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8. Shear Dispersion.
The transport models and concentration field solutions developed in previous sections
assume that currents are spatially uniform, i.e. u ≠ f(x,y,z).  However, spatial gradients of
velocity, known as shear, must exist close to a boundary because the no-slip condition
requires that the relative velocity of the fluid be zero at the boundary.  When shear is
present, different parts of a tracer cloud will advect at different speeds.  This 'differential
advection' stretches the tracer cloud, causing it to spread longitudinally more quickly than
a cloud released into a uniform current (Figure 1).  In addition, differential advection
creates lateral gradients in concentration (∂C/∂y in Figure 1) which, when acted upon by
lateral diffusion, accelerates the dilution of the cloud.

Figure 1.  Top-view of two channels.  In the top channel the side-wall boundary condition
allows slip, and the velocity profile is uniform across y.  In the bottom channel there is a no-slip
condition at the side-wall boundary, creating lateral shear, ∂u/∂y.  Both channels have the same
cross-sectional mean velocity, u.  Tracer is released at t = 0, x = 0.  The spatial distribution of
each cloud is shown above at time t1 and t2.  Note, the center of mass for both clouds advects at
speed u.  Velocity shear in the bottom channel stretches the tracer cloud, and as a result this cloud
spreads longitudinally more rapidly than the cloud in the uniform channel.

The distortion observed in the bottom channel of Figure 1 can be predicted from the full
transport equation,
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if we include the spatial variation in velocity.  However, with u = f(x,y,z), it is difficult to
find simple analytical solutions to (1).  In many instances it is sufficient to integrate the
domain over y and z, and consider only transport in the stream-wise direction.  After this
integration the combined impact of differential advection and lateral diffusion is
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expressed as an additional process creating longitudinal spreading, which we term Shear
Dispersion.  It is also known as Taylor Dispersion, in honor of G. I. Taylor, who first
described this process in 1953.  Under limiting conditions, to be discussed shortly, Shear
Dispersion behaves as a Fickian diffusion process.  Thus, we represent its impact in the
cross-sectionally averaged (one-dimensional) transport equation with an additional
coefficient of dispersion, KX. Integrating (1) over y and z yields the one-dimensional
equation,

∂ C
∂t

+ u ∂ C
∂x

= Dx

∂2 C
∂x2

+ Kx

∂2 C
∂x2

, (2)

in which brackets represent cross-sectional averages, and for simplicity we have assumed
homogeneous diffusivity, Dx ≠ f(x).  In general Dx << Kx, such that the former may be
neglected, leaving us with the one-dimensional advection-dispersion equation.
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Furthermore, in the limit of Fickian behavior, we describe the evolution of the cross-
sectionally averaged cloud using the same statistical description developed for diffusion
in previous chapters.  Specifically, the longitudinal length-scale for the cloud is σx, where

σx =   2 Kxt . (4)

From (4) we can estimate Kx in the field by observing the evolution of variance for a
tracer cloud.  Specifically, observing the variance over time,

Kx =  1
2
∂ σx

2

∂t
. (5)

We can find an analytical expression for KX by explicitly carrying out the integration that
leads to (3), utilizing scaling arguments to simplify the mathematics along the way.  It is
important to understand the steps of this derivation, to appreciate under what conditions
the approximate equation (3) may hold.  For simplicity we will consider a very wide
channel for which the shear in the lateral, ∂u/∂y, is so small compared to the shear in the
vertical, ∂u/∂z, that the lateral shear is neglected at the outset.  This allows us to assume a
two-dimensional channel with ∂/∂y = 0.  In addition, we assume that the flow is strictly in
the x-direction (w = v = 0), and uniform (∂u/∂x = 0).  With these assumptions, (1)
reduces to
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Next, we decompose u and C into depth-averaged values denoted by an over-bar, e.g.
u = 1 h( ) udz0

h
∫ .  Deviations from the depth-average will be denoted by a prime.
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u(z) = u + u’(z)
(7)

c(x,z) = c (x) + c’(x, z)

We put the decomposed variables into (6), and note that by definition ∂c/∂z = 0.
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We take the depth-average of each term, noting that by definition c’ = 0 and u’ = 0.
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Relative to our original equation, (6), we have eliminated the vertical gradient terms by
integrating over the vertical domain.  In addition, a new term has appeared, u'  ∂c' ∂x ,
that represents the flux associated with the correlation between the fluctuations in
velocity, u’, and concentration c’, relative to their depth-averaged values.  With the next
few steps we will find a solution for c', so that we might evaluate this new flux term.  As
both (8) and (9) must both hold true, we may subtract (9) from (8) to yield.
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Now we place an important condition on the magnitude of the spatial fluctuation c'.
Specifically, we assume that c'<< c.  If this is true, then the magnitude of both the third
and fourth terms in (10) must be small compared to the second term, and we may drop
the small terms, reducing (10) to
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This equation describes how vertical fluctuations in concentration, c', are created by
differential advection and destroyed by vertical diffusion.  Initially, when ∂c/∂x is large,
differential advection dominates, creating c' faster than vertical diffusion can erase it.
But, eventually, ∂c/∂x becomes small enough that the rate at which c' is created by
differential advection is balanced by the rate at which it is destroyed by vertical diffusion.
When these two processes are in balance, ∂c'/∂t goes to zero and (11) becomes.
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We can solve (12) with a no-flux boundary condition at the bed and water surface, i.e.
∂c'/∂z = 0 at z = 0 and h.  Recall that by definition, c ≠ f(z).  Then,
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Because the diffusivity, DZ, is the sum of turbulent and molecular diffusion, it may be a
function of vertical position, and so remains inside the integral.

     

Figure 2.  Consider a tracer cloud whose leading edge is uniform at time t.  Differential
advection distorts the cloud giving it a new shape by time t + dt.  The spatial deviation in velocity,
u’, creates the concentration perturbation seen at t + dt.  Specifically, from the first two terms in
(11), c’ = -(∂ C/∂x ) u’ dt.

Now we return to (9) to evaluate the new term, u'  ∂c' ∂x .  Because we assume u ≠ f(x),
then u' ≠ f(x), and we can write the new term as  ∂u' c' ∂x . We evaluate the correlation
u' c'  with (13), noting that u'  c' (z = 0) = u'  c' (z = 0) = 0 , because u' = 0 .
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This correlation is the advective flux associated with spatial fluctuations in the velocity
field.  This flux is proportional to the concentration gradient, and so behaves as a Fickian
diffusion.  Thus, we choose to model this flux using a transport coefficient, just as we did
for turbulent diffusion in the previous chapter.  The transport coefficient is called the
longitudinal dispersion coefficient, KX.  The negative sign indicates that the flux is
counter-gradient.

u' c' = −Kx
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, (15)

where
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The second expression in (16) is valid when DZ ≠ f(z).  This expression describes the
contribution of vertical shear to longitudinal dispersion.  A similar term describes the
contribution of lateral shear.

Now we can write the new term in (9) as,
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Using (17) in (9), we arrive at the one-dimensional equation,
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where DX in (18) and DZ in (16) represent the sum of molecular and turbulent diffusion,
which for practical purposes is just turbulent diffusion.  Elder evaluated (16) for a
logarithmic profile with DZ = f(z) and found

KX = 5.93u*h. (19)

Note that (19) only accounts for velocity shear over depth (∂u/∂z) and not for lateral
velocity shear (∂u/∂y).  This is an acceptable approximation for wide, straight channels.
Comparing (19) with the empirical estimate for longitudinal diffusion, DX = 0.45u*h, we
see that KX is an order of magnitude larger.  Because of this, the diffusion term is often
neglected in (18), and we have returned to equation (3), repeated here for convenience.
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Solutions to this one-dimensional equation, with Dx replaced by Kx, have already been
described for instantaneous and continuous point releases.  These solutions can now be
used for systems with shear-dispersion dominating longitudinal diffusion (as in 20).
As one might expect, (16) shows that the coefficient of shear dispersion increases with
the magnitude of the shear, expressed as the magnitude of the spatial deviations u'.  The
dependence KX ~ h is less straight-forward.  However, considering that each integral is
proportional to h, and that Dz ~ h, (16) yields KX ~ h, consistent with (19).  Finally, (16)
indicates that KX is inversely proportional to the cross-stream diffusivity, DZ (i.e. Kx is
greatest when Dz is smallest!).  To understand this somewhat unintuitive dependence,
remember that shear dispersion arises because velocities on adjacent streamlines are
different so particles on different streamlines advect at different speeds and thus become
separated (dispersed) longitudinally.  This is the differential advection component of
shear dispersion.  At the same time, each particle is mixed over depth (or width),
experiencing the velocity of each streamline that is passes for some fraction of time.  If
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the cross-channel diffusion is high, the particles sample all the velocities in the profile so
rapidly that they effectively travel at the mean channel velocity.  If they all effectively
travel at the mean velocity, they do not disperse (separate) in the longitudinal direction,
and shear dispersion will be zero, even though shear is not zero.  As the cross-stream
diffusion is reduced, particles can accumulate more differential advection as they remain
on individual streamlines for a longer period.
  Now it is important to recall the assumptions that allowed us to reach the
advection-dispersion equation (20).   Early on we made the assumption that c'<< C .  In
addition, for (12) to be valid, we specifically required that the rate at which c' is created
exactly balance the rate at which c' is destroyed, so that a nearly uniform concentration
profile exists in the cross-stream direction.  Note that a nearly uniform profile would
automatically satisfy c'<< C , such that the two assumptions are closely linked.  To
understand when these assumptions are valid, we consider the evolution of a tracer cloud
from its initial release, as shown in Figure 3.  The tracer is introduced as a line distributed
over the full depth at time t = 0.  Differential advection, u', creates perturbations in the
concentration profile, c', at the rate ∂c’/∂t = u’∂ C /∂x .   When the cloud is first
introduced, the mean concentration gradients are very large, such that the creation of c' is
very rapid and pronounced.  This is reflected in the geometric distortion of the cloud
shape (t1, Fig. 3). The concentration perturbations are dissipated by lateral diffusion,
which acts at the rate, ∂c’/∂t = DZ ∂2c’/∂z2.  As the cloud spreads, the longitudinal
gradient of mean concentration, ∂ C /∂x , decreases and the rate at which concentration
perturbations are created slows.  Eventually, the rate at which the perturbations are
created by differential advection comes into balance with the rate at which they are
destroyed by diffusion such that (12) is valid.  From tracer studies, this is observed to
occur at time scale

TDispersion =  0.4 LZ
2/DZ, (21)

after the tracer is released, where Lz is the length-scale of the channel in the cross-stream
direction (width or depth).  For vertical shear, LZ = h, the water depth.  After this time
(e.g. t2 in Figure 3) the concentration is close to uniform over depth, such that c' << C .
The process of shear-dispersion has reached its Fickian limit and the longitudinal
distribution of the depth-averaged concentration is Gaussian.  Note that this time scale is
inversely proportional to cross-stream diffusion, DZ.  And recall from (16) that KX is also
inversely proportional to DZ.  This means that the conditions (DZ) which yield the greatest
KX will also require the longest time (longest distance from source) for shear-dispersion
to take hold and for (20) to apply.
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Figure 3. Evolution of tracer cloud released at t = 0 as a line distributed over depth.  Initially (t1)
differential advection dominates, visibly distorting the geometric shape of the cloud.  At this time
(t1) the longitudinal distribution of the depth-averaged concentration, C , is skewed.  Eventually
differential advection and diffusion balance and the cloud approachs uniform concentration over
depth.  After this time (t2) the longitudinal distribution of the depth-averaged concentration is
Gaussian and the dispersion process has reached its Fickian limit.

Other Mechanisms of Dispersion
Dispersion is a broad term used to describe all processes, except diffusion, that disperse a
patch of tracer and diminish concentration.  Typically dispersion coefficients reflect a
combination of advection and diffusion processes that are difficult to model separately.
For example, the coupled effects of differential longitudinal advection and cross-channel
diffusion create shear dispersion.  In flow through porous media, the existence of
multiple discrete flow paths also creates differential advection that leads to dispersion.
The flow paths in a porous medium are constrained to discrete, intertwining pore
channels, and multiple flow paths exist between any two points.  The time to traverse a
given flow path depends on the geometry of the pores.  Flow through narrow pores is
slower than flow through wider pores.  Also, some flow paths are nearly linear, and thus
short, and others are very tortuous (bending) and thus long.  In addition, each pore
channel behaves like a small tube, with higher velocity at the center of the pore than at
the grain surface.  The pore-scale shear contributes to dispersion in the same manner as
channel-scale shear, as described above. Together, the above processes contribute to a
longitudinal spreading of tracer particles.  That is, tracer particles released together will
take different flow paths and get separated (dispersed) both laterally and longitudinally.
This is called mechanical dispersion.  This form of dispersion can reach a Fickian limit
after every tracer particle has sampled a sufficient number of pore channels.
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Figure 4.  Dead-zone Dispersion. The lateral diffusion of particles into a region of zero
velocity, called a dead-zone will create longitudinal dispersion.  Tracer that enters the dead-zone
is held back relative to the tracer that does not.  When the tracer is released from the dead-zone, it
is separated in space (dispersed) from the rest of the cloud.

Another form of dispersion arises when the flow field contains zones with zero
velocity, called dead-zones.  Tracer particles can enter these zones through turbulent or
molecular diffusion.  After some mean residence time, τ, within the dead-zone, the tracer
is again released to the advecting zone.  Any tracer that enters the dead-zone will be held
back relative to the tracer that does not, so that, when the tracer is released from the dead-
zone, it is separated (dispersed) from the rest of the cloud.  For a dead-zone to contribute
to dispersion, its residence time must be long compared to the time scale of passage of
the original tracer cloud. Otherwise there is no delay associated with entering the dead-
zone, and thus no dispersion.  Possible dead-zones include pore spaces with no outlet, a
side-pool in a river, and a wake behind an obstruction.  If the dead-zones are distributed
through out the flow field, then dead-zone dispersion can reach a Fickian limit after a
sufficient number of dead-zones have been sampled by the tracer cloud.  This can be the
case for dead-end pores in a porous medium and for the wakes behind individual stems
within a wetland.  If only a few dead-zones can be experienced, e.g. a small number of
pools and riffles along a river reach, then the Fickian Limit cannot be reached.  The
trapping and delay associated with a single or small number of dead-zones (as in Figure
4) produce non-Gaussian (non-Fickian ) dispersion, and the longitudinal distribution of
concentration, C (x),  will be skewed, with a long tail on the upstream end associated with
the tracer temporarily trapped in the dead-zone.  An example of this skewed distribution
is shown at t1 in Figure 3, which also represents a condition for which the Fickian limit
has not been reached by the dispersion process.

A third process of dispersion can arise from chemical reaction with the stationary
substrate, e.g. grain walls in porous media or channel boundaries.  Consider the tracer
depicted in Figure 5, which can adsorb to the solid boundary.  When the dissolved
chemical (white circles) is released into the channel, it begins to adsorb to the boundary
(black circles) with reaction rate k.  The chemical associated with the boundary is
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stationary, and thus will be delayed relative to the dissolved phase, which continues to
move downstream at speed U.  Once the local dissolved concentration drops to zero, the
adsorbed chemical is released back to the moving fluid (gray circles, t1 and t2, Figure 5),
also at rate k.  The cloud is dispersed longitudinally because some fraction of the mass is
delayed by adsorption to the boundary.  As with dead-zone dispersion, adsorption to the
solid boundary can only result in dispersion if the time scale for the adsorption processes
(1/k) is long compared to transport time-scale of the cloud, such that each adsorption
event results in some delay.   In Chapter 9 we will discuss the effect of adsorption under
conditions for which the time-scale of the adsorption/desorption reaction is very short
compared to the transport time-scales, such that the concentration in the dissolved and
adsorbed phases always remain at equilibrium.

Figure 5.  Some fraction of the dissolved chemical (white circles) may adsorb to the solid,
stationary boundary (black circles).  The adsorbed chemical is released from the boundary (gray
circles) after the dissolved cloud has passed.  The adsorption and desorption of chemical results in
a transport delay that lengthens (disperses) the tracer cloud.




