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Quantum leakage or tunneling is normally presented to 
undergraduate students in the study of a particle moving 
in a rezion of more than one constant potential. Such po- 
tentials have many pedagogical advantiges but are notie- Galerkin's Method 
alistic. Real systems do not seem to have potentials with 
steps. However, when realistic potentials are used, the so- Galerkin's method for solving a differential equation like 

lution ofthe schr~dinger equation usually requires math- eq 2 consists of expressing W(X) as a linear combination of 
ematical expertise beyond that of most undergraduate and Some basis functions, and then making each and every one 
first-year graduate students. of the basis functions orthogonal to (H - h)W(x). As trivial 

we give a relatively simple method for solving the as this may look, i t  leads to the Rayleigh-Ritz secular de- 
s c ~ d i n g e r  equation for a particle moving in a realistic terminant. Galerkin's method minimizes the energy by ap- 

double well. we shall use ~ ~ l ~ ~ k i d ~  method pealing directly ~ ~ to the variational aspects of the eigen- 
(1). Galerkin's technique is more straightforward in appli- value pmblern (9). 

cation than the more popular Rayleigh-Ritz method be- use ofHenite Functions 
cause it does not require taking derivatives of the energy 
with respect to the variational parameters when a linear To illustrate Galerkin's method consider an appmxima- 

function is used. ~ ~ ~ r i ~ i ~ ~ l ~ ,  ~ ~ l ~ ~ k i ~ s ~  method tion to ~ ( x )  to be a linear combination of r Hermite func- 

is not generally used in the classroom. tions. 

The Problem 
Consider a particle of mass m moving under the influ- 

ence of a potential. 

v ( x ) = ~ ~ - p 2 + ~  

For convenience we want V(x) 2 0 for all x. Therefore 

This potential has minima a t  

and a central potential barrier of height 
l n 2 \  

. . 
(See Fig. 1.) 

Potential functions similar to the one in Figure 1 have 
been used extensively to study 

hydrogen bonding (2) 
proton transfer in DNA (3) 
Jahn-Teller effects in cyclooctatetraenes (4 )  . inversion doubling in ammonia (5) . internal rotation (6) 
tunnelingin sandwich compounds (7) 
many other chemical, physical, 
and engineering processes (8) 

The Schrodinger equation for this one-dimensional pmb- 
lem can be written as 

(H - h)v(x) = 0 (2) 

where 

H = - -  $ r:) - (x) 

Equation 3 describes a curtailed Gram-Charlier series. 
In the limit of r + .o exact results are obtained. We have 
chosen the Hermite functions because they . span the space (-, +-I 

satisfy the boundary conditions . form a complete orthonormal set 

We define the Hermite functions by 

(4) 

where N. is the normalization constant, and H.(X) is the 
nth Hermite polynomial. 

We now substitute eq 3 in eq 2, multiply on the left by 
one of the r basis functions, for example, the ith, and inte- 
grate over all space. 

Figure 1. The symmetric double well can be considered as the over- 
lap of two single-well oscillator potentials. The energy levels of the 
single well are split in the double well. Only the splitting of the v =  0 
level is shown. 
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We suppress the x dependence for clarity. It is clear from 
eq 5 that we have obtained the identical determinant as 
that obtained using the Rayleigh-Ritz method. Notice that 
it was not necessary to take derivatives of E with respect 
to the variational parameters c.. An advantage ofusingthe 
Hermite functions is that we can change the differential 
operator in H to a multiplicative operator using the follow- 
ing relation. 

Combining eqs 6,2, and 5, and multiplying by -1, we get 

All the integrals in eq 7 are of the type 

(lpi lx2' I d (8) 

8 = 0, 1, 2 

The integrals in eq 8, for s = 1 and 2, can be evaluated 
usine the recursion relation for the Hermite oolvnomials. 

To simplify the nonzero elements of the secular determi- 
nant obtainable from eq 7 we arbitrarily set 

The energy values will then be in arbitrary units. 
From eqs 7-9 and the orthogonality properties of the 

Hermite functions, we see that we need calculate only 
three matrix elements: i = n, n + 2, and n + 4. The expres- 
sions for the nonzero matrix elements are 

To study the tunneling proeess as a function of the bar- 
rier height we set the distance between the minima a t  a 
fixed value, for example, 2. Therefore, P = 2a. From eqs 
10-12, we get the following case with fixed separation. 

Fixed Separation between the Minima: P = 2a 

:. barrier height = !? 
2 

'For symmetric potentials it is advantageous to write eq 3 as two 
distinct sums: one overthe even Hermite functionsand the other over 
the odd Hermite functions. Then a 2n term expansion can be done 
with two determinants of order n. 

Using the above equations we can choose values of P, 
solve the secular determinants, and obtain the eigen- 
values.' We can then investigate how each of the eigen- 
values varies with respect to changes in the barrier height. 
To see the effect of changing the separation between the 
minima while maintaining a fmed barrier height, we set P2 
= 4a. From eqs 10-12 we get the following case. 

Fixed Barrier Height: b2 = 4 a  

distance between minima = jsTB 

Computer Software and Procedures 

We have done calculations for values of p from 0.10 to 
10.0 and for determinants of orders up to 100. For determi- 
nants of orders greater than 4 the calculations were done 
using readily available programs both in BASIC and FOR- 
TRAN. The BASIC uroeram uses a Jacobi diaeonalization 
procedure ( lo , ,  where& the FORTRAN progrim ujej the 
more efficient Givens-Householder-Wllkinson aleorithm. 

The BASIC Jacobi program was chosen to show-that the 
calculations can be carried out with many inexpensive mi- 
crocomputers as purchased. With the BASIC Jacobi pro- 
gram we have gone up to 50 basis functions with our IBM- 
compatible microcomputer. The diagonalization of the 40 x 
40 matrix took only a few minutes. 

To verify the BASIC Jacobi results, we ran the calcula- 
tions again using the FORTRAN program in our main- 
frame (IBM-4381) using double and quadruple precision 
and going up to 100 basis functions. The more extensive 
calculations c o ~ i r m  the single-precision results obtained 
using the BASIC Jacobi program on the microcomputer. 

Discussion 
Tunneling Probability and Time 

For most values of p that we tried, convergence to 4 sig- 
nificant fieures in the lower eieenvalues was obtained 
using 40 o;fewer basis fundionsTn the BASIC Jacobi pro- 
eram. Previous theoretical studies for steu ~otentials indi- . . 
:ate that the tunneling probability 

decreases with increasing mass of the particle 
decreases with increasing separation between the minima 

decreases with increased barrier height 

Our results are in agreement with those studies. As  re- 
quired by thwry, the approximate eigenvalues found by us 
appear in ordered pairs. We shall use 

(E,(u), E M )  
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Figure 2. Fixed banier height is 1. 

to designate the ordered pairs that correspond to the same 
vibrational quantum number u. 

We find, as expected, that the ungerade level is higher 
than the corresponding gerade level. Thus, each of the non- 
degenerate levels of the harmonic oscillator gives rise to 
two levels in the double well (Fig. 1). This means that vi- 
brationless transitions between gerade and ungerade lev- 
els can occur. Because the g-u transitions need not occur 
within the same well, we have the possibility of tunneling 
from one well to the other ifEo(g) lies below the maximum. 
The average time that a particle takes to effect the passage 
from one well to the other varies inversely with 4 (11). 

where c is the speed of light, and & is in 

Behavior of the Potential Function 

To examine the behavior of our potential function with 
respect to tunneling let us fust discuss the ease of fixed 
barrier height (see Fig. 2). Our results show that for P < 3 
the Eo(g) level lies below the barrier height. As P increases, 
the separation between the minima decreases, and one ex- 
pects that more tunneling will occur. That, indeed, is what 
our calculations show. We also find that 4 increases with 
v, a result observed for other potentials (12). 

When we maintain the separation between the minima 
constant and vary the harrier height (see Fig. 31, we find 
that Eo(g) lies below the barrier height for P > 1.5. How- 
ever, & increases with p, goes through a maximum at  P = 
1.5, and then decreases with p. This result should not he 
interpreted as implying that the tunneling rate increases 
as the barrier height increases. After all, the term tunnel- 
ing applies only when a particle passes through a potential 
energy harrier whose height is greater than the particle's 
energy. For P > 1.5, Eo@) is already above the barrier 
height, and the term tunneling does not apply. 

Barrier Thickness and Area 

We also find that as P increases the barrier "thickness" 
increases (for fixed minima separation). The "thickness" of 
the barrier can be defined as the horizontal distance be- 
tween two points (b, k) with 

V(x) = k 

Figure 3. Fixed minima separation is 2 

With this definition the “thickness" of the barrier is 

For a given value of p > 1.5, the doublet splitting A, will 
determine the rate of tunneling. The area of the barrier 
above the kth energy level has been correlated with the 
tunneling probability (13). That area is readily found to be 

Our result for the area cut off is similar to the one re- 
ported in the literature (13). Both a and p can be calculated 
from spectroscopic data (13) or from other data taken from 
the literature. Finally, it can be shown that increasing the 
mass of the particle is equivalent to increasing the barrier 
height for our potential. 

Conclusion 
Our treatment has several advantages. 

'The student is introduced to the Galerkin version of the 
variational method. 
Mathematical techniques learned in other courses are used. 

Most of the known features of quantum leakage are obtained 
from a relatively simple, realistic potential 
Reliable calcul~tion~can he carried out using a short, pub- 
lished program in BASIC-a language widely available in 
micracomputers. 
The method outlined here can he applied to other potentials 
and other hases. 

'Nontrivial undergraduate research in quantum chemistry 
can he carried out. 

'No artificial step functions are needed hecause many real 
systems can he approximated using simple polynomial po- 
tentials. 
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