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Monte Carlo importance sampling and Markov chain
If a configuration in phase space is denoted by X , the probability for configuration

according to Boltzman is

ρ(X) ∝ e−βE(X) β =
1

T
(1)

How to sample over the whole phase space for a general problem? How to generate

configurations?

• Brute force : generate a truly random configuration X and accept it with probability

e−βE(X) where all E > 0. Successive X are statistically independent . VERY

INEFFICIENT

• Markov chain : Successive configurations Xi, Xi+1 are NOT statistically independent

but are distributed according to Boltzman distribution.

What is the difference between Markov chain and uncorrelated sequence?

• Truly random or uncorrelated sequence of configurations satisfies the identity

P (X1, X2, · · · , PXN
) = P1(X1)P1(X2) · · ·P1(XN )
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• Markov chain satisfies the equation

P (X1, X2, · · · , PXN
) = P1(X1)T (X1 → X2)T (X2 → X3) · · ·T (XN−1 → XN )

where the transition probabilities T (X → X ′) are normalized
∑

X′

T (X → X ′) = 1

We want to generate Markov chain where distribution of states is proportional to e−βE(X)

and this distribution should be independent of the position within the chain and independent

of the initial configuration.

The necessary conditions for generating such Markov chain is that every configuration in

phase space should be accesible from any other configuration within finite number of steps

(connectedness or irreducibility) - (Be careful to check this condition when choosing Monte

Carlo step!)

We need to find transition probability T (X → X ′) which leads to a given stationary

distribution ρ(X) (in this case ρ(X) ∝ e−βE(X)).
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The probability for X decreases, if system goes from X to any other X ′:

−∑

X′ ρ(X)T (X → X ′) and increases if X configuration is visited from any other

state X ′:
∑

X′ ρ(X ′)T (X ′ → X). The change of probability for X is therefore

ρ(X, t + 1) − ρ(X, t) = −
∑

X′

ρ(X)T (X → X ′) +
∑

X′

ρ(X ′)T (X ′ → X) (2)

We look for stationary solution, i.e., ρ(X, t + 1) − ρ(X, t) = 0 and therefore

∑

X′

ρ(X)T (X → X ′) =
∑

X′

ρ(X ′)T (X ′ → X) (3)

General solution of this equation is not accesible, but a particular solution is obvious

ρ(X)T (X → X ′) = ρ(X ′)T (X ′ → X) (4)

This solution is called DETAIL BALANCE solution.
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To construct algorithm, we devide transition prob. T (X → X ′) = ωXX′AXX′ :

• trial step probability ωXX′ which is symmetric, i.e., ωXX′ = ωX′X (for example spin

flip in ising: ωXX′ is 1/L2 if X and X ′ differ for a single spin flip and zero otherwise )

and

• acceptance probability AXX′ (for example accepting of rejecting new configuration

with probability proportional to min(1, exp(−β(E(X ′) − E(X))))).

Detail balance condition becomes

ρ(X ′)

ρ(X)
=

AXX′

AX′X

Metropolis chooses

AXX′ = 1 if ρ(X ′) > ρ(X)

AXX′ = ρ(X′)
ρ(X) if ρ(X ′) < ρ(X).

(5)

Obviously, this acceptance probability satisfies detail balance condition and therefore leads

to desired Markov chain with stationary probability for any configuration X ∝ ρ(X) for

long times.
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To summarize Metropolis algorithm

• T (X → X ′) = ωXX′AXX′

• ∑

X′ ωXX′ = 1; ωXX′ = ωX′X

• ωXX′ > 0 for all X, X ′ after finite number of steps

• AXX′ = min(1, ρ(X′)
ρ(X) )

How to accept a step with probability AXX′ < 1? One can generate a random number

r ∈ [0, 1] and accept the step if r < AXX′ .

Keep in mind:

• Configurations that are generated by Markov chain are correlated. The theory

guarantees that we arrive at invariant distribution ρ for long times.

• Two configurations are statistically independent only if they are far apart in the Markov

chain. This distance is called correlation time (Be careful: To meassure distance in

Markov chain, every step counts, not only successful.)
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The average of any quantity can be calculated as usual

A =
1

n − n0

n
∑

i>n0

Ai

where n0 steps are used to ”warm-up”.

The error of the quantity, however, is much bigger than the following quantity

1

n − n0

n
∑

i>n0

(Ai − A)2

Imagine the extreme limit of correlations when all values Ai are the same. We would

estimate that standard deviation is zero regardless of the actual error!

To compute standard deviation, we need to group meassurements within the correlation

time into bins and than estimate the standard deviation of the bins:

Bl =
1

N0

i<Nl+N0
∑

i=Nl

Ai (6)
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σ2 =
1

M

M−1
∑

j=0

(Bj − A)2 (7)

where we took into account that A = B. The correlation time (here denoted by N0) is not

very easy to estimate. Maybe the best algorithm is to compute σ2 for few different N0 and

as long as σ2 is increasing with N0, the correlation time is still larger than N0. When σ2

stops changing with increasing N0, we reached correlation time and σ2 is a good

estimation of standard deviation.
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