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Energy splitting in symmetric double-well potentials
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We extend the analytical transfer matrix method to solve the energy splitting in an arbitrary symmetric
double-well potential. Dispersion equations corresponding to the split energy levels are presented in a very
explicit form. Numerical calculation shows that the proposed method can give extremely accurate results for
symmetric double-well potentials.
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[. INTRODUCTION levels, the effects of transaction could be negligible. Assum-
ing thatx;,,X>, — X1, and— X, are classical turning points,
The gquantum mechanical tunnelling in a smooth symmetwe divide the regions (8,1), (Xi1,Xi2), and ;»,Xs) into
ric double-well potential is a long-standing and well-known |, m, andn layers with the corresponding width, d,,, and
problem. Three methods have been proposed to calculate tlig, respectively. The same treatment will be copied to the
energy splitting: the instanton meth¢d,2], the WKB ap- left part, i.e., - x,,0) of the double-well potential, due to its
proximation[3,4] and numerical calculatiofd—6]. The in-  geometrical symmetry.
stanton method is helpful to understand the physical insight In the classical allowed regions—(x;,<<x<—Xx;;) and
of quantum tunnelling, but the validity is restricted to the (x,;<x<Xx;,), the field has an oscillatory character, so the
case of large separation between the two potential minimaransfer matrix corresponding to thigh segment can be writ-
The WKB approximation is widely used for its simple math- ten as[10]
ematical form, but the result is known to be inaccurate due to
its inherent defect in connection formula. One had taken the

quadratic connection formula instead of the Airy function to cog kjdy) isin(Kjdm)

modify the WKB result at ground stafé,7]. Recently, some M= K;j ,
refinements were developed to improve the accuracy of x;Sin(;dpy) cog «;dp,)

WKB by changing the phase loss at the classical turning

points[8,9]. The anharmonicity is also taken into consider- j=1+11+2,0 001+ m, 1)

ation in the case of small separation distafl To the best

of knowledge of the authors, no above approximations havg nere

provided the perfect results. Without doubt using numerical

methods, one can get the solution up to the desired accuracy,

but a considerable deal of physical insight is lost in these Kj=v2m*(E—V))/h, 2
processes.

di In th's ngpﬁr:('ﬁ the qualst|za_t|on CO”?'F'OSS I;? Onl?-Kj andV; represent the wave number and the potential en-
|r;1ent_3|(|)na c ngte:jegua lonin syrlnrtr_le Imi ouf e-wet _ergy at thejth segment, respectivelyy* is the particle mass,
potential are presented by using analytical transfer matrix =i ihe energy eigenvalue.

method(ATMM ), which has been applied to arbitrary poten-
tial wells successfullyf10]. Taking into account the correct
phase losses at the turning points and the phase contributio V(X)
of the scattered subwaves, this analysis gives the explici
guantization conditions of the split energy levels. We also
calculate the energy eigenvalues of the split energy levels
and compare them with that of the exact numerical method

[4].

Il. THEORY

In the present calculation rather than dealing with con-
tinuous variation of potential energy, we first divide the Do
double-well potential into segments symmetrically, in every X, X,
segment the potential energy can be regarded as a constain
V(x;). In the limit, as the divisions become finer and finer, a  FIG. 1. One-dimensional symmetric double-well potentials
continuous variation will be recovered. A symmetric double-the ground-state energy; X are the truncation pointstx,; and
well potential is shown in Fig. 1. If the potential at the trans- +x,, are the inner and outer classical turning points corresponding
action points is very much larger than energies of relevanto E, respectively.
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Because of the evanescent character in the classical for- . Pri1
bidden regionsX<< —X5), (—X1<x<0), (0<x<X;), and sinh( o, d;) + o cosh{ a; dp,)
(x>X42), the transfer matrices corresponding to thte and P.= ay 5 K , (10)
kth segments become cosH ey dy) + k+ lsinr(akdn)
g
1
_| coshend)  ——sinh(a;d) k=l+m+1l+m+2, ... J+m+n,
i= i ,
—aiSinf’(aid|) COSf(aid|) PI+m+n+l:Psa
i=12,...] 3 Py
— —1f -
and Pj—Kjtar{tan KJ_ )—Kjdm, j=I+11+2,...]l+m.
1y
1
M coslieyd,)  — —-sinf(ady) We can obtain the equation from E€L1) by using the
K= k

— oy sinh( e d,,) cosi e d,) e

' similar method developed in Refl1],
[ Preme1 _4 Pr+1
k=l+m+1]+m+2,...]+m+n, (4) Y KOyt ®(s)=Nm+tan Y ——— | —tan* ,
5T+ K| 4m Ki41
where (12

aj=2m* (V,\—E)/#, where

I+m-1

ay=y2m* (V= E)/f. () d(s)= > |d;—tan! —K’j:ltambjﬂ) ,
j=T+1 j
Applying the boundary conditions at=x; and x=
—Xg, We can get the matrix equation according to the geo- [P
metrical symmetry, ®j=tan ) (13
P(X_s) B et e l ®(s) is the phase contribution devoted by the scattered
' (X_9| |keiten My ik M; L M; Lk M subwaved10]. P, .1 is the equivalent exponentially de-
caying coefficient of the regionsx& —X;,) and &>X;5).
I+m I+ men P(Xs) The expression oP, . ; is also determined by the rest of the
X HHH M; k*ll:!nJrl My W (x| (6 matrices corresponding to the region of the central barrier
= = S

(=X <X<Xy). ' .

The prime of the wave functiog denotes differentiation N order to obtain a clear equation for the split energy
with respect tax. Since we have regarded the potential ener£igenvalues, by employing the same manipulations as previ-
gies as constanté, andV_, respectively, in the transaction OUS process to the further investigation, H§) can be
regions k<—x.) and k>xJ), the wave functions decay changed into
exponentially with displacement along thexis:

1
cosh2a4d — —sij 1
(AP x ] X< %, o =P, 1] H2a,d)) alS|n|’(2a1d|) i }
Y0 = Agexfd —Pg(Xx—Xg)],  X>Xs, —a4Sin(2a4d)) cosh2a,d)) 2
whereP_=P.=\2m* (V,—E)/#% according to the system =0. (14)

symmetry.

By using Eq.(7), Eqg. (6) can be changed into P, is defined by

l+m+1 I+1 1 [ ) Pii1
sinh( a;d|) + ——cosh «;d
—pou1| T | TT my||TT w|| TT m, | sinMedy+ =, Feositagdy)
k=I+m+n k=1+m P= i=1 Pi=q Py , 1=23,...],
+1 .
I+m I+m+n 1 cosr(aid|)+jsmk(aid|)
I
x| 1T ™ M|l }=o. (8) (15
j=1+1 k=I+m+1 Ps

then we have the following equation from Eg4):
After direct algebraic manipulations, E() can be writ- ged Ha4)

ten as 2a,P,

| tanh2aqd))=— a§+Pf’
[ 1w
I i=1 —Pii1

(16)

EH

=0, 9

[_PI+1 1]{

i which has two solutions
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P
tanh a4d;)=—

TABLE I. Eigenvalues of the two split states from the ground

PHYSICAL REVIEW A 67, 062112 (2003

(17 state in the double-well potential.
p N Exact Present
coth(a,dy)=—— (18) 0.02 1.39352758504 1.39352759203
1.39352758715 1.39352759414
Combining Egs(17) and(15), finally we have the expres- 0.04 1.37112223656 1.37112224729
sion for Py 4 1.37130846161 1.37130847236
P (19 0.10 1.23450716279 1.23450717706
i+17 1.34694086892 1.34694088632
. 0.15 1.06249924796 1.06249926237
tanh a;d,) + ——tanhb;_, 1.42108689054 1.42108691499
tanhd,; = il 0.20 0.94175034208 094175034299
i
1+ ; 1tanf{ai_ld|)tan}"(aid,) 1.53553020408 1.53553022368
i
tanh® =tanh(« d,). %2 1 [«
k(X)dx+d(s)=| N+ > 7+tan - cothd, |.
Thus, Eq.(12) can be changed into X I+1 (24
I+m =
| D KO+ B () =N+ tan '+m+1) Thus we obtain the two quantization conditions for the
j=T+1 Ki+m split energy levels in a symmetric double-well potential. It is

clear that for any certain quantum numbrthere will be
bl tanhd),). (20) two different energy eigenvalues corresponding to E23).
Ki+1 and(24). The difference of the two energy eigenvalues is just
. _ ) the energy splitting. If the two potential wells are infinitely

According to the conclusion developed in REEO], the  genarated, which means that the quantum tunnelling is neg-
second and the third terms on the right-hand side of(B@). igiple, the quantization condition in either well can be writ-
represent_the half-phase _Iosses at the outer turning pointg | as[X2k(x)dx+ ®(s) = (N+ L+ 1) [10]. In order for
* X, and inner turning points: x;1, respectively. X1 .

Likewise, by performing a similar deducting in the case ofthe tunnelling not to vanish, the half-phase losses at the
the second solution, it is obtained as inner  turning  points *x; are substituted by
tan Y[ (a/ k. )tanh®] and tan (e« /« ) cothd],
which correspond to the symmetric and antisymmetric en-
ergy levels. So, these two split energy levels are derived
from the corresponding level of the original single potential
well.

We would like to point out that the above derivation is
general, it does not involve any approximations such as the
conventional short-wave limit or long-wave limit. It is exact.

+tan !

I+m

> Kkidm+P(s)=Nm+tan !

Pl+m+1)
j=T+1

Ki+m

Q|
+tan !

cothd),), (21
Ki+1

where

Pit1=—acoth®;, =23, .../, (22) lIl. NUMERICAL COMPARISON

In order to illustrate the accuracy of our method, we apply
it to a typical example of a symmetric double-well potential,

tanh( «;d,) + Ecoth@i_l
al which has the potential form as

cothd,= ” ;
1+ %CO“’( ai_1d|)tanf'(aid|)
i

V(x)=Ax*—kx2. (25)

Here we set the particle mass=3, #=1, andk=1. We
calculate the energy eigenvalues via the quantization condi-
In order to simplify the above equations, lettihgn,n  tions for the case of ground state and compare them with the
—ow and d,,d,,d,—0, then «.n,—0 and exact values obtained by the nonperturbative metfd
tan Y(Pyyme1/K1+m)— 72, We may consequently write Table | shows the details.
Egs.(20) and(21) as It is clear that our numerical results are in excellent agree-
ment with the exact results. The absolute errdeFg'cuiate
i tanh® ) —E®*@°]) are only about 108. Since we just divided the
') whole potential profile £ x;<x<Xx) into 10* layers in cur-
(23 rent calculations, more accurate results can be expected

cothd ;= coth a;d,).

1
Lz 1
N2

T+tan

thzx(x)dan D(s)=

1 Kl+1
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1.57080 r . r v T v T v =(N+1)= [10] to calculate the antisymmetric energy eigen-
value, energy splitting can still be obtained.
1.57075 Finally, we will discuss the half-phase losses at the turn-
ing points*x,; and = X;,. According to the analysis of Ref.
1.57070 [10], if the two potential minima_l are infinitely separa_lted, the
2" half-phase losses at both the inner and outer turning points
% will approach 7/2 with the increase of the layer number.
@ 1.57065 When the two potential wells approach, the half-phase losses
'S_ I at the inner turning points x; strongly depend on the quan-
B 157060 ... at the outer tuming points . tum tunnelling. With the increase of, which means the
I —— at the inner turmning points ] tunnelling is more and more appreciable, the deviation from
1.57055 L /2 of the half-phase losses #tx,, also increases, while the
half-phase losses atx;, almost keep constant. This is illus-
1.57050 . ) \ . , ) . . trated in Fig. 2.
0.04 0.08 0.12 0.16 0.20
A IV. SUMMARY

FIG. 2. Half-phase loss at the turning points to the ground state V€ have derived the quantization conditions for energy
as a function ofv. The whole potential profile £ x<x<x.) is splitting of symmetric double-well potentials by the analytic
divided into 10 layers. The dashed line represents the half-phasdransfer matrix method. The half-phase losses at the outer

loss at the outer turning points and the solid line represents the half!lhing points arer/2, while those at the inner points are
phase loss at the inner turning points. smaller thanm/2 and strongly depend on the quantum tun-

nelling, which is totally different from the WKB method and
through finer divisions. Compared with other numericalother modified WKB methods. With the aid of the correct

methods such as the Numerov metfitiand the symplectic ph_ase losses and the phase contribution of subwaves, Fhe_o-
scheme-shooting methd8SSM [6], whose results have the Tetically, as the number of segment layer approaches infi-
absolute errors about 16, our method not only presents the Nitely, the exact results can be obtained.

explicit split of energy levels but also achieves the better
accuracy. Moreover, it is noticed during our calculation that,
when the separation between the two potential minima is too  This work was supported by the National Natural Science
small, for instance, in the case d#0.2, the antisymmetric Foundation of China under Grant No. 60237010; the Munici-
energy level will be higher than the height of the centralpal Scientific and Technological Development Project of
barrier. Hereby we can only calculate the symmetric energ\shanghai under Grant Nos. 012261021, 01161084; and the
eigenvalue. However, if we utilize the gquantization COﬂdi-App"ed Material Research and Development Program of
tions for any arbitrary potential well$’i‘§(t2K(x)dx+ D(s) Shanghai under Grant No. 0111.
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