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1. Introduction

The quantum tunneling in a double-well potential appears in a variety of physical cases. Well-
known examples include inversion of ammonia molecule [1], for which the double-well is symmetric,
and proton tunneling in hydrogen bonds, for which the two wells could be unsymmetrical [2]. For a
symmetric potential, instanton method developed in [3], has been elaborated and applied to calculate
energy splitting [4]. The tunneling splitting calculated from the instanton method exactly agrees with
the WKB result when the quadratic connection formula is adopted, and it has been confirmed that the
result is very accurate for large separation between the two wells [5-7].

Quantum tunneling in asymmetric double-well potentials has also long been considered [8,9], and
it is known that calculations of the tunneling are necessary to locate the diabolic points of the mag-
netic molecule Feg, where the bottoms of the wells can be moved around by applying magnetic fields
[10]. Furthermore, recent realizations of Bose-Einstein condensations (BECs) in the asymmetric
(tilted) double-well potentials [11] provide the need for the theoretical analysis of the tunneling
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[12]. Though interactions are important in the tunneling of the BECs realized so far [13], as the inter-
actions between atoms are controllable, the quantum mechanics of a single particle is directly relevant
to physics of the BECs or quantum degenerate Fermi atoms in the noninteracting limit [14].

One of the intriguing properties of the tunneling in asymmetric double-well potentials is the
appearance of resonances. For example, the wave function appropriate for the false vacuum of the
potential

Vold) = m‘T"z[(x+oc)2+(/)’2—oc2)] forx <0 -

meo? (x — g)? for x > 0,
(B > a > 0) can significantly tunnel to the side of x > 0 only when 8 is tuned to satisfy the condition

maw?
2

Through various numerical calculations, it has been known that the appearance of these resonances is
not limited to Vp(x), but is a general property of tunneling in asymmetric potentials [8]. In this paper,
in order to elucidate the analytic structure of the resonances, we construct the WKB wave functions
for a class of asymmetric double-well potentials.

Specifically, we consider a smooth double-well potential V(x), assuming that V(x) has minima at
x=Db and at x = —a (a,b > 0), and a local maximum at x = 0. The minima are taken to be quadratic
with a frequency w, V(b) =0, and V(—a) = (n + €)hw (See Fig. 1). As in the instanton method, we
are interested in the large separation between the two wells, and consider the ground and low lying
excited states of energy eigenvalue E satisfying V(0) > E > nhw. We also assume that the potential is
still quadratic near the classical turning points between the wells.

Around the minima, exact solutions to the Schrodinger equation are described by the parabolic cyl-
inder functions [15]. As anticipated in [10], on both sides of x = 0, a WKB wave function is constructed
by matching the WKB function to the asymptotic forms of the exact solutions near the classical turn-
ing points. The continuities of the wave function and its first derivative at the local maximum then
give the energy-level splitting formula. Though our method of requiring continuities is very different
from the instanton or WKB method in [4], the splitting formula reduces to the known one in the sym-
metric case [4,16,17].

In the symmetric potential, for a given energy, an approximate solution to the Schrédinger equa-
tion localized in left(right) well implies, by the inversion symmetry, another solution localized in
the right(left) well, and this fact has been conveniently used to evaluate energy splittings [18,16].
In this paper, we also show that tunneling in the asymmetric potential of € = 0 can be explored by

(B —o?)~nhw, n=0,1,2,3---. (2)

V(x)

-a b

Fig. 1. An asymmetric double-well potential V(x): V(b) =0, V(—a) = (n + €)hw, (n =0,1,2,---). We assume that, for a given
energy E, V(x) is quadratic in the regions of classical motions with the frequency w, and concentrate on the case of € < 1.
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assuming the degenerate approximate solutions to the Schrédinger equation yx (x) and v (x) which are
localized in the right and left wells, respectively. By explicitly constructing iy (x) and s (x), the split-
ting formula is found from these wave functions. Indeed it turns out that the WKB wave functions sat-
isfying the continuities could be written as linear combinations of y(x) and y, (x), while the linear
combinations lift the degeneracy to make the splitting. Therefore, a linear combination of the time-
dependent WKB wave functions gives a system which shuttles back and forth between y(x) and
YL(x), to clearly elucidate the resonance structure of the tunneling in the asymmetric potential of
e=0.

This paper is organized as follows: in Section 2, we construct the WKB wave function on both
sides of the local maximum and, by requiring the continuities at the maximum, we evaluate the en-
ergy splitting. In Section 3, we find the appropriate localized wave functions y(x) and ¥, (x), to re-
obtain the energy splitting formula. We also establish a time-dependent WKB wave function of a
system shuttling back and forth. In Section 4, we give some concluding remarks. Finally in Appendix
A we give exact solutions for the system of Vp(x) in the limit of large separation between the two
wells.

2. WKB method with continuity requirements
As the results could be easily modified to incorporate the small non-zero €, we start with € = 0.
2.1. WKB wave function for x > 0

For the wave function (x) of the energy eigenvalue E = (v + n + 1)hw around the right minimum,
the Schrédinger equation is written as

n d ma? 1
—ﬁw%-l-T(X—b)z%:hw(V‘Fn"‘i)lh 3)
By introducing

lho =\/——. 4

and zz = v2(x — b) /I, we rewrite the equation as

d’ 1 2
v, <v+n+f—%R>z//l:O,

dz 2
to obtain
Y1 (X) = CrRDy4n(zr) = CrDy1n (@) (5)

where Cy is a constant and D,,, denotes the parabolic cylinder function [15]. Bearing in mind that we
wish to construct a normalizable wave function, we choose the solution in Eq. (5) so that [;* [, (x)|*dx
is finite if the expression of y,(x) is valid for x > b. Asymptotic expansions of the parabolic cylinder
function are well-known. For large and negative z (z < —1 and z <« — | k |), we have

k(k—1)+ } V2n (k+1)(k+2)

_ krti a2 —k—1
272 r—k® % {” 272

Dy(z) ~ e Z* {1 - +o|. (6)

For x > 0, a classical turning point may be written as

X=b,=b—2v+2n+ 1. (7)

In the classically forbidden region of b, — x > I,,, within the WKB approximation, a solution y,(x) to
the Schrédinger equation is given as a linear combination of exponentially growing and decaying
functions:
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AR ef;pT(dey BR e—f:”,—?”dy
p(x) p(x)
where p(x) is defined as

p(x) = v2m[V(x) — E], 9)
and Ag, Br are constants. In the region of quadratic potential satisfying b — x > b — b,, by introducing

1/2
/bv (b=~ (b-b)]
X

2
lha

P (x) =

; 8)

by
e = [ Py dy. (10)

X

we have [19,16]

2 2
Be() = - LX) +%(2v+2n+1)+1(2v+2n+1)1n (2(b")>+0<<b’;’:> ) 1)

2L, 2 b—b, b—
and thus
Ax <2¢6<b —x)) b py)  (b—x)
~ PY) 4y
Yul®) mwb-x)\ b-Dby Pl h 20,
By b—b, )”"*% % py) . (b—x)

Y . 12

mo(b - x) (2\/é(b ) A I S T ) (12

As we are interested in the limit of large separation between the two wells where the energy splitting
is small, we introduce §; with an integer [ (= [v]) as

S=v—1, (13)
so that
o] < 1. (14)

In the region of the quadratic potential the wave function is also described by y,(x). Making use of the
asymptotic form in (6), for b — x > I,,, in the leading orders we obtain

x-b? _ l+n (x-b)2 |
() ~Cr|e P (M) Lo Vz”“*")"m“ , (15)
ho (VZh (x - b))
By matching the asymptotic form of ;(x) onto that of y,(x) in this overlap region, we have
h(l+n)!g.n - P20
A = (—1)/"Cry | W Bling- [,y 16
r=(-1)"Cr 2Tl e Jo ; (16)
3/2 b,
By — (—1)1 Cay 2T R+ 1t ey, (17)
lhogl+n
where
oy k+1
a= (keg) e (18)

2.2. WKB wave function for x < 0

Since V(x) = mw?(x + a)*/2 + nhw near the minimum of the left well, a classical turning point is
given as
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X=—0y = —a+ 2V + 1. (19)

In the classically forbidden region of a, + x > l;,, a WKB solution may be written as
A e’jthy)dy + By e.j;inmdy
p(x) p(x)

where A, B, are constants. In the region of the quadratic potential satisfying a + x > a — a,, from the
fact that

Y (X) =

, (20)

X ( ) X [(a+y)2_(a_a )2}]/2
PY) 4 _ _ !
[ g el
we obtain
A a—a, \"  p) (a+x’
Y (X) ~ mo(a + x) (2\/5(0 +X)> exp |: /41“ h dy+ 21

B, 2\/E(a+x h py) aH)

e (ee) e[ e ”

With z, = v2(x + a)/l, the Schrédinger equation around the left minimum is written as

d? 1
dlev + ( - )l//lv =

and thus

V2(x+a
Y (x) = CDy(—z) = C.Dy (— 7(1}1 ) , (23)
0
with a constant C;. The solution in (23) is chosen, so that [~? |y, (x x)|*dx is finite if the expression of
Y (%) is valid for x < —a. Around the left minimum of a + x >> lh,,, from (14) and the asymptotic form in

(6), in the leading orders we have

I (24)

et xra) o V27!
() ~ (-1)'Cu e o <()> —orefe |
(fl,m (x+a))

By matching y;(x) to ¥, (x) in the overlap region, we obtain

7-53/2h[| p(y
AL:H)’“QaM/ g f , (25)
0 l

hl!g, N ° gy
Zﬁlho 20)

B.=(-1'c,

2.3. Continuity and energy splitting

For a smooth potential, a wave function and its first derivative must be continuous at x = 0, which
gives the relations

AL =Ar, BL=Bk (27)
There are three unknowns Cy, Cg, §; in these two equations, while another equation may come from

the normalization of the wave function. From A /B, = Agr/Bg, making use of Eqgs. (16), (17), (25), and
(26), we obtain
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'bl
52 =88un oy | o [P gl 28
= s p L. h y (28)
which indicates that the splitting of the energy level 4, is given by

by

hw
A= /8B exp [ Po) dy]. (29)

For a symmetric potential of n = 0, (29) exactly agrees with the result in [16,17].
Expression in (29) is not easy to use, because the integrand in the exponential is close to a singu-
larity near the limits. By introducing

-0 b
o= [ \/amv) —nholdy.b, = [ /2mViy)dy (30)

and

a ma? 1
Ya = /o ( 2[V(y — a) — nhw] _y) dy.

J— 31)
Yy = /b mia)z_l dy
"o \V2Vb—y) ¥
the splitting is written for a general potential as
1+1/2 I+n+1/2
—(la+lp)/h Va Y
Ay = hoy Y2 (V/2ae v2ben . (32)
7'C(l + n)!l! lha lho

The expression in (32) can be conveniently used to find that our formula reduces to the known one
in [17] for a symmetric potential.

2.4. For a non-zero €
The above formalism can be modified to include non-zero €, as far as §; — € <« 1.In this case, without a

change iny,(x) and y; (x), the modifications of ,; (x) and y,, (x) are obtained by replacing &, with , — €(or,
v with v — €). Due to the changes in Egs. (24,25), the continuity requirements then give the relation

M\°
a0~ = (45 (33)
If 47 denotes the energy splitting in the presence of €, (33) implies

Af =/ 4% + (hwe)*. (34)

3. An alternative method with localized wave functions

For € = 0, if we assume two states of the normalized real wave functions g (x) and y, (x) with en-
ergy E, as mentioned in Section 1, the Hamiltonian in this two-state subspace may be given by

H= —El+Z20, 35
<A/2 E, > ol 50 (33)

with the Pauli matrices o;(i = 1,2, 3), where the small tunneling splitting 4 is written as

oo 2 2
=2 "o (—;'m fxzmx))w(x)dx. (36)
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The two eigenstates of the Hamiltonian are given by (g (x) + ¥, (x))/v2. From the Schrédinger
equations for these eigenstates, and the equations

h d?
{Zm @JF V(x) [¥;(x) = Eoy;(x)(i =R, L),
and from the requirements
%) 0 00
| weras1, [ w1 [ umndo. (37)
0 —00 0
we find
h2
A~ W1 (0)Yr(0) — Y (0)y1 (0)], (38)

with yj(x) = dy;(x)/dx (i = R,L), which is a generalization of the method used for the symmetric case
[16,18].
In the classically forbidden region, we may write
Moo, o) =
p(x) p(x)
where Ng and Ny are constants. From these expressions of y (x) and y, (x), by assuming that the valid-
ity condition for the WKB approximation

dh

dx p

X py)
NL e Jom dy

Yr(X) =

(39)

<1 (40)
is satisfied at x = 0, we obtain
R~ 2E [NLNR| (41)
~ m LINR]-
For Ey = (I+ n + $)hw, near the right-hand well, y (x) would be accurately described by the (I + n)th

harmonic oscillator eigenfunction. This description holds well into the forbidden region, and, for
(b —x)/lp, > 1, we may write

exp Xzb) 3 I4+n
o) ~ h———{ ] (ﬂ(,x b)> ~ (@2
\/ﬁl}w(l-i-n)! ho

On the other hand, making use of (11), we can find the asymptotic expansion form of y(x) of (39) in
the overlap region. By matching the asymptotic form onto the expression in (42), we obtain

_ 1\l V hgl+n P(y)
NR_( 1) \/2_7'Elho eXp|: Jo h dy:| (43)

Similarly, by matching the asymptotic form of y, (x) onto that of the Ith excited harmonic oscillator
state near the left-hand well, we have

A ool 2]

By plugging these explicit forms of Ng and Ny into (41), for Eg = (I + n + })hw, we confirm that 4 re-
duces to 4,.

If (27) is satisfied, after some algebra, we find that v (x) and y;(x) of € = 0 can be merged, in the
classically forbidden region, into

VZtAsho P) o
BV b p[ =2 dy} (GRS IR AL (45)

l//WI(B ( )
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namely, i (X) becomes vy (x) for x > 0, and vy, (x) for x < 0, where Yy (X) (Yyie (%)) is given when
we choose §; > 0 (6, < 0) in (28). Thus this alternative method is in fact equivalent to the WKB method
of requiring the continuities. We also note that ., (x) has a node in the classically forbidden region
between the wells, while iy (x) has no node in the same region.

A (unnormalized) time-dependent WKB solution is given as

W(x,t) = efi(o(n+l+%+\é,\)t¢\4/rw(B(x) + efiw(n+l+%—\(i,\)tl//\7w<B (x)

o V27ARly . 1 ™ p(y)
,2ﬁexp —1w<n+l+§>t+/0 Tdy (46)

x {(—1)”” cos <% t> Yr(x) — isin <% t) x//L(x)}

This last form shows clearly that the system shuttles back and forth between vy (x) and y, (x) with the
frequency 4,/h.

In order to include ¢, let us consider a slight modification of the potential around the left well so
that V(—a) changes from nhw to (n+ €)hw. While i (x) would still be an appropriate solution of
the new system with energy E,, we introduce y{(x) as an approximate solution with energy
Eo + €hw localized in the left well. If we confine our attention on the two state subspace described
by yr(x) and v (x), within the approximation that y (x) is the same with y, (x), the Hamiltonian of
the new system is written as

(Eo + %ehw)l —+ % (—€hwao, + 4,0y),
which is analogous to that of a particle in a magnetic field [20]. This spin analogy can be used to derive
(34) and to easily find the time-evolution of the system. If y(x, t) is a solution in this subspace with
¥(x,0) = Yg(x), the maximum of the probability of | [*_(y{(x)) ¥ (x,t)dx|* during the time-evolution
can be evaluated to be 4?/[4? + (¢hw)?], which indicates that the resonance peaks in tunneling have
the Lorentzian shape.

4. Concluding remarks

Energy splitting formula has been obtained for the asymmetric double-well potential, by assuming
that the potential is quadratic near the minima. As has been well known for the symmetric case, we
expect that the splitting formula given here would be very accurate for the large separation between
wells, which needs to be confirmed through numerical calculations. If we could add a linear term sx to
the potential V(x) of € = 0 with a controllable constant s, V(x) + sx has two minima at x = b — s/mm?
and at x = —a — s/mw?. Since the difference of the minima is given as nhw — s(a + b), in the light of
numerical results [8], the tunneling would be significant only if s is close to a multiple of
hw/(a + b). It would be of great interest to realize the asymmetric system with controllable constants,
as is partially accomplished in dynamical situations [11]. For n=0 and € =0, we note that
An/ Ao = (2abe’a*s /12 y# /(21)! which shows the quasi-Weierstrassian nature of the tunneling spec-
trum [17]. In this asymmetric case, thus, the tunneling behavior of an initially squeezed wave packet
is erratic, and the trajectory of the expected position of the wave packet has a fractal structure. As a
final remark, though the results obtained in this paper would be exact in the limit of a, b > I, where
an energy splitting is very small, numerical calculations imply that the appearance of resonances is
manifest even when a and b are only a few times larger than [, [8], which could be important in
the quantum tunnelings of the BECs.
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Appendix A. For the potential Vp(x) in (1), WKB method may not be applicable, since the potential is
not differentiable at x = 0. In this case, however, exact wave functions could be written in terms of the
parabolic cylinder functions on both sides of x = 0. From the continuities of the wave function and its
first derivative at x = 0, assuming ’"T‘*’z (B? — o) = (n + €)hw, we find that the eigenstate of an energy
eigenvalue (v + n + € 4+ J)hw exists if the condition

D, (ﬂ)n <@> —-p, (ﬂ)n (@> (47)
lho e lho ! lho lho

is satisfied. (47) can be solved in the limit of «, 8 > I3, and € < 1. Making use of the asymptotic expan-
sion of (6), in this limit we obtain

O+ (r(Ri— L)+ €)0, — RiL; — erl; = 0, (48)
where
_ (\fzﬁ/lho)z(nﬂ)ﬂ e*/fz/lio L (\/jac/l;w)zm e—az/l,zw
V27(l+n)! ’ V27! 7
rob-o (49)

R
(48) implies that the energy splitting is given as

heoyJ4RL + € + 2er(Ry+ L) + (R — L. (50)

If we formally use the formulas in Eqs. (30,31) by replacing V(x) with Vp(x), 4; coincides with the split-
ting of (50) in the symmetric case (n =0, € = 0).
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