x1)φ0−(x2)− φ1−(x1)φ0+(x2) + φ0+(x1)φ1−(x2)− φ0−(x1)φ1+(x2)

up to some overall normalization constants. The first three wavefunctions have a symmetric

spin part, and an antisymmetric spatial part (which you can see by exchanging either the

+ and − assignments, or the 0, 1 assignments). The fourth wave function has a symmetric

spatial part and an antisymmetric spin part. All four wave functions are overall antisym-

metric. When we want to calculate the expectation value of the potential, which does not

involve the spin, we will only need the spatial parts

ψsym = φ0(x1)φ1(x2) + φ0(x2)φ1(x2) ψanti = φ0(x1)φ1(x2)− φ0(x2)φ1(x2)

and the corresponding probability densities |ψ|2. Suppose we consider the two electrons

interacting via a repulsive coulomb interaction

V (|x1 − x2|) =
ke2

|x1 − x2|

Intuitively, the expectation value of this potential energy should be lower in the state with

the antisymmetric wavefunction because the vanishing probability density counteracts the

increasing potential energy when x1 approaches x2. We can calculate∫∞
−∞ dx1dx2 |ψanti(x1, x2)|2 ke2

|x1−x2|∫∞
−∞ dx1dx2 |ψanti(x1, x2)|2

=

√
2mω

π~
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Unfortunately for the symmetric wave function, the answer is infinity, which certainly

supports the argument but is a bit pathological. The reason is that the denominator in the

integrand in this case is free to go to zero without anything in the numerator also vanishing,

so the integrand becomes infinite. We can get around this by pretending the electrons have

a ‘hard core’ so that they cannot get closer than some distance d to each other. In that case

the maximum value of the potential energy is ke2/d and now both integrals are finite.

Unfortunately we can no longer evaluate them. However, the situation is not hopeless.

Using |ψsym|2 = e−mω(x2
1+x2

2)/~(x1 + x2)
2 and |ψanti|2 = e−mω(x2

1+x2
2)/~(x1 − x2)2 , we can still

see that ∫
dx1dx2

e−mω(x2
1+x2

2)/~(x1 + x2)
2

|x1 − x2|+ d
>

∫
dx1dx2

e−mω(x2
1+x2

2)/~(x1 − x2)2

|x1 − x2|+ d

because for any x1 and x2, the integrand on the left hand side is larger than that of the right

hand side when evaluated either at the same x, or possibly reversing the sign of one of them.

So 〈V 〉anti < 〈V 〉sym, which was what we set out to show.

A different potential energy which does not display this diverging behavior is V = V0e
−(x1−x2)2/r20

which has a maximum value of V0 and dies off with a characteristic length r0 as x1 and x2
move apart. In this case, both of the integrals are finite and we find (use mathematica to

help with the integrals)

〈V 〉anti =
r30V0

(r20 + 2~
mω

)3/2

and

〈V 〉sym =
r0V0√
r20 + 2~

mω

The difference ∆〈V 〉 = 〈V 〉sym − 〈V 〉anti = 2r0V0~
√

mω
(mωr20+2~)3 which is a positive number.

So we have shown that the state with the symmetric spatial wave function has a higher

average potential energy.

Now we have understood this effect in both general and specific terms: when the spatial

part of the wave function is antisymmetric, it is more ‘spread out’, leading to a decrease in

the potential energy, which is supported by our example calculation. Another perspective on

the situation is to look at it from the spin side of things: the symmetric spin state has lower

energy than the antisymmetric spin state. This phenomenon is very impotant and leads to

many nontrivial effects in condensed matter physics, for example.
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