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NUCLEAR FUSION 6 (1966)

DESTRUCTION OF MAGNETIC SURFACES BY MAGNETIC FIELD IRREGULARITIES

M. N. ROSENBLUTH, R. Z. SAGDEEV, J. B. TAYLOE

INTERNATIONAL CENTRE FOR THEORETICAL PHYSICS

INTERNATIONAL ATOMIC ENERGY AGENCY

TRIESTE, ITALY

AND G. M. ZASLAVSKI

INSTITUTE OF NUCLEAR PHYSICS

NOVOSIBIRSK, USSR

A perturbation theory analogous to that of quasi-linear theory is developed to treat the behavior
of magnetic surfaces, in particular to estimate their stability against field irregularities. The method
exploits the similarity between the Vlasov equation and the Liouville equation for field lines. We
find that a very important role is played by field resonances, that isolated resonances have a limited
effect, extended over a finite width which we estimate, but as soon as resonances overlap, a very
rapid destruction of flux surfaces may be expected.

The existence of "magnetic surfaces" in toroidal
traps is a crucial ansatz for high temperature plasma
confinement in closed system. Such surfaces are known
to exist rigorously only in cases of special symmetry,
for example, a linear system with helical windings or
a torus with a hard core. I t is very difficult to estimate
the degree to which field lines depart from surfaces in
other cases. The mathematical nature of the difficulty
lies in the complicated non-linear differential equations
which govern the behavior of magnetic field lines and
which have coefficients periodically varying along the
torus. The problem is to determine whether the solu-
tions of such nonlinear differential equations with
periodic coefficients are stable. Especially important
perturbations are those which may be in resonance
with the rotational transform. In fact, any irregularities
of magnetic coils, being periodic along the toroid,
might be in resonance, and one may expect a strong
influence of such resonant disturbances on the magnetic
field lines. On the other hand, strong shear may help
to reduce these disturbances because the change of
rotational transform with radius restricts the reso-
nances to a small region [1].

The purpose of this note is to develop a simple
method by which one may approximately treat cases
with one, two, or many, resonant perturbations. We
find a criterion for "overlapping" of resonances and
show that if resonances do not overlap, then flux
surfaces are only destroyed in a local region; when
resonances overlap strongly, a Brownian motion of
flux lines occurs.

To solve the problem we find it convenient to
introduce the Liouville equation which has, as its
characteristics, the equations for the magnetic field
lines. Thus, in cylindrical coordinates we may write,
using

dr/dy = rBtjB9

dzjdcp = rBzjBy

8f rB, 8f
8<p "•" Ba, dr"*"

rBz 8/ _
8z

= 0 (1)

role of time in the usual dynamical equations. Note
that/(27t)^/(0) as the field line does not necessarily
return to its original position after having gone round
the torus. The problem we are now concerned with
primarily is a perturbation around a situation in which
exact flux surfaces exist. We introduce action-angle
variables (J, 0) for the unperturbed field; J labels the
flux surface and the change in 6 following a field line
of the unperturbed field is given by d 0/d<p= co(J),
where co is related to the rotational transform such
that for Aq> = 2izlco the field line has returned to its
original position on the flux surface. (For example, in
a hard-core torus, J=r2, 6=6*; co{J) = {R/r) {Be/B,,,)
but in a helical field the relationship between the angle
variable Q and d*, the inclination of the line of force,
will be a periodic function of cp, d*.)

The Liouville equation for field lines now takes the
form

where Fj== dJ/dt and Fe= dd/dt as produced by the
perturbing field.

As we are primarily interested in the question of
behavior of a flux surface originally highly localized
in J, we may suppose df/dJp df/d 6. On the other
hand Fj and Fe, due to the perturbing fields, should
be comparable. Hence, in what follows, for simplicity
we neglect Fe and also assume that Fj and d/dJ may
be commuted. As the motion will be localized near
some resonant J value it will be adequate to describe
Fj by

,me ' ( " t + m > (3)

are

(4)

where 1/Q is the periodicity of the torus and an,
weak functions of J only. Expanding

and Laplace-transforming we have

where now f=f(r, z, cp) is constant along a field line,
and <p, the coordinate around the torus, plays the

- MO) + pfP.i + i I cojfp,i =
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Here //(0), the initial condition, will be taken as
di,oS(J—Jo) in order to study the "diffusion" of a
flux surface, and we may also exclude w=m=0 from
the sums, these merely relabelling the equilibrium.
Iterating eq. 5, we find for /p,o the equation

n, m n , m
— xmoij

X an',m'
- i(n + n')O,-m- m'

(6)

In order to simplify this further it is necessary to
make a "random phase" approximation. In the case
of many resonances this can be justified in the usual
way. If there are only a few resonances, another
justification can be given. The contribution from higher
order terms, that is, n-\-n', ra+m'^O, may then be
estimated by iterating the equation again, which will
give a fourth-order term of order

„ S 1 a 1
dJ p+ifa-Q) dJ p+i(o>-Q) x '

times the second order term. The denominators are no
smaller than (d co/d J) dJ, even for a resonant case so
that these fourth-order terms will be small unless we
deal with a case of very small spreading dJzae*. In
such cases eq. 5 can only be considered as a qualitative
approximation.

Making this approximation we have

/(0)
P p*+(nil-m dJ

n, m

which is evidently very similar to those obtained in
the quasi-linear theory where many of these con-
siderations have been given, for example, by Karpman
and Altshul [2], We note, parenthetically, that in
higher approximation effects of more complicated
resonances can occur analogous to wave-wave coupling
but these do not seem of particular importance to
this problem.

First we solve for the case of a single resonant per-
turbation (n0, m0), where we expand

n Q — m co] = m0 co' J

= d(J-J0)
and put

£2|ano,mo|2 = rf = constant

Then we have

o a 1
V dJ 8J

Putting

8J

this can be written

/'(0)
P

(9)

(10)

(U)

(12)

(13)

and is quickly reduced to the Hermite equation, with

J={r}2 ujm0
2 ca'*)i (14)

namely

8u2 \ 7] m0 co'

This may now be solved in the form

(16)

where Hn are the normalized eigenfunctions of the
Hermite equation with eigenvalues 2n-\-l. We find

-Hn'(u0) (17)

and for f(u, p)
,_ 6(u- u0)

Hn'(u0)Hn'(u)
(18)

The Laplace transform can be inverted to give

= d{u-u0)

(19)

We see that the relevant scale in z is of order (r) co' mo)~i.
We may also consider the steady state solution by

returning to eq. 8 and solving for 2>=0, which may
be done in terms of Bessel functions, to find, for w2>0

(wo>w>O)

(20)

^u2) (u>u0)

f.=Bvt [^(iw2) +2* /j (̂

/=£(-«)* [Zj(±u«)] (i

with A and B determined by

/+K)=/_K) (21)
The essential point is that the spread in / 0 is deter-
mined by

(m0 co'/rj) 6J2 ~ 1 (22)
If

then

If

then

SJ = r)lm0 6 co

(m0co'lrj)iJQ<l

(?y/m0 co')i

(23)

(24)

In order to clarify the meaning of the approximate
solution eq. 19, we note that eq. 2 may be solved
exactly for the case of a single helical perturbation,
yielding a result qualitatively in agreement with that
obtained above. In order to see this, let us write the
equations of motion for the magnetic field lines in
the case of a single resonance as

dr/dz = e i4'1 cos (Id — h z)

r(d0/dz) = Q(r) - er'-1 sin(Id-kz) (26)
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Equations 25 have the obvious first integral

er'sin(Z 0 — kz)=UlQ{r) — kr} dr +constant (26)

which in the vicinity of the resonant point r=r0,
where lQ(ro) = kro, has the form

—EQTQ1 sin(W — kz)-\-{IQo'{rQ) — k} (r—ro)
2= constant

(27)

Thus, in the case of a single resonance the magnetic
surface geometry has the form shown in fig. 1.

Fig. 1 Magnetic surface geometry for a single resonance.

The resonant perturbation creates subsurfaces spread-
ing over a width Jrss(e/Za/)± in the r direction, as
found earlier.

An exact solution of eq. 2 for the single resonant
case should be a function of the first integrals of eq. 25.
This function, corresponding to the initial value
d{r—r0), describes the deflections of the magnetic field
lines passing through r=r0. From eq. 26 it is obvious
that this function is zero for

r-ro\>(erQ*l\lQo'-k\)t (28)

which shows that the exponentially small tail of the
approximate solution eq. 20 should not be believed,
due to the neglect of higher order terms in eq. 6.

The advantage of the approximate procedure we
have adopted is that it is now easy to see what will
happen in the case of several resonances. For example,
let us consider the behavior of eq. 8 in the case of two
resonances J=JX, J2 in the long time limit, that is,
p = 0. Suppose further that the resonances are well
spread in the sense that

J1-J2>(r)lm0(o')i (29)

Then we may solve eq. 8 by the WKB method except
very close to the resonances and we see immediately
that the solution for / differs from the sum of the
individual solutions only by an exponentially small
term of order

exp— 2V
(30)

Thus field lines in the neighbourhood of one reso-
nance remain near Jx, and have no opportunity to
diffuse away to J2-

This leads us to our fundamental point. If resonances
are spread further apart than (ry/moct)')* then no
long-term diffusion of field lines can take place but

only a small, limited spreading round each resonance.
On the other hand, if resonances do overlap then field
lines may pass from resonance to resonance.*

For completeness let us evaluate eq. 8 in the limit
of many overlapping resonances. Inverting the Laplace
transform

mm 0 (31)

As we expect the time variation of/ to be slow com-
compared to co (at least for small e) we may treat
df/dJ as constant and find

dJ
|2 Bm(nQ—moij)t df

n>m I ~ZTF% Z^TZT. QJ

-^- (32)

We have replaced the sum over n by an integral in
accordance with our assumption of overlapping re-
sonances and replaced (sin a.z)/x by its asymptotic
form d(x) for a large. Doing the integral, we finally
obtain a Fokker-Planck type equation

dt
2"V g / la«.w
Z^dJ \ Q dJ

where n is determined by

n Q— m

(33)

(34)

Let us now apply these considerations to a torus
with very large rotational transform and large aspect

t Note added in proof:
It might be expected, since any a>(J)IQ is arbitrarily

close to some rational value n/m, that all flux surfaces
would be affected by resonances and hence diffuse. This
is in fact not the case. Let us calculate the probability
that a flux surface is not affected by any resonance. We
have seen from eq. 24 that the flux surface will be dis-
rupted by resonance (n, m) if

n _
cor QJ m

I Vn,m M

Here »;n> m pa the n, m Fourier component of the per-
turbation. Thus the probability for a fixed m that the
flux surface will be unaffected is given by

Pm = 1 — -Q- a/)

and the total probability that the flux surface remain
intact is given by

log P=
oo

— \dm — n,m co')

Thus if T) goes to zero faster than w~3 the integral will
converge and the high resonances are irrelevant. In fact,
however, since the field is governed by Laplace's equation
and the sources of field error arise external to the torus,
i.e. for r > r0, it follows that

7* ^~ 7*

Vn, m "» exp(— m) —

Thus the higher order resonances are not essential.
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ratio where the "unperturbed" field may be con-
sidered as due to helical windings

cos{ld*-k<p){kpl) (35)

Then two types of perturbation are of importance.
First we have systematic toroidal correction terms

of order

(r/R)N cos NO * • F(l 6 * - k <p, r) (36)

introduced by the toroidal curvature R. In order to
use the present theory, the perturbation 36 must first
be expressed in terms of the action-angle variables
(J, 6) instead of (r, 0*). The transformations will be,
for example,

d*=6+G(ld-k(p,J) (37)

where 0 is a periodic function of (W — kq>).
It is not necessary to know the actual function 0 in

order to find the resonance points; we need only note
that 6* will contain components

6+s(ld-k(p) (38)

for all integers s. Then the perturbation will contain
all components N6-\-m(l d — kq>) so that the resonance
condition becomes

(39){N-\-ml)(o(J) =

It is convenient to represent this in the form

I) (40)

where loo/k is the average rate of twist (rotational
transform) of a field line relative to that of the helical
field, running from 0 on the axis to 1 at the separatrix.

An obvious deduction from eq. 40 is that for any N
the resonances get closer together as m increases, that
is, as the separatrix is approached. Although small m
may generally be more important, the contribution
of large m will become significant near the separatrix.
We conclude, therefore, that in no case would flux
surfaces exist near the separatrix.

Since the spread of any resonance depends on
(r/J?)N'2 we also expect small N to be the most
dangerous. The N=l resonance cannot occur for a
rotational transform less than l/(l-\-l) times that of
the separatrix; similarly the N=2 resonance cannot
occur for less than Z/(Z+2) of the separatrix transform.
Consequently, we expect the breakup of the surfaces
to occur at values of rotational transform bearing a
simple ratio to that of the separatrix.

The other type of perturbation which might exist
would be due simply to random field errors. Using
eq. 33, we can easily find the Brownian diffusion coef-
ficient, if the spectrum of these irregularities is known.
Those with periods longer than the helical period can-
not resonate, those with periods comparable to the
helical periods should be small compared to the
toroidal corrections. Let us consider then errors
induced by very high Fourier n components, for
example, by a set of randomly placed magnets around
the torus.

These will produce localized fields

where q>0, the position of the magnet, and Ooj, its
orientation are random variables. We suppose that
a/, the width, is fairly small, that is, co a* < 1. This
kind of magnetic field irregularity in fact, can be
described by the "white noise" correlation function

( 4 2 )

where o2=2(Ar)2N and N is the number of such
irregularities per unit length. The direct substitution
of eq. 42 into eq. 33 gives us

8z dr " dr

Conclusion

We have noted that the equation for magnetic
flux lines may be written in the form of a Liouville
equation. If we Fourier-analyze the field perturbations
in the form

(44)

then the equation can be solved approximately as in
quasi-linear theory. We find that for a single per-
turbation the disturbance of magnetic lines is strongly
localized around flux surfaces on which the rotational
transform a> = d0/d£ is resonant, that is, where
nQ = mco. In fact, away from resonance the distortion
of the surfaces goes as e while at resonance it goes
as e*. Passing to the case of several resonances we
find that if the distortions produced by the individual
resonances are not strong enough to overlap with the
adjoining resonances then the disturbances remain
localized. If such overlap does take place then a
Brownian motion of flux lines and rapid destruction of
surfaces results. For a torus with helical windings we
find that the strength and density of resonances is
low at the magnetic axis and very high near the
separatrix so that one may expect to find good flux
surfaces in some region close to the magnetic axis but
not near the separatrix. The rotational transform on
the limiting flux surface would be expected to bear
a simple ratio to the transform of the original, un-
perturbed separatrix, as given by eq. 40.

Acknowledgements

One of us, J. B. T., acknowledges the guidance he
received from numerical calculations of flux surfaces
performed by Dr. A. Gibson. We thank Dr. John
Greene for informing us of his work and thank him,
John Johnson, and Bruno Coppi for helpful discus-
sions. The authors thank the IAEA for hospitality at
the International Centre for Theoretical Physics,
Trieste; also M.N.R. thanks the United States Atomic
Energy Commission for supporting him.

References
1. A. MOBOSOV, L. SOLOVIEV, "The Geometry of the

Magnetic Field" in Problems of the Theory of Plasma
Physics, vol. 2, Moscow (1963), in Russian.

2. L. ALTSHUL, V. KABPMAN, SOV. Physics — JETP 49
(1965) 515.

lj = H0
(««,-)*

exp c o s ( 0 - 0<y) (41) (Manuscript received 22 July 1966.)

300


