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Abstract
We present the simplest and most straightforward derivation of the one-
dimensional harmonic oscillator propagator, using the Feynman path integral
and recursive relations. Our calculations have pedagogical benefits for those
undergraduate students beginning to learn the path integral in quantum
mechanics, in that they can follow its calculations very simply with only
elementary mathematical manipulation. Further, our calculations do not require
cumbersome matrix algebra.

(Some figures may appear in colour only in the online journal)

1. Introduction

Feynman constructed the alternative description of quantum mechanics in terms of the path
integral [1] on the basis of a suggestion originating from Dirac [2]. Since then, as is well known,
the Feynman path integral has been behind brilliant achievements in quantum mechanics and
quantum field theory. Physics undergraduates are now obliged to learn it.

In quantum mechanics the exact solutions for Schrödinger equations are quite numerous, in
contrast to the small number of exact solutions for path integrals we are familiar with. The one-
dimensional harmonic oscillator has an exactly solvable path integral. The simple harmonic
oscillator (SHO) is important, not only because it can be solved exactly, but also because a free
electromagnetic field is equivalent to a system consisting of an infinite number of SHOs, and
the simple harmonic oscillator plays a fundamental role in quantizing electromagnetic field. It
also has practical applications in a variety of domains of modern physics, such as molecular
spectroscopy, solid state physics, nuclear structure, quantum field theory, quantum statistical
mechanics and so on.

A variety of techniques to derive the one-dimensional SHO propagator using the Feynman
path integral have been presented in journals [7–13] and textbooks [3–5] and online [14, 15].
Some of the authors emphasize that their derivations are easily accessible and pedagogical for
advanced undergraduate students beginning to learn the path integral in quantum mechanics.
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Their assertions might be thought to be not quite so easily comprehended by students as the
authors state. Since the continuous fraction English and Winter [8] employed to solve the SHO
is unfamiliar and very technical for undergraduate students, it might be thought to be not very
easy for them to manipulate. The details of the calculations by Itzykson et al [4, 5] and Cohen
[9], which make use of diagonalizing a matrix, requiring cumbersome matrix algebra, are also
involved. Their calculations are therefore not very simple for novice students to follow.

As the techniques for solving path integrals in quantum mechanics have made remarkable
progress [6] in recent years, we have been able to solve a great many of them.

Although the problems concerning harmonic oscillator seem to be mature and established,
a wide variety of them [16–24] have continued to be addressed in this journal until quite
recently. They range broadly through many areas, such as propagators, Laplace transforms,
operator methods, a variational Monte Carlo method, and so on.

Nevertheless, we decided to take up the one-dimensional harmonic oscillator again to
calculate the SHO with the path integral with the following motivation. Our calculations must
be the simplest, be very straightforward to follow and be very easily accessible to undergraduate
students. Readers are required to have few prerequisites to trace our approach. To achieve this
our approach makes use of recursive relations to perform the multiple integration of the path
integral.

By virtue of Feynman [1], the quantum propagator, K(x′, x), for the SHO in one dimension
from the position x at time ti to the position x′ at time t f is given as

K(x′, x) =
∫

D[x(t)] exp

{
i

�

∫ t f

ti

L(ẋ, x) dt

}
, (1)

where

L(ẋ, x) = 1
2 mẋ2 − 1

2ω2x2 (2)

is the classical Lagrangian. The symbol
∫

D[x(t)] represents the integration over all the paths
in configuration space joining between x at ti and x′ at t f .

To perform this integral practically, according to the discretization recipe, we divide
time interval τ = t f − ti into N intervals of width ε each such that ε = τ/N and we
denote t j = ti + ( j − 1)ε ( j = 1, 2, . . . , N + 1). For each point (x2, . . . , xN ) in (N − 1)

dimensional real space RN−1, a so-called path function x(t) is defined by corresponding every
t j ( j = 1, . . . , N + 1) to x j = x(t j) with x(t1) = x and x(tN+1) = x′ fixed, thereby we get a
possible path by joining the successive points (x j, t j) on the x − t plane with the segments.

Then equation (1) may be written to

K(x′, x) = lim
N→∞

∫ ∞

−∞
· · ·

∫ ∞

−∞
dx2 · · · dxN

(
1

2π iε

)N/2

exp

{
i

N∑
n=1

εLn

}
, (3)

where ∫ t f

ti

L(ẋ, x) dt = ε

N∑
n=1

Ln

Ln = 1

2

(
xn+1 − xn

ε

)2

− 1

2
ω2

(
xn+1 + xn

2

)2

. (4)

We have set � = 1 and m = 1 here for convenience of calculation.
Our aim is to calculate equation (3) as easily as possible. For that purpose let us perform our

calculations step by step. Our calculations are made up of a series of elementary mathematical
techniques.

The outline is summarized in the two sections after the introduction and the detailed
calculations for the outline are performed in the following sections.
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2. The quadratic form

According to equation (3),the argument of the exponential is the quadratic form

i
N∑

n=1

εLn = iε

{
1

2

(
x′ − xN

ε

)2

− 1

2
ω2

(
x′ + xN

2

)2

+ · · ·+ 1

2

(
x2 − x

ε

)2

− 1

2
ω2

(
x2 + x

2

)2
}

= i

2ε

{
(x′ − xN )2 + · · · + (x2 − x)2 − ω2ε2

4
[(x′ + xN )2 + · · · + (x2 + x)2]

}
. (5)

If we put α = −ω2ε2/4, we have the identity

(x′ − xN )2 + · · · + (x2 − x)2 + α[(x′ + xN )2 + · · · + (x2 + x)2]

= (1 + α)(x′2 + x2) + 2(1 + α)
[
x2

N + · · · + x2
2 + 2a(x′xN + · · · + x2x)

]
, (6)

where we have set 2a = −(1 − α)/(1 + α).
Now we consider the identity with the following form:

x2
N + · · · + x2

2 + 2a(x′xN + · · · + x2x) = (a1xN + b1xN−1 + c1x′)2

+ (a2xN−1 + b2xN−2 + c2x′)2 + · · ·
+ (aN−1x2 + bN−1x + cN−1x′)2 + g(x, x′). (7)

We have to show in later sections that the constant sequential coefficients an, bn, cn (n =
1, 2, . . . , N − 1) and the function g(x, x′) in this identity explicitly exist.

Let us rewrite this expression to the convenient form with the new variables
tN, tN−1, . . . , t2. To do so we set tns as follows:

tN = a1xN + b1xN−1 + c1x′

tN−1 = a2xN−1 + b2xN−2 + c2x′

... (8)

t2 = aN−1x2 + bN−1x + cN−1x′.

Using ts variables with these equations, equation (7) is rewritten as

x2
N + · · · + x2

2 + 2a(x′xN + · · · + x2x) = t2
N + t2

N−1 + · · · + t2
2 + g(x, x′). (9)

Furthermore, using this relation, equation (6) is rewritten as

(x′ − xN )2 + · · · + (x2 − x)2 + α[(x′ + xN )2 + · · · + (x2 + x)2]

= (1 + α)(x′2 + x2) + 2(1 + α)
[
x2

N + · · · + x2
2 + 2a(x′xN + · · · + x2x)

]
= (1 + α)(x′2 + x2) + 2(1 + α)

[
t2
N + t2

N−1 + · · · + t2
2 + g(x, x′)

]
. (10)

3. The formulation of the harmonic oscillator propagator

It follows from the transformation (8) and equation (10) that the integral (3) becomes

lim
ε→0

∫
dx2 · · · dxN

(
1

2π iε

) 1
2 N

exp

{
N∑

n=1

iεLn

}

= lim
ε→0

∫ ∣∣∣∣∂(x2, . . . , xN )

∂(t2, . . . , tN )

∣∣∣∣ dt2 · · · dtN

(
1

2π iε

) 1
2 N

× exp

{
i

2ε

[
(1 + α)(x′2 + x2 + 2g(x, x′)) + 2(1 + α)

(
t2
N + t2

N−1 + · · · + t2
2

)]}
, (11)
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where ∂(x2, . . . , xN )/∂(t2, . . . , tN ) is Jacobian matrix for the transformation (8). From the
transformation (8), we have

∂(t2, . . . , tN )

∂(x2, . . . , xN )
=

a1 b1 0 · · · 0
0 a2 b2 · · · 0
. . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . 0 aN−2 bN−2

. . . . . . . . . . . 0 aN−1

= a1a2 · · · aN−1.

With the help of this relation, equation (11) becomes

lim
ε→0

∫
1

|a1a2 · · · aN−1|dt2 · · · dtN

(
1

2π iε

) 1
2 N

× exp

{
i

2ε

[
(1 + α)(x′2 + x2 + 2g(x, x′)) + 2(1 + α)

(
t2
N + t2

N−1 + · · · + t2
2

)]}

= lim
ε→0

1

|a1a2 · · · aN−1|
(

1

2π iε

) 1
2 N

× exp

{
i

2ε
(1 + α)(x′2 + x2 + 2g(x, x′))

}(∫ ∞

−∞
dt exp

{
i

ε
(1 + α)t2

})N−1

= lim
ε→0

1

|a1a2 · · · aN−1|
(

1

2π iε

) 1
2 N

exp

{
i

2ε
(1 + α)(x′2 + x2 + 2g(x, x′))

}

×
(√

iπε

1 + α

)N−1

, (12)

where, to get the last line, we have used the well-known Gaussian integral∫ ∞

−∞
eiγ t2

dt =
√

iπ

γ
.

Here you need to keep in mind that the next two sections are devoted to finalizing equation (12).

4. To solve the recursive relations

Now by comparing the both sides of equation (7) we obtain the simultaneous recursive
relations:

a2
1 = 1, a1b1 = a, a1c1 = a, (13)

a2
n+1 + b2

n = 1 (n = 1, 2, . . . , N − 2), (14)

anbn = a (n = 1, 2, . . . , N − 1), (15)

bncn + an+1cn+1 = 0 (n = 1, 2, . . . , N − 2). (16)

Also, if we set xN = xN−1 = · · · = x2 = 0 in equation (7), then we obtain

g(x, x′) = −{
b2

N−1x2 + 2bN−1cN−1xx′ + (
c2

1 + c2
2 + · · · + c2

N−1

)
x′2}. (17)

Now let us solve the simultaneous recursive relations equations (13 )–(16).
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If we eliminate bn from equation (14) using equation (15), equation (14) becomes

a2
n+1 + a2

a2
n

= 1 (n = 1, 2, . . . , N − 2). (18)

We define a new sequence An as An = a2
n. By equation (13) we have

A1 = a2
1 = 1.

Then, equation (18) becomes

An+1 + a2

An
= 1. (19)

We take Bn as

Bn = 1

An − β
, (20)

where β satisfies

β2 − β + a2 = 0. (21)

If we eliminate An from equation (19) with equation (20) after substitution of β − β2 for a2 in
equation (19), we obtain

Bn+1 = β

1 − β
Bn + 1

1 − β
. (22)

With A1 = 1, we have

B1 = 1

A1 − β
= 1

1 − β
. (23)

Now we can solve equation (22) for Bn easily

Bn =
1 −

(
β

1−β

)n

1 − 2β
. (24)

And we also get from equation (20 )

An = 1

Bn
+ β = (1 − β)

1 −
(

β

1−β

)n+1

1 −
(

β

1−β

)n . (25)

We introduce a new variable y defined by

y = β/(1 − β). (26)

With An = a2
n, we obtain

an =
√

(1 − β)
1 − yn+1

1 − yn
, (27)

where we have taken the phase as an > 0.
And also with equation (15), we obtain

bn = a

an
= a

√
1 − yn

(1 − β)(1 − yn+1)
. (28)

We shall obtain cn. With equation (16),
cn+1

cn
= − bn

an+1
,
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then

cn = cn

cn−1
· cn−1

cn−2
· · · c2

c1
· c1

1

=
(

−bn−1

an

)
· · ·

(
−b1

a2

)
· a

a1

(we have used a1c1 = a)

= (−1)n−1 bn−1bn−2 · · · b1

anan−1 · · · a1
a

= (−1)n−1 an

an(an−1 · · · a1)2
, (29)

where we have made use of equation (15) to obtain the last line. By using equation (27), we
obtain

a1a2 · · · aN−1 = (1 − β)
N−1

2

√
1 − yN

1 − y
(30)

with the help of equations (27), (29) and (30), we obtain

cn = (−1)n−1 an

an(an−1 · · · a1)2

= (−1)n−1

(
a

1 − β

)n

(1 − 2β) ·
√

1

(1 − β)(1 − yn)(1 − yn+1)
, (31)

where we have used 1 − y = (1 − 2β)/(1 − β). Furthermore, we have

c2
n = (1 − 2β)2

1 − β
·

(
a

1−β

)2n

(1 − yn)(1 − yn+1)

= (1 − 2β)2

1 − β
· yn

(1 − yn)(1 − yn+1)

= (1 − 2β)

(
1

1 − yn
− 1

1 − yn+1

)
, (32)

where we have used {a/(1 − β)}2 = y and (1 − β)(1 − y) = 1 − 2β. We shall obtain other
useful relations:

N−1∑
n=1

c2
n = (1 − 2β)

N−1∑
n=1

(
1

1 − yn
− 1

1 − yn+1

)

= (1 − β)
y − yN

1 − yN
, (33)

where we have used (1 − 2β)/(1 − y) = 1 − β. From equation (28)

b2
N−1 = a2

1 − β

1 − yN−1

1 − yN

= (1 − β) · y − yN

1 − yN
, (34)

where we have used β2 − β + a2 = 0 and β = (1 − β)y.
With equations (28) and (31),

2bN−1cN−1 = 2(−1)N (1 − 2β)

(
a

1 − β

)N 1

1 − yN
. (35)



Derivation of the harmonic oscillator propagator 783

5. Preliminary computations

We shall calculate the function g(x, x′) given by equation (17) explicitly, using the results of
equations (33)–(35),

g(x, x′) = −{
b2

N−1x2 + 2bN−1cN−1xx′ + (
c2

1 + c2
2 + · · · + c2

N−1

)
x′2}

= −
{

(x2 + x′2)(1 − β) · y − yN

1 − yN
+ 2(−1)N (1 − 2β)

(
a

1 − β

)N 1

1 − yN
· xx′

}
.

(36)

Note that we before defined as α = −ω2ε2/4 and 2a = −(1 − α)/(1 + α). Since α < 0 and
4a2 = {(1 − α)/(1 + α)}2 > 1, we have 1 − 4a2 < 0.

β2 − β + a2 = 0 yields

β = 1 ± i
√

4a2 − 1

2
= |a| e±iθ , (37)

where |β| = |a| , 2|a| = (4 + ω2ε2)/(4 − ω2ε2) and we have set

|a| cos θ = 1

2
, |a| sin θ =

√
4a2 − 1

2
(38)

and also 1 − β = a2/β yields

1 − β = |a|e∓iθ (39)

y = β

1 − β
= e±2iθ . (40)

Now we shall represent each term of the g(x, x′), equation (36), with θ using equations (37),
(39) and (40):

(1 − β) · y − yN

1 − yN
= |a| sin(N − 1)θ

sin Nθ
(41)

and also,

2(−1)N (1 − 2β)

(
a

1 − β

)N 1

1 − yN
= 2|a| sin θ

sin Nθ
. (42)

Next we go to equation (30),

a1a2 · · · aN−1 = (1 − β)
N−1

2

√
1 − yN

1 − y
= |a| N−1

2

√
sin Nθ

sin θ
. (43)

We go on to equation (36). Using equations (41) and (42), we obtain

g(x, x′) = −
{

(x2 + x′2)(1 − β) · y − yN

1 − yN
+ 2(−1)N (1 − 2β)

(
a

1 − β

)N 1

1 − yN
· xx′

}

= −
{
(x2 + x′2)|a| sin(N − 1)θ

sin Nθ
+ 2xx′|a| sin θ

sin Nθ

}
. (44)

Then

(x2 + x′2) + 2g(x, x′) = (x2 + x′2)
(

1 − 2|a| sin(N − 1)θ

sin Nθ

)
− 4xx′|a| sin θ

sin Nθ
. (45)

If we relate this expression to equation (11), then we have
i

2ε
(1 + α){(x2 + x′2) + 2g(x, x′)}

= i

2ε

(
1 − ω2ε2

4

) {
(x2 + x′2)

(
1 − 2|a| sin(N − 1)θ

sin Nθ

)
− 4xx′|a| sin θ

sin Nθ

}
. (46)
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And we also have with equation (43)

1

|a1a2 · · · aN−1|
(

1

2π iε

) 1
2 N

(√
iπε

1 + α

)N−1

=
(

1

1 + ω2ε2

4

) N−1
2

√
sin θ

2π iε sin Nθ
. (47)

6. The harmonic oscillator propagator

Now let us get back to equation (12) to obtain the final solution. By combining equations (46)
and (47), equation (12) becomes

lim
ε→0

1

|a1a2 · · · aN−1|
(

1

2π iε

) 1
2 N

(√
iπε

1 + α

)N−1

exp

{
i

2ε
(1 + α)(x′2 + x2 + 2g(x, x′))

}

=
( ω

2iπ sin ωτ

) 1
2

exp

(
iω

2 sin ωτ
{(x2 + x′2) cos ωτ − 2xx′}

)
, (48)

where to get the last line, we have used the fact that for large N,

θ ∼= ωε = ω
τ

N
. (49)

This is the final result we want to obtain.

7. Concluding remarks

Although our analytical approach requires many steps of calculation, these are simple and
straightforward and we believe that most undergraduates could follow our approach easily
with elementary mathematical manipulation and it may be of interest to those instructors
who would like to introduce the path integral into their courses. That is why we stress the
accessibility of our calculation. The essential points in this paper are equation (7) and the
determination of its sequential coefficients, an, bn, and cn(n = 1, 2, . . . , N − 1).

Itzykson et al [4, 14], Cohen [9] and we are conceptually equivalent in terms of
diagonalizing the quadratic form, the left side of equation (7). But we think our procedure is
more self-contained and less involved than the others and does not require cumbersome matrix
algebra.
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