HOMEWORK 1

Due: Monday April 4, 2016

1. Suppose you are standing in the middle of a deep forest. In every direction you see trees. If you shot a gun in a random direction, on average how far would the bullet go before hitting a tree? To calculate assume that trees all have a radius of 0.2 m , and the density of trees is 1 tree per every 50 square meter.
2. Now do the same problem as above for the night sky. Assume an infinite Universe filled with stars whose radii are $R_{*}=4 \times 10^{8}$ meter and whose density is $n_{*}=2 \times 10^{-59}$ stars $/$ meter ${ }^{3}$. Looking out in a random direction how far can you see on average before seeing a star?
3. Finally, do the same problem again using galaxies and units of parsecs (pc) and Megaparsecs (Mpc). Suppose galaxies are spherical with a radius of 6000 pc , and have a density of $1 \mathrm{per}_{\mathrm{Mpc}}{ }^{3}$. How far can you see on average before seeing a galaxy?

4a. Suppose a galaxy is 90 Mpc away from us. How fast it moving away from us due to the expansion of the Universe? (give answer in km / s); you may assume a Hubble constant of $H_{0}=70 \mathrm{~km} / \mathrm{s} / \mathrm{Mpc}$. b. Next suppose the redshift of a different galaxy is $z=0.015$. How fast is this galaxy moving away from us (give answer in $\mathrm{km} / \mathrm{sec}$).
c. Using the Hubble law with $H_{0}=70 \mathrm{~km} / \mathrm{s} / \mathrm{Mpc}$, how far away is this galaxy? (give answer in Mpc).
5. The approximation used in the Hubble law breaks down at larger redshift. Solve the equation

$$
z=\sqrt{\frac{1+v / c}{1-v / c}}-1
$$

for v in terms of z and plug the result into Hubble's linear relation between velocity and distance to find a more accurate formula for distance vs redshift. [This formula also breaks down for $z>2$ because we need general relativity, not just special relativity.]
6. Suppose the redshift of a galaxy is is $z=1.5$. Now how fast is the galaxy moving away? How far away is it? Be sure to use the formula you derived in problem 5, since the approximation used in problem 4 is not very accurate at this redshift.

