
Chapter 2

Quantum Mechanical Path Integral

2.1 The Double Slit Experiment

Will be supplied at later date

2.2 Axioms for Quantum Mechanical Description of Single Parti-
cle

Let us consider a particle which is described by a Lagrangian L(~r, ~̇r, t). We provide now a set of
formal rules which state how the probability to observe such a particle at some space–time point
~r, t is described in Quantum Mechanics.

1. The particle is described by a wave function ψ(~r, t)

ψ : R3 ⊗ R → C. (2.1)

2. The probability that the particle is detected at space–time point ~r, t is

|ψ(~r, t)|2 = ψ(~r, t)ψ(~r, t) (2.2)

where z is the conjugate complex of z.

3. The probability to detect the particle with a detector of sensitivity f(~r) is∫
Ω
d3r f(~r) |ψ(~r, t)|2 (2.3)

where Ω is the space volume in which the particle can exist. At present one may think of
f(~r) as a sum over δ–functions which represent a multi–slit screen, placed into the space at
some particular time and with a detector behind each slit.

4. The wave function ψ(~r, t) is normalized∫
Ω
d3r |ψ(~r, t)|2 = 1 ∀t, t ∈ [t0, t1] , (2.4)

a condition which enforces that the probability of finding the particle somewhere in Ω at any
particular time t in an interval [t0, t1] in which the particle is known to exist, is unity.
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12 Quantum Mechanical Path Integral

5. The time evolution of ψ(~r, t) is described by a linear map of the type

ψ(~r, t) =
∫

Ω
d3r′ φ(~r, t|~r′, t′)ψ(~r′, t′) t > t′, t, t′ ∈ [t0, t1] (2.5)

6. Since (2.4) holds for all times, the propagator is unitary, i.e., (t > t′, t, t′ ∈ [t0, t1])∫
Ω d

3r |ψ(~r, t)|2 =∫
Ω d

3r
∫

Ω d
3r′
∫

Ω d
3r′′ φ(~r, t|~r′, t′) φ(~r, t|~r′′, t′) ψ(~r′, t′) ψ(~r′′, t′)
=
∫

Ω d
3r |ψ(~r, t′)|2 = 1 . (2.6)

This must hold for any ψ(~r′, t′) which requires∫
Ω
d3r′ φ(~r, t|~r′, t′)φ(~r, t|~r′′, t′) = δ(~r′ − ~r′′) (2.7)

7. The following so-called completeness relationship holds for the propagator (t > t′ t, t′ ∈
[t0, t1]) ∫

Ω
d3r φ(~r, t|~r′, t′) φ(~r′, t′|~r0, t0) = φ(~r, t|~r0, t0) (2.8)

This relationship has the following interpretation: Assume that at time t0 a particle is gen-
erated by a source at one point ~r0 in space, i.e., ψ(~r0, t0) = δ(~r − ~r0). The state of a system
at time t, described by ψ(~r, t), requires then according to (2.8) a knowledge of the state at all
space points ~r′ ∈ Ω at some intermediate time t′. This is different from the classical situation
where the particle follows a discrete path and, hence, at any intermediate time the particle
needs only be known at one space point, namely the point on the classical path at time t′.

8. The generalization of the completeness property to N − 1 intermediate points t > tN−1 >
tN−2 > . . . > t1 > t0 is

φ(~r, t|~r0, t0) =
∫

Ω d
3rN−1

∫
Ω d

3rN−2 · · ·
∫

Ω d
3r1

φ(~r,t|~rN−1, tN−1) φ(~rN−1, tN−1|~rN−2, tN−2) · · ·φ(~r1, t1|~r0, t0) . (2.9)

Employing a continuum of intermediate times t′ ∈ [t0, t1] yields an expression of the form

φ(~r, t|~r0, t0) =
∫∫ ~r(tN )=~rN

~r(t0)=~r0

d[~r(t)] Φ[~r(t)] . (2.10)

We have introduced here a new symbol, the path integral∫∫ ~r(tN )=~rN

~r(t0)=~r0

d[~r(t)] · · · (2.11)

which denotes an integral over all paths ~r(t) with end points ~r(t0) = ~r0 and ~r(tN ) = ~rN .
This symbol will be defined further below. The definition will actually assume an infinite
number of intermediate times and express the path integral through integrals of the type
(2.9) for N → ∞.
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9. The functional Φ[~r(t)] in (2.11) is

Φ[~r(t)] = exp
{
i

~

S[~r(t)]
}

(2.12)

where S[~r(t)] is the classical action integral

S[~r(t)] =
∫ tN

t0

dtL(~r, ~̇r, t) (2.13)

and

~ = 1.0545 · 10−27 erg s . (2.14)

In (2.13) L(~r, ~̇r, t) is the Lagrangian of the classical particle. However, in complete distinction
from Classical Mechanics, expressions (2.12, 2.13) are built on action integrals for all possible
paths, not only for the classical path. Situations which are well described classically will be
distinguished through the property that the classical path gives the dominant, actually often
essentially exclusive, contribution to the path integral (2.12, 2.13). However, for microscopic
particles like the electron this is by no means the case, i.e., for the electron many paths
contribute and the action integrals for non-classical paths need to be known.

The constant ~ given in (2.14) has the same dimension as the action integral S[~r(t)]. Its value
is extremely small in comparision with typical values for action integrals of macroscopic particles.
However, it is comparable to action integrals as they arise for microscopic particles under typical
circumstances. To show this we consider the value of the action integral for a particle of mass
m = 1 g moving over a distance of 1 cm/s in a time period of 1 s. The value of S[~r(t)] is then

Scl =
1
2
mv2 t =

1
2

erg s . (2.15)

The exponent of (2.12) is then Scl/~ ≈ 0.5 · 1027, i.e., a very large number. Since this number is
multiplied by ‘i’, the exponent is a very large imaginary number. Any variations of Scl would then
lead to strong oscillations of the contributions exp( i

~
S) to the path integral and one can expect

destructive interference betwen these contributions. Only for paths close to the classical path is
such interference ruled out, namely due to the property of the classical path to be an extremal of
the action integral. This implies that small variations of the path near the classical path alter the
value of the action integral by very little, such that destructive interference of the contributions of
such paths does not occur.
The situation is very different for microscopic particles. In case of a proton with mass m =
1.6725 · 10−24 g moving over a distance of 1 Å in a time period of 10−14 s the value of S[~r(t)] is
Scl ≈ 10−26 erg s and, accordingly, Scl/~ ≈ 8. This number is much smaller than the one for the
macroscopic particle considered above and one expects that variations of the exponent of Φ[~r(t)]
are of the order of unity for protons. One would still expect significant descructive interference
between contributions of different paths since the value calculated is comparable to 2π. However,
interferences should be much less dramatic than in case of the macroscopic particle.



14 Quantum Mechanical Path Integral

2.3 How to Evaluate the Path Integral

In this section we will provide an explicit algorithm which defines the path integral (2.12, 2.13)
and, at the same time, provides an avenue to evaluate path integrals. For the sake of simplicity we
will consider the case of particles moving in one dimension labelled by the position coordinate x.
The particles have associated with them a Lagrangian

L(x, ẋ, t) =
1
2
mẋ2 − U(x) . (2.16)

In order to define the path integral we assume, as in (2.9), a series of times tN > tN−1 > tN−2 >
. . . > t1 > t0 letting N go to infinity later. The spacings between the times tj+1 and tj will all be
identical, namely

tj+1 − tj = (tN − t0)/N = εN . (2.17)

The discretization in time leads to a discretization of the paths x(t) which will be represented
through the series of space–time points

{(x0, t0), (x1, t1), . . . (xN−1, tN−1), (xN , tN )} . (2.18)

The time instances are fixed, however, the xj values are not. They can be anywhere in the allowed
volume which we will choose to be the interval ]−∞,∞[. In passing from one space–time instance
(xj , tj) to the next (xj+1, tj+1) we assume that kinetic energy and potential energy are constant,
namely 1

2m(xj+1 − xj)2/ε2N and U(xj), respectively. These assumptions lead then to the following
Riemann form for the action integral

S[x(t)] = lim
N→∞

εN

N−1∑
j=0

(
1
2
m

(xj+1 − xj)2

ε2N
− U(xj)

)
. (2.19)

The main idea is that one can replace the path integral now by a multiple integral over x1, x2, etc.
This allows us to write the evolution operator using (2.10) and (2.12)

φ(xN , tN |x0, t0) = limN→∞CN
∫ +∞
−∞ dx1

∫ +∞
−∞ dx2 . . .

∫ +∞
−∞ dxN−1

exp
{

i
~
εN
∑N−1

j=0

[
1
2m

(xj+1−xj)2

ε2N
− U(xj)

]}
. (2.20)

Here, CN is a constant which depends on N (actually also on other constant in the exponent) which
needs to be chosen to ascertain that the limit in (2.20) can be properly taken. Its value is

CN =
[

m

2πi~εN

]N
2

(2.21)

2.4 Propagator for a Free Particle

As a first example we will evaluate the path integral for a free particle following the algorithm
introduced above.
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Rather then using the integration variables xj , it is more suitable to define new integration variables
yj , the origin of which coincides with the classical path of the particle. To see the benifit of such
approach we define a path y(t) as follows

x(t) = xcl(t) + y(t) (2.22)

where xcl(t) is the classical path which connects the space–time points (x0, t0) and (xN , tN ), namely,

xcl(t) = x0 +
xN − x0

tN − t0
( t − t0) . (2.23)

It is essential for the following to note that, since x(t0) = xcl(t0) = x0 and x(tN ) = xcl(tN ) = xN ,
it holds

y(t0) = y(tN ) = 0 . (2.24)

Also we use the fact that the velocity of the classical path ẋcl = (xN−x0)/(tn−t0) is constant. The
action integral1 S[x(t)|x(t0) = x0, x(tN ) = xN ] for any path x(t) can then be expressed through
an action integral over the path y(t) relative to the classical path. One obtains

S[x(t)|x(t0) = x0, x(tN ) = xN ] =
∫ tN
t0
dt1

2m(ẋ2
cl + 2ẋclẏ + ẏ2) =∫ tN

t0
dt1

2mẋ
2
cl + mẋcl

∫ tN
t0
dtẏ +

∫ tN
t0
dt1

2mẏ
2 . (2.25)

The condition (2.24) implies for the second term on the r.h.s.∫ tN

t0

dt ẏ = y(tN ) − y(t0) = 0 . (2.26)

The first term on the r.h.s. of (2.25) is, using (2.23),∫ tN

t0

dt
1
2
m ẋ2

cl =
1
2
m

(xN − x0)2

tN − t0
. (2.27)

The third term can be written in the notation introduced∫ tN

t0

dt
1
2
mẏ2 = S[x(t)|x(t0) = 0, x(tN ) = 0] , (2.28)

i.e., due to (2.24), can be expressed through a path integral with endpoints x(t0) = 0, x(tN ) = 0.
The resulting expression for S[x(t)|x(t0) = x0, x(tN ) = xN ] is

S[x(t)|x(t0) = x0, x(tN ) = xN ] =
1
2
m

(xN − x0)2

tN − t0
+ 0 + (2.29)

+ S[x(t)|x(t0) = 0, x(tN ) = 0] .

This expression corresponds to the action integral in (2.13). Inserting the result into (2.10, 2.12)
yields

φ(xN , tN |x0, t0) = exp
[
im

2~
(xN − x0)2

tN − t0

] ∫∫ x(tN )=0

x(t0)=0
d[x(t)] exp

{
i

~

S[x(t)]
}

(2.30)

a result, which can also be written

φ(xN , tN |x0, t0) = exp
[
im

2~
(xN − x0)2

tN − t0

]
φ(0, tN |0, t0) (2.31)

1We have denoted explicitly that the action integral for a path connecting the space–time points (x0, t0) and
(xN , tN ) is to be evaluated.
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Evaluation of the necessary path integral

To determine the propagator (2.31) for a free particle one needs to evaluate the following path
integral

φ(0, tN |0, t0) = limN→∞

[
m

2πi~εN

]N
2 ×

×
∫ +∞
−∞ dy1 · · ·

∫ +∞
−∞ dyN−1 exp

[
i
~
εN
∑N−1

j=0
1
2m

(yj+1− yj)2

ε2N

]
(2.32)

The exponent E can be written, noting y0 = yN = 0, as the quadratic form

E =
im

2~εN
( 2y2

1 − y1y2 − y2y1 + 2y2
2 − y2y3 − y3y2

+ 2y2
3 − · · · − yN−2yN−1 − yN−1yN−2 + 2y2

N−1 )

= i

N−1∑
j,k=1

yj ajk yk (2.33)

where ajk are the elements of the following symmetric (N − 1)× (N − 1) matrix

(
ajk

)
=

m

2~εN



2 −1 0 . . . 0 0
−1 2 −1 . . . 0 0

0 −1 2 . . . 0 0
...

...
...

. . .
...

...
0 0 0 . . . 2 −1
0 0 0 −1 2


(2.34)

The following integral

∫ +∞

−∞
dy1 · · ·

∫ +∞

−∞
dyN−1 exp

i N−1∑
j,k=1

yjajkyk

 (2.35)

must be determined. In the appendix we prove

∫ +∞

−∞
dy1 · · ·

∫ +∞

−∞
dyN−1 exp

i d∑
j,k=1

yjbjkyk

 =
[

(iπ)d

det(bjk)

] 1
2

. (2.36)

which holds for a d-dimensional, real, symmetric matrix (bjk) and det(bjk) 6= 0.
In order to complete the evaluation of (2.32) we split off the factor m

2~εN
in the definition (2.34) of

(ajk) defining a new matrix (Ajk) through

ajk =
m

2~εN
Ajk . (2.37)

Using

det(ajk) =
[
m

2~εN

]N−1

det(Ajk) , (2.38)
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a property which follows from det(cB) = cndetB for any n× n matrix B, we obtain

φ(0, tN |0, t0) = limN→∞

[
m

2πi~εN

]N
2
[

2πi~εN
m

]N−1
2 1√

det(Ajk)
. (2.39)

In order to determine det(Ajk) we consider the dimension n of (Ajk), presently N − 1, variable, let
say n, n = 1, 2, . . .. We seek then to evaluate the determinant of the n× n matrix

Dn =

∣∣∣∣∣∣∣∣∣∣∣∣∣



2 −1 0 . . . 0 0
−1 2 −1 . . . 0 0

0 −1 2 . . . 0 0
...

...
...

. . .
...

...
0 0 0 . . . 2 −1
0 0 0 −1 2



∣∣∣∣∣∣∣∣∣∣∣∣∣
. (2.40)

For this purpose we expand (2.40) in terms of subdeterminants along the last column. One can
readily verify that this procedure leads to the following recursion equation for the determinants

Dn = 2Dn−1 − Dn−2 . (2.41)

To solve this three term recursion relationship one needs two starting values. Using

D1 = |(2)| = 2 ; D2 =
∣∣∣∣( 2 −1
−1 2

)∣∣∣∣ = 3 (2.42)

one can readily verify
Dn = n+ 1 . (2.43)

We like to note here for further use below that one might as well employ the ‘artificial’ starting
values D0 = 1, D1 = 2 and obtain from (2.41) the same result for D2, D3, . . ..
Our derivation has provided us with the value det(Ajk) = N . Inserting this into (2.39) yields

φ(0, tN |0, t0) = limN→∞

[
m

2πi~εNN

] 1
2

(2.44)

and with εNN = tN − t0 , which follows from (2.18) we obtain

φ(0, tN |0, t0) =
[

m

2πi~(tN − t0)

] 1
2

. (2.45)

Expressions for Free Particle Propagator

We have now collected all pieces for the final expression of the propagator (2.31) and obtain, defining
t = tN , x = xN

φ(x, t|x0, t0) =
[

m

2πi~(t− t0)

] 1
2

exp
[
im

2~
(x− x0)2

t− t0

]
. (2.46)
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This propagator, according to (2.5) allows us to predict the time evolution of any state function
ψ(x, t) of a free particle. Below we will apply this to a particle at rest and a particle forming a
so-called wave packet.
The result (2.46) can be generalized to three dimensions in a rather obvious way. One obtains then
for the propagator (2.10)

φ(~r, t|~r0, t0) =
[

m

2πi~(t− t0)

] 3
2

exp
[
im

2~
(~r − ~r0)2

t− t0

]
. (2.47)

One-Dimensional Free Particle Described by Wave Packet

We assume a particle at time t = to = 0 is described by the wave function

ψ(x0, t0) =
[

1
πδ2

] 1
4

exp
(
− x2

0

2δ2
+ i

po
~

x

)
(2.48)

Obviously, the associated probability distribution

|ψ(x0, t0)|2 =
[

1
πδ2

] 1
2

exp
(
−x

2
0

δ2

)
(2.49)

is Gaussian of width δ, centered around x0 = 0, and describes a single particle since[
1
πδ2

] 1
2
∫ +∞

−∞
dx0 exp

(
−x

2
0

δ2

)
= 1 . (2.50)

One refers to such states as wave packets. We want to apply axiom (2.5) to (2.48) as the initial
state using the propagator (2.46).
We will obtain, thereby, the wave function of the particle at later times. We need to evaluate for
this purpose the integral

ψ(x, t) =
[

1
πδ2

] 1
4 [ m

2πi~t

] 1
2

∫ +∞

−∞
dx0 exp

[
im

2~
(x− x0)2

t
− x2

0

2δ2
+ i

po
~

xo

]
︸ ︷︷ ︸

Eo(xo, x) + E(x)

(2.51)

For this evaluation we adopt the strategy of combining in the exponential the terms quadratic
(∼ x2

0) and linear (∼ x0) in the integration variable to a complete square

ax2
0 + 2bx0 = a

(
x0 +

b

a

)2

− b2

a
(2.52)

and applying (2.247).
We devide the contributions to the exponent Eo(xo, x) + E(x) in (2.51) as follows

Eo(xo, x) =
im

2~t

[
x2
o

(
1 + i

~t

mδ2

)
− 2xo

(
x − po

m
t
)

+ f(x)
]

(2.53)
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E(x) =
im

2~t
[
x2 − f(x)

]
. (2.54)

One chooses then f(x) to complete, according to (2.52), the square in (2.53)

f(x) =

 x− po
m t√

1 + i ~t
mδ2

2

. (2.55)

This yields

Eo(xo, x) =
im

2~t

xo

√
1 + i

~t

mδ2
−

x − po
m t√

1 + i ~t
mδ2

2

. (2.56)

One can write then (2.51)

ψ(x, t) =
[

1
πδ2

] 1
4 [ m

2πi~t

] 1
2
eE(x)

∫ +∞

−∞
dx0 e

Eo(xo,x) (2.57)

and needs to determine the integral

I =
∫ +∞

−∞
dx0 e

Eo(xo,x)

=
∫ +∞

−∞
dx0 exp

 im

2~t

xo

√
1 + i

~t

mδ2
−

x − po
m t√

1 + i ~t
mδ2

2 
=

∫ +∞

−∞
dx0 exp

 im

2~t

(
1 + i

~t

mδ2

)(
xo −

x − po
m t

1 + i ~t
mδ2

)2
 . (2.58)

The integrand is an analytical function everywhere in the complex plane and we can alter the inte-
gration path, making certain, however, that the new path does not lead to additional contributions
to the integral.
We proceed as follows. We consider a transformation to a new integration variable ρ defined through√

i

(
1 − i

~t

mδ2

)
ρ = x0 −

x − po
m t

1 + i ~t
mδ2

. (2.59)

An integration path in the complex x0–plane along the direction√
i

(
1 − i

~t

mδ2

)
(2.60)

is then represented by real ρ values. The beginning and the end of such path are the points

z′1 = −∞ ×

√
i

(
1 − i

~t

mδ2

)
, z′2 = +∞ ×

√
i

(
1 − i

~t

mδ2

)
(2.61)
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whereas the original path in (2.58) has the end points

z1 = −∞ , z2 = +∞ . (2.62)

If one can show that an integration of (2.58) along the path z1 → z′1 and along the path z2 → z′2
gives only vanishing contributions one can replace (2.58) by

I =

√
i

(
1 − i

~t

mδ2

) ∫ +∞

−∞
dρ exp

[
− m

2~t

(
1 +

(
~t

mδ2

)2
)
ρ2

]
(2.63)

which can be readily evaluated. In fact, one can show that z′1 lies at −∞ − i × ∞ and z′2 at
+∞ + i×∞. Hence, the paths between z1 → z′1 and z2 → z′2 have a real part of x0 of ±∞. Since
the exponent in (2.58) has a leading contribution in x0 of −x2

0/δ
2 the integrand of (2.58) vanishes

for Rex0 → ±∞. We can conclude then that (2.63) holds and, accordingly,

I =

√
2πi~t

m(1 + i ~t
mδ2 )

. (2.64)

Equation (2.57) reads then

ψ(x, t) =
[

1
πδ2

] 1
4

[
1

1 + i ~t
mδ2

] 1
2

exp [E(x) ] . (2.65)

Seperating the phase factor [
1 − i ~t

mδ2

1 + i ~t
mδ2

] 1
4

, (2.66)

yields

ψ(x, t) =

[
1 − i ~t

mδ2

1 + i ~t
mδ2

] 1
4
[

1
πδ2 (1 + ~2t2

m2δ4 )

] 1
4

exp [E(x) ] . (2.67)

We need to determine finally (2.54) using (2.55). One obtains

E(x) = − x2

2δ2(1 + i ~t
mδ2 )

+
ipo
~
x

1 + i ~t
mδ2

−
i
~

p2
o

2m t

1 + i ~t
mδ2

(2.68)

and, using
a

1 + b
= a − a b

1 + b
, (2.69)

finally

E(x) = −
(x − po

m t)2

2δ2(1 + i ~t
mδ2 )

+ i
po
~

x − i

~

p2
o

2m
t (2.70)
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which inserted in (2.67) provides the complete expression of the wave function at all times t

ψ(x, t) =

[
1 − i ~t

mδ2

1 + i ~t
mδ2

] 1
4
[

1
πδ2 (1 + ~2t2

m2δ4 )

] 1
4

× (2.71)

× exp

[
−

(x − po
m t)2

2δ2(1 + ~2t2

m2δ4 )
(1 − i

~t

mδ2
) + i

po
~

x − i

~

p2
o

2m
t

]
.

The corresponding probability distribution is

|ψ(x, t)|2 =

[
1

πδ2 (1 + ~2t2

m2δ4 )

] 1
2

exp

[
−

(x − po
m t)2

δ2(1 + ~2t2

m2δ4 )

]
. (2.72)

Comparision of Moving Wave Packet with Classical Motion

It is revealing to compare the probability distributions (2.49), (2.72) for the initial state (2.48) and
for the final state (2.71), respectively. The center of the distribution (2.72) moves in the direction
of the positive x-axis with velocity vo = po/m which identifies po as the momentum of the particle.
The width of the distribution (2.72)

δ

√
1 +

~
2t2

m2δ4
(2.73)

increases with time, coinciding at t = 0 with the width of the initial distribution (2.49). This
‘spreading’ of the wave function is a genuine quantum phenomenon. Another interesting observation
is that the wave function (2.71) conserves the phase factor exp[i(po/~)x] of the original wave function
(2.48) and that the respective phase factor is related with the velocity of the classical particle and
of the center of the distribution (2.72). The conservation of this factor is particularly striking for
the (unnormalized) initial wave function

ψ(x0, t0) = exp
(
i
po
m
xo

)
, (2.74)

which corresponds to (2.48) for δ → ∞. In this case holds

ψ(x, t) = exp
(
i
po
m
x − i

~

p2
o

2m
t

)
. (2.75)

i.e., the spatial dependence of the initial state (2.74) remains invariant in time. However, a time-
dependent phase factor exp[− i

~
(p2
o/2m) t] arises which is related to the energy ε = p2

o/2m of a
particle with momentum po. We had assumed above [c.f. (2.48)] to = 0. the case of arbitrary to is
recovered iby replacing t → to in (2.71, 2.72). This yields, instead of (2.75)

ψ(x, t) = exp
(
i
po
m
x − i

~

p2
o

2m
(t − to)

)
. (2.76)

From this we conclude that an initial wave function

ψ(xo, t0) = exp
(
i
po
m
xo −

i

~

p2
o

2m
to

)
. (2.77)
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becomes at t > to

ψ(x, t) = exp
(
i
po
m
x − i

~

p2
o

2m
t

)
, (2.78)

i.e., the spatial as well as the temporal dependence of the wave function remains invariant in this
case. One refers to the respective states as stationary states. Such states play a cardinal role in
quantum mechanics.

2.5 Propagator for a Quadratic Lagrangian

We will now determine the propagator (2.10, 2.12, 2.13)

φ(xN , tN |x0, t0) =
∫∫ x(tN )=xN

x(t0)=x0

d[x(t)] exp
{
i

~

S[x(t)]
}

(2.79)

for a quadratic Lagrangian

L(x, ẋ, t) =
1
2
mẋ2 − 1

2
c(t)x2 − e(t)x . (2.80)

For this purpose we need to determine the action integral

S[x(t)] =
∫ tN

t0

dt′ L(x, ẋ, t) (2.81)

for an arbitrary path x(t) with end points x(t0) = x0 and x(tN ) = xN . In order to simplify this
task we define again a new path y(t)

x(t) = xcl(t) + y(t) (2.82)

which describes the deviation from the classical path xcl(t) with end points xcl(t0) = x0 and
xcl(tN ) = xN . Obviously, the end points of y(t) are

y(t0) = 0 ; y(tN ) = 0 . (2.83)

Inserting (2.80) into (2.82) one obtains

L(xcl + y, ẋcl + ẏ(t), t) = L(xcl, ẋcl, t) + L′(y, ẏ(t), t) + δL (2.84)

where

L(xcl, ẋcl, t) =
1
2
mẋ2

cl −
1
2
c(t)x2

cl − e(t)xcl

L′(y, ẏ(t), t) =
1
2
mẏ2 − 1

2
c(t)y2

δL = mẋclẏ(t) − c(t)xcly − e(t)y . (2.85)

We want to show now that the contribution of δL to the action integral (2.81) vanishes2. For this
purpose we use

ẋclẏ =
d

dt
(ẋcl y) − ẍcl y (2.86)

2The reader may want to verify that the contribution of δL to the action integral is actually equal to the differential
δS[xcl, y(t)] which vanishes according to the Hamiltonian principle as discussed in Sect. 1.
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and obtain ∫ tN

t0

dt δL = m [ẋcl y]|t
N

t0
−
∫ tN

t0

dt [mẍcl(t) + c(t)xcl(t) + e(t) ] y(t) . (2.87)

According to (2.83) the first term on the r.h.s. vanishes. Applying the Euler–Lagrange conditions
(1.24) to the Lagrangian (2.80) yields for the classical path

mẍcl + c(t)xcl + e(t) = 0 (2.88)

and, hence, also the second contribution on the r.h.s. of (2.88) vanishes. One can then express the
propagator (2.79)

φ(xN , tN |x0, t0) = exp
{
i

~

S[xcl(t)]
}
φ̃(0, tN |0, t0) (2.89)

where

φ̃(0, tN |0, t0) =
∫∫ y(tN )=0

y(t0)=0
d[y(t)] exp

{
i

~

∫ tN

t0

dtL′(y, ẏ, t)
}
. (2.90)

Evaluation of the Necessary Path Integral

We have achieved for the quadratic Lagrangian a separation in terms of a classical action integral
and a propagator connecting the end points y(t0) = 0 and y(tN ) = 0 which is analogue to the
result (2.31) for the free particle propagator. For the evaluation of φ̃(0, tN |0, t0) we will adopt
a strategy which is similar to that used for the evaluation of (2.32). The discretization scheme
adopted above yields in the present case

φ̃(0, tN |0, t0) = limN→∞

[
m

2πi~εN

]N
2 × (2.91)

×
∫ +∞
−∞ dy1 · · ·

∫ +∞
−∞ dyN−1 exp

[
i
~
εN
∑N−1

j=0

(
1
2m

(yj+1− yj)2

ε2N
− 1

2 cj y
2
j

)]
where cj = c(tj), tj = t0 + εN j. One can express the exponent E in (2.91) through the quadratic
form

E = i

N−1∑
j,k=1

yj ajk yk (2.92)

where ajk are the elements of the following (N − 1)× (N − 1) matrix

(
ajk

)
=

m

2~εN



2 −1 0 . . . 0 0
−1 2 −1 . . . 0 0

0 −1 2 . . . 0 0
...

...
...

. . .
...

...
0 0 0 . . . 2 −1
0 0 0 −1 2



− εN
2~



c1 0 0 . . . 0 0
0 c2 0 . . . 0 0
0 0 c3 . . . 0 0
...

...
...

. . .
...

...
0 0 0 . . . cN−2 0
0 0 0 0 cN−1


(2.93)
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In case det(ajk) 6= 0 one can express the multiple integral in (2.91) according to (2.36) as follows

φ̃(0, tN |0, t0) = limN→∞

[
m

2πi~εN

]N
2
[

(iπ)N−1

det(a)

] 1
2

= limN→∞

 m

2πi~
1

εN

(
2~εN
m

)N−1
det(a)


1
2

. (2.94)

In order to determine φ̃(0, tN |0, t0) we need to evaluate the function

f(t0, tN ) = limN→∞

[
εN

(
2~εN
m

)N−1

det(a)

]
. (2.95)

According to (2.93) holds

DN−1
def=

[
2~εN
m

]N−1
det(a) (2.96)

=

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣



2− ε2N
m c1 −1 0 . . . 0 0

−1 2− ε2N
m c2 −1 . . . 0 0

0 −1 2− ε2N
m c3 . . . 0 0

...
...

...
. . .

...
...

0 0 0 . . . 2− ε2N
m cN−2 −1

0 0 0 −1 2− ε2N
m cN−1



∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
In the following we will asume that the dimension n = N − 1 of the matrix in (2.97) is variable.
One can derive then for Dn the recursion relationship

Dn =
(

2 −
ε2N
m
cn

)
Dn−1 − Dn−2 (2.97)

using the well-known method of expanding a determinant in terms of the determinants of lower
dimensional submatrices. Using the starting values [c.f. the comment below Eq. (2.43)]

D0 = 1 ; D1 = 2 −
ε2N
m

c1 (2.98)

this recursion relationship can be employed to determine DN−1. One can express (2.97) through
the 2nd order difference equation

Dn+1 − 2Dn + Dn−1

ε2N
= − cn+1Dn

m
. (2.99)

Since we are interested in the solution of this equation in the limit of vanishing εN we may interpret
(2.99) as a 2nd order differential equation in the continuous variable t = nεN + t0

d2f(t0, t)
dt2

= − c(t)
m

f(t0, t) . (2.100)
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The boundary conditions at t = t0, according to (2.98), are

f(t0, t0) = εN D0 = 0 ;

df(t0,t)
dt

∣∣∣
t=t0

= εN
D1 −D0

εN
= 2 −

ε2N
m

c1 − 1 = 1 . (2.101)

We have then finally for the propagator (2.79)

φ(x, t|x0, t0) =
[

m

2πi~f(to, t)

] 1
2

exp
{
i

~

S[xcl(t)]
}

(2.102)

where f(t0, t) is the solution of (2.100, 2.101) and where S[xcl(t)] is determined by solving first the
Euler–Lagrange equations for the Lagrangian (2.80) to obtain the classical path xcl(t) with end
points xcl(t0) = x0 and xcl(tN ) = xN and then evaluating (2.81) for this path. Note that the
required solution xcl(t) involves a solution of the Euler–Lagrange equations for boundary conditions
which are different from those conventionally encountered in Classical Mechanics where usually a
solution for initial conditions xcl(t0) = x0 and ẋcl(t0) = v0 are determined.

2.6 Wave Packet Moving in Homogeneous Force Field

We want to consider now the motion of a quantum mechanical particle, decribed at time t = to
by a wave packet (2.48), in the presence of a homogeneous force due to a potential V (x) = − f x.
As we have learnt from the study of the time-development of (2.48) in case of free particles the
wave packet (2.48) corresponds to a classical particle with momentum po and position xo = 0.
We expect then that the classical particle assumes the following position and momentum at times
t > to

y(t) =
po
m

(t − to) +
1
2
f

m
(t − to)2 (2.103)

p(t) = po + f (t − to) (2.104)

The Lagrangian for the present case is

L(x, ẋ, t) =
1
2
mẋ2 + f x . (2.105)

This corresponds to the Lagrangian in (2.80) for c(t) ≡ 0, e(t) ≡ −f . Accordingly, we can employ
the expression (2.89, 2.90) for the propagator where, in the present case, holds L′(y, ẏ, t) = 1

2mẏ
2

such that φ̃(0, tN |0, t0) is the free particle propagator (2.45). One can write then the propagator
for a particle moving subject to a homogeneous force

φ(x, t|x0, t0) =
[

m

2πi~(t− t0)

] 1
2

exp
[
i

~

S[xcl(τ)]
]
. (2.106)

Here S[xcl(τ)] is the action integral over the classical path with end points

xcl(to) = xo , xcl(t) = x . (2.107)



26 Quantum Mechanical Path Integral

The classical path obeys
mẍcl = f . (2.108)

The solution of (2.107, 2.108) is

xcl(τ) = xo +
(
x − xo
t − to

− 1
2
f

m
(t − to)

)
τ +

1
2
f

m
τ2 (2.109)

as can be readily verified. The velocity along this path is

ẋcl(τ) =
x − xo
t − to

− 1
2
f

m
(t − to) +

f

m
τ (2.110)

and the Lagrangian along the path, considered as a function of τ , is

g(τ) =
1
2
mẋ2

cl (τ) + f xcl (τ)

=
1
2
m

(
x − xo
t − to

− 1
2
f

m
(t − to)

)2

+ f

(
x − xo
t − to

− 1
2
f

m
(t − to)

)
τ

+
1
2
f2

m
τ2 + f xo + f

(
x − xo
t − to

− 1
2
f

m
(t − to)

)
τ +

1
2
f2

m
τ2

=
1
2
m

(
x − xo
t − to

− 1
2
f

m
(t − to)

)2

+ 2f
(
x − xo
t − to

− 1
2
f

m
(t − to)

)
τ

+
f2

m
τ2 + f xo (2.111)

One obtains for the action integral along the classical path

S[xcl (τ)] =
∫ t

to

dτ g(τ)

=
1
2
m

(
x − xo
t − to

− 1
2
f

m
(t − to)

)2

(t − to)

+ f

(
x − xo
t − to

− 1
2
f

m
(t − to)

)
(t − to)2

+
1
3
f2

m
(t − to)3 + xo f (t − to)

=
1
2
m

(x − xo)2

t − to
+

1
2

(x + xo) f (t − to) −
1
24

f2

m
(t − to)3

(2.112)

and, finally, for the propagator

φ(x, t|xo, to) =
[

m

2πi~(t− to)

] 1
2

× (2.113)

× exp
[
im

2~
(x − xo)2

t − to
+

i

2~
(x + xo) f (t − to) −

i

24
f2

~m
(t − to)3

]
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The propagator (2.113) allows one to determine the time-evolution of the initial state (2.48) using
(2.5). Since the propagator depends only on the time-difference t− to we can assume, withoult loss
of generality, to = 0 and are lead to the integral

ψ(x, t) =
[

1
πδ2

] 1
4 [ m

2πi~t

] 1
2

∫ +∞

−∞
dx0 (2.114)

exp
[
im

2~
(x− x0)2

t
− x2

0

2δ2
+ i

po
~

xo +
i

2~
(x + xo) f t −

i

24
f2

m~
t3
]

︸ ︷︷ ︸
Eo(xo, x) + E(x)

To evaluate the integral we adopt the same computational strategy as used for (2.51) and divide
the exponent in (2.114) as follows [c.f. (2.54)]

Eo(xo, x) =
im

2~t

[
x2
o

(
1 + i

~t

mδ2

)
− 2xo

(
x − po

m
t − f t2

2m

)
+ f(x)

]
(2.115)

E(x) =
im

2~t

[
x2 +

f t2

m
x − f(x)

]
− 1

24
f2t3

~m
. (2.116)

One chooses then f(x) to complete, according to (2.52), the square in (2.115)

f(x) =

 x− po
m t −

f t2

2m√
1 + i ~t

mδ2

2

. (2.117)

This yields

Eo(xo, x) =
im

2~t

xo

√
1 + i

~t

mδ2
−

x − po
m t − f t2

2m√
1 + i ~t

mδ2

2

. (2.118)

Following in the footsteps of the calculation on page 18 ff. one can state again

ψ(x, t) =

[
1 − i ~t

mδ2

1 + i ~t
mδ2

] 1
4
[

1
πδ2 (1 + ~2t2

m2δ4 )

] 1
4

exp [E(x) ] (2.119)

and is lead to the exponential (2.116)

E(x) = − 1
24

f2t3

~m
+

im

2~t(1 + i ~t
mδ2 )

S(x) (2.120)

where

S(x) = x2

(
1 + i

~t

mδ2

)
+ x

ft2

m

(
1 + i

~t

mδ2

)
−
(
x − po

m
t − ft2

2m

)2

=
(
x − po

m
t − ft2

2m

)2(
1 + i

~t

mδ2

)
−
(
x − po

m
t − ft2

2m

)2

+

[
x
ft2

m
+ 2x

(
po
m
t +

ft2

2m

)
−
(
po
m
t +

ft2

2m

)2
](

1 + i
~t

mδ2

)
(2.121)
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Inserting this into (2.120) yields

E(x) = −

(
x − po

m t − ft2

2m

)2

2δ2
(
1 + i ~t

mδ2

) (2.122)

+
i

~

(po + f t)x − i

2m~

(
pot + poft

2 +
f2t3

4
+
f2t3

12

)
The last term can be written

− i

2m~

(
pot + poft

2 +
f2t3

3

)
= − i

2m~

∫ t

0
dτ (po + fτ)2 . (2.123)

Altogether, (2.119, 2.122, 2.123) provide the state of the particle at time t > 0

ψ(x, t) =

[
1 − i ~t

mδ2

1 + i ~t
mδ2

] 1
4
[

1
πδ2 (1 + ~2t2

m2δ4 )

] 1
4

×

× exp

−
(
x − po

m t − ft2

2m

)2

2δ2
(

1 + ~2t2

m2δ4

) (
1 − i

~t

mδ2

) ×
× exp

[
i

~

(po + f t)x − i

~

∫ t

0
dτ

(po + fτ)2

2m

]
. (2.124)

The corresponding probablity distribution is

|ψ(x, t)|2 =

[
1

πδ2 (1 + ~2t2

m2δ4 )

] 1
2

exp

−
(
x − po

m t − ft2

2m

)2

δ2
(

1 + ~2t2

m2δ4

)
 . (2.125)

Comparision of Moving Wave Packet with Classical Motion

It is again [c.f. (2.4)] revealing to compare the probability distributions for the initial state (2.48)
and for the states at time t, i.e., (2.125). Both distributions are Gaussians. Distribution (2.125)
moves along the x-axis with distribution centers positioned at y(t) given by (2.103), i.e., as expected
for a classical particle. The states (2.124), in analogy to the states (2.71) for free particles, exhibit a
phase factor exp[ip(t)x/~], for which p(t) agrees with the classical momentum (2.104). While these
properties show a close correspondence between classical and quantum mechanical behaviour, the
distribution shows also a pure quantum effect, in that it increases its width . This increase, for
the homogeneous force case, is identical to the increase (2.73) determined for a free particle. Such
increase of the width of a distribution is not a necessity in quantum mechanics. In fact, in case of so-
called bound states, i.e., states in which the classical and quantum mechanical motion is confined to
a finite spatial volume, states can exist which do not alter their spatial distribution in time. Such
states are called stationary states. In case of a harmonic potential there exists furthermore the
possibility that the center of a wave packet follows the classical behaviour and the width remains
constant in time. Such states are referred to as coherent states, or Glauber states, and will be
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studied below. It should be pointed out that in case of vanishing, linear and quadratic potentials
quantum mechanical wave packets exhibit a particularly simple evolution; in case of other type of
potential functions and, in particular, in case of higher-dimensional motion, the quantum behaviour
can show features which are much more distinctive from classical behaviour, e.g., tunneling and
interference effects.

Propagator of a Harmonic Oscillator

In order to illustrate the evaluation of (2.102) we consider the case of a harmonic oscillator. In
this case holds for the coefficents in the Lagrangian (2.80) c(t) = mω2 and e(t) = 0, i.e., the
Lagrangian is

L(x, ẋ) =
1
2
mẋ2 − 1

2
mω2x2 . (2.126)

.We determine first f(t0, t). In the present case holds

f̈ = −ω2f ; f(t0, t0) = 0 ; ḟ(to, to) = 1 . (2.127)

The solution which obeys the stated boundary conditions is

f(t0, t) =
sinω(t − t0)

ω
. (2.128)

We determine now S[xcl(τ)]. For this purpose we seek first the path xcl(τ) which obeys xcl(t0) = x0

and xcl(t) = x and satisfies the Euler–Lagrange equation for the harmonic oscillator

mẍcl + mω2 xcl = 0 . (2.129)

This equation can be written
ẍcl = −ω2 xcl . (2.130)

the general solution of which is

xcl(τ ′) = A sinω(τ − t0) + B cosω(τ − t0) . (2.131)

The boundary conditions xcl(t0) = x0 and xcl(t) = x are satisfied for

B = x0 ; A =
x − x0 cosω(t− to)

sinω(t − t0)
, (2.132)

and the desired path is

xcl(τ) =
x − x0 c

s
sinω(τ − t0) + x0 cosω(τ − t0) (2.133)

where we introduced
c = cosω(t− to) , s = sinω(t− to) (2.134)

We want to determine now the action integral associated with the path (2.133, 2.134)

S[xcl(τ)] =
∫ t

t0

dτ

(
1
2
mẋ2

cl(τ) − 1
2
mω2x2

cl(τ)
)

(2.135)
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For this purpose we assume presently to = 0. From (2.133) follows for the velocity along the
classical path

ẋcl(τ) = ω
x − x0 c

s
cosωτ − ω x0 sinωτ (2.136)

and for the kinetic energy

1
2
mẋ2

cl(τ) =
1
2
mω2 (x − x0 c)2

s2
cos2ωτ

−mω2xo
x − x0 c

s
cosωτ sinωτ

+
1
2
mω2 x2

o sin2ωτ (2.137)

Similarly, one obtains from (2.133) for the potential energy

1
2
mω2x2

cl(τ) =
1
2
mω2 (x − x0 c)2

s2
sin2ωτ

+mω2xo
x − x0 c

s
cosωτ sinωτ

+
1
2
mω2 x2

o cos2ωτ (2.138)

Using

cos2ωτ =
1
2

+
1
2

cos2ωτ (2.139)

sin2ωτ =
1
2
− 1

2
cos2ωτ (2.140)

cosωτ sinωτ =
1
2

sin2ωτ (2.141)

the Lagrangian, considered as a function of τ , reads

g(τ) =
1
2
mẋ2

cl(τ) − 1
2
mω2x2

cl(τ) =
1
2
mω2 (x − x0 c)2

s2
cos2ωτ

−mω2xo
x − x0 c

s
sin2ωτ

−1
2
mω2 x2

o cos2ωτ (2.142)

Evaluation of the action integral (2.135), i.e., of S[xcl(τ)] =
∫ t

0dτg(τ) requires the integrals∫ t

0
dτcos2ωτ =

1
2ω

sin2ωt =
1
ω
s c (2.143)∫ t

0
dτsin2ωτ =

1
2ω

[ 1 − cos2ωt ] =
1
ω
s2 (2.144)

where we employed the definition (2.134) Hence, (2.135) is, using s2 + c2 = 1,

S[xcl(τ)] =
1
2
mω

(x − x0 c)2

s2
s c − mωxo

x − x0 c

s
s2 − 1

2
mω2 x2

o s c

=
mω

2s
[

(x2 − 2xxoc+ x2
oc

2) c − 2xoxs2 + 2x2
ocs

2 − x2
os

2c
]

=
mω

2s
[

(x2 + x2
o) c − 2xox

]
(2.145)
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and, with the definitions (2.134),

S[xcl(τ)] =
mω

2sinω(t − t0)
[
(x2

0 + x2) cosω(t − t0) − 2x0x
]
. (2.146)

For the propagator of the harmonic oscillator holds then

φ(x, t|x0, t0) =
[

mω
2πi~ sinω(t− t0)

] 1
2 ×

× exp
{

imω
2~ sinω(t− t0)

[
(x2

0 + x2) cosω(t − t0) − 2x0x
] }

. (2.147)

Quantum Pendulum or Coherent States

As a demonstration of the application of the propagator (2.147) we use it to describe the time
development of the wave function for a particle in an initial state

ψ(x0, t0) =
[mω
π~

] 1
4 exp

(
− mω(x0 − bo)2

2~
+

i

~

po xo

)
. (2.148)

The initial state is decribed by a Gaussian wave packet centered around the position x = bo and
corresponds to a particle with initial momentum po. The latter property follows from the role of
such factor for the initial state (2.48) when applied to the case of a free particle [c.f. (2.71)] or to
the case of a particle moving in a homogeneous force [c.f. (2.124, 2.125)] and will be borne out of
the following analysis; at present one may regard it as an assumption.
If one identifies the center of the wave packet with a classical particle, the following holds for the
time development of the position (displacement), momentum, and energy of the particle

b(t) = bo cosω(t− to) +
po
mω

sinω(t− to) displacement

p(t) = −mωbo sinω(t− to) + po cosω(t− to) momentum

εo =
p2
o

2m
+ 1

2mω
2b2o energy

(2.149)

We want to explore, using (2.5), how the probability distribution |ψ(x, t)|2 of the quantum particle
propagates in time.
The wave function at times t > t0 is

ψ(x, t) =
∫ ∞
−∞

dx0 φ(x, t|x0, t0)ψ(x0, t0) . (2.150)

Expressing the exponent in (2.148)

imω

2~sinω(t− to)

[
i (xo − bo)2 sinω(t− to) +

2po
mω

xo sinω(t− to)
]

(2.151)

(2.147, 2.150, 2.151) can be written

ψ(x, t) =
[mω
π~

] 1
4

[
m

2πiω~sinω(t − t0)

] 1
2
∫ ∞
−∞

dx0 exp [E0 + E ] (2.152)
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where

E0(xo, x) =
imω

2~s

[
x2
oc − 2xox + isx2

o − 2isxobo +
2po
mω

xos + f(x)
]

(2.153)

E(x) =
imω

2~s
[
x2c + isb2o − f(x)

]
. (2.154)

c = cosω(t − to) , s = sinω(t − to) . (2.155)

Here f(x) is a function which is introduced to complete the square in (2.153) for simplification of
the Gaussian integral in x0. Since E(x) is independent of xo (2.152) becomes

ψ(x, t) =
[mω
π~

] 1
4

[
m

2πiω~sinω(t − t0)

] 1
2

eE(x)

∫ ∞
−∞

dx0 exp [E0(xo, x)] (2.156)

We want to determine now Eo(xo, x) as given in (2.153). It holds

Eo =
imω

2~s

[
x2
o e

iω(t−to) − 2xo(x+ isbo −
po
mω

s) + f(x)
]

(2.157)

For f(x) to complete the square we choose

f(x) = (x + isbo −
po
mω

s)2 e−iω(t−to) . (2.158)

One obtains for (2.157)

E0(xo, x) =
imω

2~s
exp [iω(t− t0)]

[
x0 − (x+ isbo −

po
mω

s) exp (−iω(t− t0)
]2

. (2.159)

To determine the integral in (2.156) we employ the integration formula (2.247) and obtain∫ +∞

−∞
dx0 e

E0(x0) =
[

2πi~ sinω(t− t0)
mω exp[iω(t− t0)]

] 1
2

(2.160)

Inserting this into (2.156) yields

ψ(x, t) =
[mω
π~

] 1
4
eE(x) (2.161)

For E(x) as defined in (2.154) one obtains, using exp[±iω(t− to)] = c ± is,

E(x) = imω
2~s

[
x2c + isb2o − x2c + isx2 − 2isxboc − 2s2xbo

+ s2b2oc − is3b2o + 2 po
mω xsc + 2i po

mω bos
2c

− 2i po
mω xs

2 + 2 po
mω bos

3 − p2
o

m2ω2 s
2c + i p2

o
m2ω2 s

3
]

= − mω
2~

[
x2 + c2b2o − 2xboc + 2ixsbo − ib2osc

−2 po
mω xs + 2 po

mω bosc + p2
o

m2ω2 s
2 − 2i po

mω xc

−2i po
mω bos

2 + i p2
o

m2ω2 sc
]

= − mω
2~ (x − cbo − po

mω s)
2 +

i

~

(−mωbos + poc)x

− i

~

( p2
o

2mω −
1
2mωb

2
o)sc +

i

~

pobos
2 (2.162)
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We note the following identities∫ t

to

dτ
p2(τ)
2m

=
1
2
εo(t− to) +

1
2

(
p2
o

2mω
− mωb2o

2

)
sc − 1

2
bopos

2 (2.163)∫ t

to

dτ
mω2b2(τ)

2

=
1
2
εo(t− to) −

1
2

(
p2
o

2mω
− mωb2o

2

)
sc +

1
2
bopos

2 (2.164)

where we employed b(τ) and p(τ) as defined in (2.149). From this follows, using p(τ) = mḃ(τ) and
the Lagrangian (2.126),∫ t

to

dτ L[b(τ), ḃ(τ)] =
(

p2
o

2mω
− mωb2o

2

)
sc − bopos (2.165)

such that E(x) in (2.162) can be written, using again (2.149)),

E(x) = − mω
2~

[x− b(t)]2 +
i

~

p(t)x − i
1
2
ω (t− to) −

i

~

∫ t

to

dτ L[b(τ), ḃ(τ)] (2.166)

Inserting this into (2.161) yields,

ψ(x, t) =
[mω
π~

] 1
4 × exp

{
− mω

2~
[x− b(t)]2

}
× (2.167)

× exp
{
i

~

p(t)x − i
1
2
ω (t− to) −

i

~

∫ t

to

dτ L[b(τ), ḃ(τ)]
}

where b(t), p(t), and εo are the classical displacement, momentum and energy, respectively, defined
in (2.149).

Comparision of Moving Wave Packet with Classical Motion

The probability distribution associated with (2.167)

|ψ(x, t)|2 =
[mω
π~

] 1
2 exp

{
−mω
~

[x − b(t)]2
}

(2.168)

is a Gaussian of time-independent width, the center of which moves as described by b(t) given in
(2.148) , i.e., the center follows the motion of a classical oscillator (pendulum) with initial position
bo and initial momentum po. It is of interest to recall that propagating wave packets in the case of
vanishing [c.f. (2.72)] or linear [c.f. (2.125)] potentials exhibit an increase of their width in time; in
case of the quantum oscillator for the particular width chosen for the initial state (2.148) the width,
actually, is conserved. One can explain this behaviour as arising from constructive interference due
to the restoring forces of the harmonic oscillator. We will show in Chapter 4 [c.f. (4.166, 4.178) and
Fig. 4.1] that an initial state of arbitrary width propagates as a Gaussian with oscillating width.



34 Quantum Mechanical Path Integral

In case of the free particle wave packet (2.48, 2.71) the factor exp(ipox) gives rise to the transla-
tional motion of the wave packet described by pot/m, i.e., po also corresponds to initial classical
momentum. In case of a homogeneous force field the phase factor exp(ipox) for the initial state
(2.48) gives rise to a motion of the center of the propagating wave packet [c.f. (2.125)] described by
(po/m)t + 1

2ft
2 such that again po corresponds to the classical momentum. Similarly, one observes

for all three cases (free particle, linear and quadratic potential) a phase factor exp[ip(t)x/~] for the
propagating wave packet where fp(t) corresponds to the initial classical momentum at time t. One
can, hence, summarize that for the three cases studied (free particle, linear and quadratic potential)
propagating wave packets show remarkably close analogies to classical motion.
We like to consider finally the propagation of an initial state as in (2.148), but with bo = 0 and
po = 0. Such state is given by the wave function

ψ(x0, t0) =
[mω
π~

] 1
4 exp

(
− mωx

2
0

2~
− iω

2
to

)
. (2.169)

where we added a phase factor exp(−iωto/2). According to (2.167) the state (2.169) reproduces
itself at later times t and the probablity distribution remains at all times equal to[mω

π~

] 1
2 exp

(
− mωx

2
0

~

)
, (2.170)

i.e., the state (2.169) is a stationary state of the system. The question arises if the quantum
oscillator posesses further stationary states. In fact, there exist an infinite number of such states
which will be determined now.

2.7 Stationary States of the Harmonic Oscillator

In order to find the stationary states of the quantum oscillator we consider the function

W (x, t) = exp
(

2
√
mω

~

x e−iωt − e−2iωt − mω

2~
x2 − iωt

2

)
. (2.171)

We want to demonstrate that w(x, t) is invariant in time, i.e., for the propagator (2.147) of the
harmonic oscillator holds

W (x, t) =
∫ +∞

−∞
dxo φ(x, t|xo, to)W (xo, to) . (2.172)

We will demonstrate further below that (2.172) provides us in a nutshell with all the stationary
states of the harmonic oscillator, i.e., with all the states with time-independent probability distri-
bution.
In order to prove (2.172) we express the propagator, using (2.147) and the notation T = t− to

φ(x, t|xo, to) = e−
1
2
iωT

[
mω

π~(1− e−2iωT )

] 1
2

×

× exp
[
−mω

2~
(x2
o + x2)

1 + e−2iωT

1 − e−2iωT
− mω

~ω

2xxoe−iωT

1 − e−2iωT

]
(2.173)
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One can write then the r.h.s. of (2.172)

I = e−
1
2
iωt

[
mω

π~(1− e−2iωT )

] 1
2
∫ +∞

−∞
dxo exp[Eo(xo, x) + E(x) ] (2.174)

where

Eo(xo, x) = − mω
2~

[
x2
o

(
1 + e−2iωT

1− e−2iωT
+ 1
)

(2.175)

+ 2xo

(
2xe−iωT

1− e−2iωT
+ 2

√
~

mω
e−iωto

)
+ f(x)

]

E(x) = − mω
2~

[
x2 1 + e−2iωT

1− e−2iωT
+

2~
mω

e−2iωto − f(x)
]

(2.176)

Following the by now familiar strategy one choses f(x) to complete the square in (2.175), namely,

f(x) =
1
2

(1 − e−2iωT )

(
2xe−iωT

1− e−2iωT
+ 2

√
~

mω
e−iωto

)2

. (2.177)

This choice of f(x) results in

Eo(xo, x) = − mω
2~

[
xo

√
2

1− e−2iωT

+

√
1− e−2iωT

2

(
2xe−iωT

1− e−2iωT
+ 2

√
~

mω
e−iωto

)]2

= i
mω

i~(e−2iωT − 1)
(xo + zo)2 (2.178)

for some constant zo ∈ C. Using (2.247) one obtains∫ +∞

−∞
dxo e

Eo(xo,x) =
[
π~(1 − e−2iωT

mω

] 1
2

(2.179)

and, therefore, one obtains for (2.174)

I = e−
1
2
iωt eE(x) . (2.180)

For E(x), as given in (2.176, 2.177), holds

E(x) = − mω
2~

[
x2 1 + e−2iωT

1− e−2iωT
+

2~
mω

e−2iωto − 2x2e−2iωT

1− e−2iωT

−4

√
~

mω
xe−iωT − 2 (1− e−2iωT )

~

mω
e−2iωto

]

= − mω
2~

[
x2 − 4

√
~

mω
xe−iωt +

2~
mω

e−2iωt

]

= − mω
2~

x2 + 2
√
mω

~

x e−iωt − e−2iωt (2.181)
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Altogether, one obtains for the r.h.s. of (2.172)

I = exp
(

2
√
mω

~

x e−iωt − e−2iωt − mω

2~
x2 − 1

2
iωt

)
. (2.182)

Comparision with (2.171) concludes the proof of (2.172).
We want to inspect the consequences of the invariance property (2.171, 2.172). We note that the
factor exp(2

√
mω/~ xe−iωt − e−2iωt) in (2.171) can be expanded in terms of e−inωt, n = 1, 2, . . ..

Accoordingly, one can expand (2.171)

W (x, t) =
∞∑
n=0

1
n!

exp[− iω(n+ 1
2
) t ] φ̃n(x) (2.183)

where the expansion coefficients are functions of x, but not of t. Noting that the propagator (2.147)
in (2.172) is a function of t − to and defining accordingly

Φ(x, xo; t− to) = φ(x, t|xo, to) (2.184)

we express (2.172) in the form

∞∑
n=0

1
n!

exp[−iω(n+ 1
2
) t] φ̃n(x)

=
∞∑
m=0

∫ +∞

−∞
dxo Φ(x, xo; t− to)

1
m!

exp[−iω(m+ 1
2
) to] φ̃m(xo) (2.185)

Replacing t → t+ to yields

∞∑
n=0

1
n!

exp[−iω(n+ 1
2
) (t+ to)] φ̃n(x)

=
∞∑
m=0

∫ +∞

−∞
dxo Φ(x, xo; t)

1
m!

exp[−iω(m+ 1
2
) to] φ̃m(xo) (2.186)

Fourier transform, i.e.,
∫ +∞
−∞ dto exp[iω(n+ 1

2
) to] · · · , results in

1
n!

exp[−iω(n+ 1
2
) t] φ̃n(x)

=
∫ +∞

−∞
dxo Φ(x, xo; t− to)

1
n!
φ̃n(xo) (2.187)

or

exp[−iω(n+ 1
2
) t] φ̃n(x)

=
∫ +∞

−∞
dxo φ(x, t|xo, to) exp[−iω(n+ 1

2
) to] φ̃n(xo) . (2.188)

Equation (2.188) identifies the functions ψ̃n(x, t) = exp[−iω(n+ 1
2
) t] φ̃n(x) as invariants under the

action of the propagator φ(x, t|xo, to). In contrast to W (x, t), which also exhibits such invariance,
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the functions ψ̃n(x, t) are associated with a time-independent probablity density |ψ̃n(x, t)|2 =
|φ̃n(x)|2. Actually, we have identified then, through the expansion coefficients φ̃n(x) in (2.183),
stationary wave functions ψn(x, t) of the quantum mechanical harmonic oscillator

ψn(x, t) = exp[−iω(n+ 1
2) t] Nn φ̃n(x) , n = 0, 1, 2, . . . (2.189)

Here Nn are constants which normalize ψn(x, t) such that∫ +∞

−∞
dx |ψ(x, t)|2 = N2

n

∫ +∞

−∞
dx φ̃2

n(x) = 1 (2.190)

is obeyed. In the following we will characterize the functions φ̃n(x) and determine the normalization
constants Nn. We will also argue that the functions ψn(x, t) provide all stationary states of the
quantum mechanical harmonic oscillator.

The Hermite Polynomials

The function (2.171), through expansion (2.183), characterizes the wave functions φ̃n(x). To obtain
closed expressions for φ̃n(x) we simplify the expansion (2.183). For this purpose we introduce first
the new variables

y =
√
mω

~

x (2.191)

z = e−iωt (2.192)

and write (2.171)
W (x, t) = z

1
2 e−y

2/2w(y, z) (2.193)

where
w(y, z) = exp(2yz − z2) . (2.194)

Expansion (2.183) reads then

w(y, z) z
1
2 e−y

2/2 = z
1
2

∞∑
n=0

zn

n!
φ̃n(y) (2.195)

or

w(y, z) =
∞∑
n=0

zn

n!
Hn(y) (2.196)

where
Hn(y) = ey

2/2 φ̃n(y) . (2.197)

The expansion coefficients Hn(y) in (2.197) are called Hermite polynomials which are polynomials
of degree n which will be evaluated below. Expression (2.194) plays a central role for the Hermite
polynomials since it contains, according to (2.194), in a ‘nutshell’ all information on the Hermite
polynomials. This follows from

∂n

∂zn
w(y, z)

∣∣∣∣
z=0

= Hn(y) (2.198)
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which is a direct consequence of (2.196). One calls w(y, z) the generating function for the Hermite
polynomials. As will become evident in the present case generating functions provide an extremely
elegant access to the special functions of Mathematical Physics3. We will employ (2.194, 2.196) to
derive, among other properties, closed expressions for Hn(y), normalization factors for φ̃(y), and
recursion equations for the efficient evaluation of Hn(y).
The identity (2.198) for the Hermite polynomials can be expressed in a more convenient form
employing definition (2.196)

∂n

∂zn
w(y, z)

∣∣∣∣
z=0

=
∂n

∂zn
e2 y z− z2

∣∣∣∣
z=0

ey
2 ∂n

∂zn
e−(y−z)2

∣∣∣∣
z=0

= (−1)n ey
2 ∂n

∂yn
e−(y−z)2

∣∣∣∣
z=0

= (−1)n ey
2 ∂n

∂yn
e−y

2
(2.199)

Comparision with (2.196) results in the so-called Rodrigues formula for the Hermite polynomials

Hn(y) = (−1)n ey
2 ∂n

∂yn
e−y

2
. (2.200)

One can deduce from this expression the polynomial character of Hn(y), i.e., that Hn(y) is a
polynomial of degree n. (2.200) yields for the first Hermite polynomials

H0(y) = 1, H1(y) = 2y, H2(y) = 4y2 − 2, H3(y) = 8y3 − 12y, . . . (2.201)

µ

ν� ν+µ�

ν−µ�
µ

ν�
ν+µ�

ν−µ�

Figure 2.1: Schematic representation of change of summation variables ν and µ to n = ν + µ and
m = ν−µ. The diagrams illustrate that a summation over all points in a ν, µ lattice (left diagram)
corresponds to a summation over only every other point in an n, m lattice (right diagram). The
diagrams also identify the areas over which the summation is to be carried out.

We want to derive now explicit expressions for the Hermite polynomials. For this purpose we expand
the generating function (2.194) in a Taylor series in terms of yp zq and identify the corresponding
coefficient cpq with the coefficient of the p–th power of y in Hq(y). We start from

e2yz− z2
=

∞∑
ν=0

ν∑
µ=0

1
ν!

(
ν
µ

)
z2µ(−1)µ(2y)ν−µzν−µ

=
∞∑
ν=0

ν∑
µ=0

1
ν

(
ν
µ

)
(−1)µ(2y)ν−µzν+µ (2.202)

3generatingfunctionology by H.S.Wilf (Academic Press, Inc., Boston, 1990) is a useful introduction to this tool as
is a chapter in the eminently useful Concrete Mathematics by R.L.Graham, D.E.Knuth, and O.Patashnik (Addison-
Wesley, Reading, Massachusetts, 1989).
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and introduce now new summation variables

n = ν + µ , m = ν − µ 0 ≤ n < ∞ , 0 ≤ m ≤ n . (2.203)

The old summation variables ν, µ expressend in terms of n, m are

ν =
n + m

2
, µ =

n − m

2
. (2.204)

Since ν, µ are integers the summation over n,m must be restricted such that either both n and m
are even or both n and m are odd. The lattices representing the summation terms are shown in
Fig. 2.1. With this restriction in mind one can express (2.202)

e2yz− z2
=

∞∑
n=0

zn

n!

≤n∑
m≥0

n! (−1)
n−m

2(
n−m

2

)
!m!

(2y)m . (2.205)

Since (n−m)/2 is an integer we can introduce now the summation variable k = (n−m)/2 , 0 ≤
k ≤ [n/2] where [x] denotes the largest integer p, p ≤ x. One can write then using m = n− 2k

e2yz− z2
=

∞∑
n=0

zn

n!

[n/2]∑
k=0

n! (−1)k

k! (n− 2k)!
(2y)n−2k

︸ ︷︷ ︸
=Hn(y)

. (2.206)

From this expansion we can identify Hn(y)

Hn(y) =
[n/2]∑
k=0

(−1)k n!
k! (n− 2k)!

(2y)n−2k . (2.207)

This expression yields for the first four Hermite polynomials

H0(y) = 1, H1(y) = 2y, H2(y) = 4y2 − 2, H3(y) = 8y3 − 12y, . . . (2.208)

which agrees with the expressions in (2.201).
From (2.207) one can deduce that Hn(y), in fact, is a polynomial of degree n. In case of even n , the
sum in (2.207) contains only even powers, otherwise, i.e., for odd n, it contains only odd powers.
Hence, it holds

Hn(−y) = (−1)nHn(y) . (2.209)

This property follows also from the generating function. According to (2.194) holds w(−y, z) =
w(y,−z) and, hence, according to 2.197)

∞∑
n=0

zn

n!
Hn(−y) =

∞∑
n=0

(−z)n

n!
Hn(y) =

∞∑
n=0

zn

n!
(−1)nHn(y) (2.210)

from which one can conclude the property (2.209).
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The generating function allows one to determine the values of Hn(y) at y = 0. For this purpose one
considers w(0, z) = exp(−z2) and carries out the Taylor expansion on both sides of this expression
resulting in

∞∑
m=0

(−1)m z2m

m!
=

∞∑
n=0

Hn(0)
zn

n!
. (2.211)

Comparing terms on both sides of the equation yields

H2n(0) = (−1)n
(2n)!
n!

, H2n+1(0) = 0 , n = 0, 1, 2, . . . (2.212)

This implies that stationary states of the harmonic oscillator φ2n+1(x), as defined through (2.188,
2.197) above and given by (2.233) below, have a node at y = 0, a property which is consistent
with (2.209) since odd functions have a node at the origin.

Recursion Relationships

A useful set of properties for special functions are the so-called recursion relationships. For Hermite
polynomials holds, for example,

Hn+1(y) − 2y Hn(y) + 2nHn−1(y) = 0 , n = 1, 2, . . . (2.213)

which allow one to evaluate Hn(y) from H0(y) and H1(y) given by (2.208). Another relationship is

d

dy
Hn(y) = 2nHn−1(y), n = 1, 2, . . . (2.214)

We want to derive (??) using the generating function. Starting point of the derivation is the
property of w(y, z)

∂

∂z
w(y, z) − (2y − 2z)w(y, z) = 0 (2.215)

which can be readily verified using (2.194). Substituting expansion (2.196) into the differential
equation (2.215) yields

∞∑
n=1

zn−1

(n− 1)!
Hn(y) − 2y

∞∑
n=0

zn

n!
Hn(y) + 2

∞∑
n=0

zn+1

n!
Hn(y) = 0 . (2.216)

Combining the sums and collecting terms with identical powers of z
∞∑
n=1

zn

n!

[
Hn+1(y) − 2y Hn(y) + 2nHn−1(y)

]
+ H1(y) − 2yH0(y) = 0 (2.217)

gives

H1(y) − 2y H0(y) = 0, Hn+1(y) − 2y Hn(y) + 2nHn−1(y) = 0, n = 1, 2, . . . (2.218)

The reader should recognize the connection between the pattern of the differential equation (??)
and the pattern of the recursion equation (??): a differential operator d/dz increases the order n
of Hn by one, a factor z reduces the order of Hn by one and introduces also a factor n. One can
then readily state which differential equation of w(y, z) should be equivalent to the relationship
(??), namely, dw/dy − 2zw = 0. The reader may verify that w(y, z), as given in (2.194), indeed
satisfies the latter relationship.
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Integral Representation of Hermite Polynomials

An integral representation of the Hermite polynomials can be derived starting from the integral

I(y) =
∫ +∞

−∞
dt e2iy t− t2 . (2.219)

which can be written

I(y) = e−y
2

∫ +∞

−∞
dte−(t−iy)2

= e−y
2

∫ +∞

−∞
dze−z

2
. (2.220)

Using (2.247) for a = i one obtains
I(y) =

√
π e−y

2
(2.221)

and, acording to the definition (2.226a),

e−y
2

=
1√
π

∫ +∞

−∞
dt e2iyt− t2 . (2.222)

Employing this expression now on the r.h.s. of the Rodrigues formula (2.200) yields

Hn(y) =
(−1)n√

π
ey

2

∫ +∞

−∞
dt

dn

dyn
e2iyt− t2 . (2.223)

The identity
dn

dyn
e2iy t− t2 = (2 i t)n e2iy t− t2 (2.224)

results, finally, in the integral representation of the Hermite polynomials

Hn(y) =
2n (−i)ney2

√
π

∫ +∞

−∞
dt tn e2iy t− t2 , n = 0, 1, 2, . . . (2.225)

Orthonormality Properties

We want to derive from the generating function (2.194, 2.196) the orthogonality properties of the
Hermite polynomials. For this purpose we consider the integral∫ +∞

−∞ dy w(y, z)w(y, z′) e−y
2

= e2 z z′
∫ +∞

−∞
dy e−(y−z−z′)2

=
√
π e2 z z′

=
√
π
∞∑
n=0

2n zn z′n

n!
. (2.226)

Expressing the l.h.s. through a double series over Hermite polynomials using (2.194, 2.196) yields
∞∑

n,n′=0

∫ +∞

−∞
dy Hn(y)Hn′(y) e−y

2 zn z′n
′

n!n′!
=

∞∑
n=0

2nn!
√
π
zn z′n

n!n!
(2.227)

Comparing the terms of the expansions allows one to conclude the orthonormality conditions∫ +∞

−∞
dy Hn(y)Hn′(y) e−y

2
= 2n n!

√
π δnn′ . (2.228)
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Figure 2.2: Stationary states φn(y) of the harmonic oscillator for n = 0, 1, 2, 3, 4.

Normalized Stationary States

The orthonormality conditions (2.228) allow us to construct normalized stationary states of the
harmonic oscillator. According to (2.197) holds

φ̃n(y) = e−y
2/2Hn(y) . (2.229)

The normalized states are [c.f. (2.189, 2.190)]

φn(y) = Nn e
−y2/2Hn(y) . (2.230)

and for the normalization constants Nn follows from (2.228)

N2
n

∫ +∞

−∞
dy e−y

2
H2
n(y) = N2

n 2n n!
√
π = 1 (2.231)

We conclude
Nn =

1√
2n n!

√
π

(2.232)

and can finally state the explicit form of the normalized stationary states

φn(y) =
1√

2n n!
√
π
e−y

2/2Hn(y) . (2.233)

The stationary states (2.233) are presented for n = 0, 1, 2, 3, 4 in Fig. 2.2. One can recognize, in
agreement with our above discussions, that the wave functions are even for n = 0, 2, 4 and odd
for n = 1, 3. One can also recognize that n is equal to the number of nodes of the wave function.
Furthermore, the value of the wave function at y = 0 is positive for n = 0, 4, negative for n = 2
and vanishes for n = 1, 3, in harmony with (??).
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The normalization condition (2.231) of the wave functions differs from that postulated in (2.189)
by the Jacobian dx/dy, i.e., by √∣∣∣∣dxdy

∣∣∣∣ =
[mω
~

] 1
4
. (2.234)

The explicit form of the stationary states of the harmonic oscillator in terms of the position variable
x is then, using (2.233) and (2.189)

φn(x) =
1√

2n n!

[mω
π~

] 1
4
e−

mωx2

2~ Hn(
√
mω

~

x) . (2.235)

Completeness of the Hermite Polynomials

The Hermite polynomials are the first members of a large class of special functions which one
encounters in the course of describing stationary quantum states for various potentials and in spaces
of different dimensions. The Hermite polynomials are so-called orthonogal polynomials since they
obey the conditions (2.228). The various orthonogal polynomials differ in the spaces Ω ⊂ R over
which they are defined and differ in a weight function w(y) which enter in their orthonogality
conditions. The latter are written for polynomials pn(x) in the general form∫

Ω
dx pn(x) pm(x) w(x) = In δnm (2.236)

where w(x) is a so-called weight function with the property

w(x) ≥ 0, w(x) = 0 only at a discrete set of points xk ∈ Ω (2.237)

and where In denotes some constants. Comparision with (2.228) shows that the orthonogality
condition of the Hermite polynomials is in complience with (2.236 , 2.237) for Ω = R, w(x) =
exp(−x2), and In = 2nn!

√
π.

Other examples of orthogonal polynomials are the Legendre and Jacobi polynomials which arise
in solving three-dimensional stationary Schrödinger equations, the ultra-spherical harmonics which
arise in n–dimensional Schrödinger equations and the associated Laguerre polynomials which arise
for the stationary quantum states of particles moving in a Coulomb potential. In case of the
Legendre polynomials, denoted by P`(x) and introduced in Sect. 5 below [c.f. (5.150 , 5.151, 5.156,
5.179] holds Ω = [−1, 1], w(x) ≡ 1, and I` = 2/(2` + 1). In case of the associated Laguerre

polynomials, denoted by L
(α)
n (x) and encountered in case of the stationary states of the non-

relativistic [see Sect. ??? and eq. ???] and relativistic [see Sect. 10.10 and eq. (10.459] hydrogen
atom, holds Ω = [0,+∞[, w(x) = xαe−x, In = Γ(n+α+1)/n! where Γ(z) is the so-called Gamma
function.
The orthogonal polynomials pn mentioned above have the important property that they form a
complete basis in the space F of normalizable functions, i.e., of functions which obey∫

Ω
dx f2(x) w(x) = <∞ , (2.238)

where the space is endowed with the scalar product

(f |g) =
∫

Ω
dx f(x) g(x) w(x) = <∞ , f, g ∈ F . (2.239)
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As a result holds for any f ∈ F
f(x) =

∑
n

cn pn(x) (2.240)

where
cn =

1
In

∫
Ω
dx w(x) f(x) pn(x) . (2.241)

The latter identity follows from (2.236). If one replaces for all f ∈ F : f(x) →
√
w(x) f(x) and,

in particular, pn(x) →
√
w(x) pn(x) the scalar product (2.239) becomes the conventional scalar

product of quantum mechanics

〈f |g〉 =
∫

Ω
dx f(x) g(x) . (2.242)

Let us assume now the case of a function space governed by the norm (2.242) and the existence of a
normalizable state ψ(y, t) which is stationary under the action of the harmonic oscillator propagator
(2.147), i.e., a state for which (2.172) holds. Since the Hermite polynomials form a complete basis
for such states we can expand

ψ(y, t) =
∞∑
n=0

cn(t) e−y
2/2Hn(y) . (2.243)

To be consistent with(2.188, 2.197) it must hold cn(t) = dn exp[−iω(n + 1
2)t] and, hence, the

stationary state ψ(y, t) is

ψ(y, t) =
∞∑
n=0

dn exp[−iω(n+
1
2

)t] e−y
2/2Hn(y) . (2.244)

For the state to be stationary |ψ(x, t)|2, i.e.,

∞∑
n,m=0

d∗ndm exp[iω(m− n)t] e−y
2
Hn(y)Hm(y) , (2.245)

must be time-independent. The only possibility for this to be true is dn = 0, except for a single
n = no, i.e., ψ(y, t) must be identical to one of the stationary states (2.233). Therefore, the states
(2.233) exhaust all stationary states of the harmonic oscillator.

Appendix: Exponential Integral

We want to prove

I =

+∞∫
−∞

dy1 . . .

+∞∫
−∞

dyn ei
∑n
j,k yjajkyk =

√
(iπ)n

det(a)
, (2.246)

for det(a) 6= 0 and real, symmetric a, i.e. aT = a. In case of n = 1 this reads∫ +∞

−∞
dx ei a x

2
=

√
i π

a
, (2.247)
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which holds for a ∈ C as long as a 6= 0.
The proof of (2.246) exploits that for any real, symmetric matrix exists a similarity transformation
such that

S−1a S = ã =


ã11 0 . . . 0
0 ã22 . . . 0
...

...
. . .

...
0 0 . . . ãnn

 . (2.248)

where S can be chosen as an orthonormal transformation, i.e.,

STS = 11 or S = S−1 . (2.249)

The ãkk are the eigenvalues of a and are real. This property allows one to simplify the bilinear
form

∑n
j,k yjajkyk by introducing new integration variables

ỹj =
n∑
k

(S−1)jkyk ; yk =
n∑
k

Skj ỹj . (2.250)

The bilinear form in (2.246) reads then in terms of ỹj

∑n
j,k yjajkyk =

n∑
j,k

n∑
`m

ỹ`Sj`ajkSkmỹm

=
n∑
j,k

n∑
`m

ỹ`(ST )`jajkSkmỹm

=
n∑
j,k

ỹj ãjkỹk (2.251)

where, according to (2.248, 2.249)

ãjk =
n∑
l,m

(ST )jlalmSmk . (2.252)

For the determinant of ã holds

det(ã) =
n∏
j=1

ãjj (2.253)

as well as

det(ã) = det(S−1aS) = det(S−1) det(a) , det(S)
= (det(S))−1 det(a) det(S) = det(a) . (2.254)

One can conclude

det(a) =
n∏
j=1

ãjj . (2.255)
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We have assumed det(a) 6= 0. Accordingly, holds

n∏
j=1

ãjj 6= 0 (2.256)

such that none of the eigenvalues of a vanishes, i.e.,

ãjj 6= 0 , for j = 1, 2, . . . , n (2.257)

Substitution of the integration variables (2.250) allows one to express (2.250)

I =

+∞∫
−∞

dỹ1 . . .

+∞∫
−∞

dỹn

∣∣∣∣det(∂(y1, . . . , yn)
∂(ỹ1, . . . , ỹn)

)∣∣∣∣ ei
∑n
k ãkkỹ

2
k . (2.258)

where we introduced the Jacobian matrix

J =
∂(y1, . . . , yn)
∂(ỹ1, . . . , ỹn)

(2.259)

with elements
Jjs =

∂yj
∂ỹs

. (2.260)

According to (2.250) holds
J = S (2.261)

and, hence,

det(
∂(y1, . . . , yn)
∂(ỹ1, . . . , ỹn)

) = det(S) . (2.262)

From (2.249) follows
1 = det

(
STS

)
= ( det S )2 (2.263)

such that one can conclude
det S = ±1 (2.264)

One can right then (2.258)

I =

+∞∫
−∞

dỹ1 . . .

+∞∫
−∞

dỹn ei
∑n
k ãkkỹ

2
k

=

+∞∫
−∞

dỹ1 e
iã11ỹ2

1 . . .

+∞∫
−∞

dỹn e
iãnnỹ2

n =
n∏
k=1

+∞∫
−∞

dỹk e
iãkkỹ

2
k (2.265)

which leaves us to determine integrals of the type

+∞∫
−∞

dx eicx
2

(2.266)
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where, according to (2.257) holds c 6= 0.
We consider first the case c > 0 and discuss the case c < 0 further below. One can relate inte-
gral (2.266) to the well-known Gaussian integral

+∞∫
−∞

dx e−cx
2

=
√
π

c
, c > 0 . (2.267)

by considering the contour integral

J =
∮
γ

dz eicz
2

= 0 (2.268)

along the path γ = γ1 +γ2 +γ3 +γ4 displayed in Figure 2.3. The contour integral (2.268) vanishes,
since eicz

2
is a holomorphic function, i.e., the integrand does not exhibit any singularities anywhere

in C. The contour intergral (2.268) can be written as the sum of the following path integrals

J = J1 + J2 + J3 + J4 ; Jk =
∮
γk

dz eicz
2

(2.269)

The contributions Jk can be expressed through integrals along a real coordinate axis by realizing
that the paths γk can be parametrized by real coordinates x

γ1 : z = x J1 =
p∫
−p
dx eicx

2

γ2 : z = ix+ p J2 =
p∫
0

i dx eic(ix+p)2

γ3 : z =
√
i x J3 =

−
√

2p∫
√

2p

√
i dx eic(

√
ix)2

= −
√
i

√
2p∫

−
√

2p

dx e−cx
2

γ4 : z = ix− p J4 =
0∫
−p
i dx eic(ix−p)

2
,

for x, p ∈ IR.

(2.270)

Substituting −x for x into integral J4 one obtains

J4 =

0∫
p

(−i) dx eic(−ix+p)2

=

p∫
0

i dx eic(ix−p)
2

= J2 . (2.271)
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Figure 2.3: Contour path γ in the complex plain.

We will now show that the two integrals J2 and J4 vanish for p → +∞. This follows from the
following calculation

lim
p→+∞

|J2 or 4| = lim
p→+∞

|
p∫

0

i dx eic(ix+p)2 |

≤ lim
p→+∞

p∫
0

|i| dx |eic(p2−x2)| |e−2cxp| . (2.272)

It holds |eic(p2−x2)| = 1 since the exponent of e is purely imaginary. Hence,

lim
p→+∞

|J2 or 4| ≤ lim
p→+∞

p∫
0

dx |e−2cxp|

= lim
p→+∞

1− e−2cp

2 c p
= 0 . (2.273)

J2 and J4 do not contribute then to integral (2.268) for p = +∞. One can state accordingly

J =

∞∫
−∞

dx eicx
2 −

√
i

∞∫
−∞

dx e−cx
2

= 0 . (2.274)

Using 2.267) one has shown then
∞∫
−∞

dx eicx
2

=

√
iπ

c
. (2.275)
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One can derive the same result for c < 0, if one chooses the same contour integral as (2.268), but
with a path γ that is reflected at the real axis. This leads to

J =

∞∫
−∞

dx eicx
2

+
√
−i

−∞∫
∞

dx ecx
2

= 0 (2.276)

and (c < 0)
∞∫
−∞

dx eicx
2

=

√
−iπ
−|c|

=

√
iπ

c
. (2.277)

We apply the above results (2.275, 2.277) to (2.265). It holds

I =
n∏
k=1

√
iπ

ãkk
=

√
(iπ)n∏n
j=1 ãjj

. (2.278)

Noting (2.255) this result can be expressed in terms of the matrix a

I =

√
(iπ)n

det(a)
(2.279)

which concludes our proof.
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