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Energy splitting in symmetric double-well potentials
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We extend the analytical transfer matrix method to solve the energy splitting in an arbitrary symmetric
double-well potential. Dispersion equations corresponding to the split energy levels are presented in a very
explicit form. Numerical calculation shows that the proposed method can give extremely accurate results for
symmetric double-well potentials.
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I. INTRODUCTION

The quantum mechanical tunnelling in a smooth symm
ric double-well potential is a long-standing and well-know
problem. Three methods have been proposed to calculat
energy splitting: the instanton method@1,2#, the WKB ap-
proximation @3,4# and numerical calculation@4–6#. The in-
stanton method is helpful to understand the physical ins
of quantum tunnelling, but the validity is restricted to th
case of large separation between the two potential mini
The WKB approximation is widely used for its simple mat
ematical form, but the result is known to be inaccurate du
its inherent defect in connection formula. One had taken
quadratic connection formula instead of the Airy function
modify the WKB result at ground state@1,7#. Recently, some
refinements were developed to improve the accuracy
WKB by changing the phase loss at the classical turn
points @8,9#. The anharmonicity is also taken into conside
ation in the case of small separation distance@9#. To the best
of knowledge of the authors, no above approximations h
provided the perfect results. Without doubt using numeri
methods, one can get the solution up to the desired accu
but a considerable deal of physical insight is lost in the
processes.

In this paper, the quantization conditions to on
dimensional Schro¨dinger equation in symmetric double-we
potential are presented by using analytical transfer ma
method~ATMM !, which has been applied to arbitrary pote
tial wells successfully@10#. Taking into account the correc
phase losses at the turning points and the phase contrib
of the scattered subwaves, this analysis gives the exp
quantization conditions of the split energy levels. We a
calculate the energy eigenvalues of the split energy le
and compare them with that of the exact numerical met
@4#.

II. THEORY

In the present calculation rather than dealing with co
tinuous variation of potential energy, we first divide th
double-well potential into segments symmetrically, in eve
segment the potential energy can be regarded as a con
V(xi). In the limit, as the divisions become finer and finer
continuous variation will be recovered. A symmetric doub
well potential is shown in Fig. 1. If the potential at the tran
action points is very much larger than energies of relev
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levels, the effects of transaction could be negligible. Assu
ing thatxt1 ,xt2 ,2xt1, and2xt2 are classical turning points
we divide the regions (0,xt1), (xt1 ,xt2), and (xt2 ,xs) into
l , m, andn layers with the corresponding widthdl , dm , and
dn , respectively. The same treatment will be copied to
left part, i.e., (2xs,0) of the double-well potential, due to it
geometrical symmetry.

In the classical allowed regions (2xt2,x,2xt1) and
(xt1,x,xt2), the field has an oscillatory character, so t
transfer matrix corresponding to thej th segment can be writ
ten as@10#

M j5F cos~k jdm! 2
1

k j
sin~k jdm!

k jsin~k jdm! cos~k jdm!
G ,

j 5 l 11,l 12, . . . ,l 1m, ~1!

where

k j5A2m* ~E2Vj !/\, ~2!

k j and Vj represent the wave number and the potential
ergy at thej th segment, respectively,m* is the particle mass
andE is the energy eigenvalue.

FIG. 1. One-dimensional symmetric double-well potential.E is
the ground-state energy,6xs are the truncation points,6xt1 and
6xt2 are the inner and outer classical turning points correspond
to E, respectively.
©2003 The American Physical Society12-1
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Because of the evanescent character in the classical
bidden regions (x,2xt2), (2xt1,x,0), (0,x,xt1), and
(x.xt2), the transfer matrices corresponding to thei th and
kth segments become

Mi5F cosh~a idl ! 2
1

a i
sinh~a idl !

2a isinh~a idl ! cosh~a idl !
G ,

i 51,2, . . . ,l ~3!

and

Mk5F cosh~akdn! 2
1

ak
sinh~akdn!

2aksinh~akdn! cosh~akdn!
G ,

k5 l 1m11,l 1m12, . . . ,l 1m1n, ~4!

where

a j5A2m* ~Vi2E!/\,

ak5A2m* ~Vk2E!/\. ~5!

Applying the boundary conditions atx5xs and x5
2xs , we can get the matrix equation according to the g
metrical symmetry,

F c~x2s!

c8~x2s!
G5F )

k5 l 1m1n

l 1m11

MkGF )
k5 l 1m

l 11

M j GF)
i 5 l

1

Mi GF)
i 51

l

M i G
3F )

j 5 l 11

l 1m

M j GF )
k5 l 1m11

l 1m1n

MkG F c~xs!

c8~xs!
G . ~6!

The prime of the wave functionc denotes differentiation
with respect tox. Since we have regarded the potential en
gies as constantsVs andV2s , respectively, in the transactio
regions (x,2xs) and (x.xs), the wave functions deca
exponentially with displacement along thex axis:

c~x!5H A2sexp@P2s~x1xs!#, x,2xs

Asexp@2Ps~x2xs!#, x.xs ,
~7!

whereP2s5Ps5A2m* (Vs2E)/\ according to the system
symmetry.

By using Eq.~7!, Eq. ~6! can be changed into

@2Ps 1#F )
k5 l 1m1n

l 1m11

MkGF )
k5 l 1m

l 11

M j GF)
i 5 l

1

Mi GF)
i 51

l

M i G
3F )

j 5 l 11

l 1m

M j GF )
k5 l 1m11

l 1m1n

MkG F 1

2Ps
G50. ~8!

After direct algebraic manipulations, Eq.~8! can be writ-
ten as

@2Pl 11 1#F)
i 5 l

1

Mi GF)
i 51

l

M i G F 1

2Pl 11
G50, ~9!
06211
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Pk5ak

sinh~akdn!1
Pk11

ak
cosh~akdn!

cosh~akdn!1
Pk11

ak
sinh~akdn!

, ~10!

k5 l 1m11,l 1m12, . . . ,l 1m1n,

Pl 1m1n115Ps ,

Pj5k j tanF tan21S Pj 11

k j
D2k jdmG , j 5 l 11,l 12, . . . ,l 1m.

~11!

We can obtain the equation from Eq.~11! by using the
similar method developed in Ref.@11#,

(
j 5 l 11

l 1m

k jdm1F~s!5Np1tan21S Pl 1m11

k l 1m
D2tan21S Pl 11

k l 11
D ,

~12!

where

F~s!5 (
j 5 l 11

l 1m-1 FF j2tan21S k j 11

k j
tanF j 11D G ,

F j5tan21S Pj

k j
D . ~13!

F(s) is the phase contribution devoted by the scatte
subwaves@10#. Pl 1m11 is the equivalent exponentially de
caying coefficient of the regions (x,2xt2) and (x.xt2).
The expression ofPl 11 is also determined by the rest of th
matrices corresponding to the region of the central barr
(2xt1,x,xt1).

In order to obtain a clear equation for the split ener
eigenvalues, by employing the same manipulations as pr
ous process to the further investigation, Eq.~9! can be
changed into

@2P2 1#F cosh~2a1dl ! 2
1

a1
sinh~2a1dl !

2a1sinh~2a1dl ! cosh~2a1dl !
G F 1

2P2
G

50. ~14!

P2 is defined by

Pi5a i

sinh~a idl !1
Pi 11

a i
cosh~a idl !

cosh~a idl !1
Pi 11

a i
sinh~a idl !

, i 52,3, . . . ,l ,

~15!

then we have the following equation from Eq.~14!:

tanh~2a1dl !52
2a1P1

a1
21P1

2
, ~16!

which has two solutions
2-2
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tanh~a1dl !52
P2

a1
, ~17!

coth~a1dl !52
P2

a1
. ~18!

Combining Eqs.~17! and~15!, finally we have the expres
sion for Pl 11

Pi 1152a i tanhF i , i 52,3, . . . ,l , ~19!

tanhF i5

tanh~a idl !1
a i 21

a i
tanhF i 21

11
a i 21

a i
tanh~a i 21dl !tanh~a idl !

,

tanhF15tanh~a1dl !.

Thus, Eq.~12! can be changed into

(
j 5 l 11

l 1m

k jdm1F~s!5Np1tan21S Pl 1m11

k l 1m
D

1tan21S a l

k l 11
tanhF l D . ~20!

According to the conclusion developed in Ref.@10#, the
second and the third terms on the right-hand side of Eq.~20!
represent the half-phase losses at the outer turning po
6xt2 and inner turning points6xt1, respectively.

Likewise, by performing a similar deducting in the case
the second solution, it is obtained as

(
j 5 l 11

l 1m

k jdm1F~s!5Np1tan21S Pl 1m11

k l 1m
D

1tan21S a l

k l 11
cothF l D , ~21!

where

Pi 1152a icothF i , i 52,3, . . . ,l , ~22!

cothF i5

tanh~a idl !1
a i 21

a i
cothF i 21

11
a i 21

a i
coth~a i 21dl !tanh~a idl !

,

cothF15coth~a1dl !.

In order to simplify the above equations, lettingl ,m,n
→` and dl ,dm ,dn→0, then k l 1m→0 and
tan21(Pl 1m11 /k l 1m)→p/2, we may consequently write
Eqs.~20! and ~21! as

E
xt1

xt2
k~x!dx1F~s!5S N1

1

2Dp1tan21S a l

k l 11
tanhF l D ,

~23!
06211
ts

f

E
xt1

xt2
k~x!dx1F~s!5S N1

1

2Dp1tan21S a l

k l 11
cothF l D .

~24!

Thus we obtain the two quantization conditions for t
split energy levels in a symmetric double-well potential. It
clear that for any certain quantum numberN, there will be
two different energy eigenvalues corresponding to Eqs.~23!
and~24!. The difference of the two energy eigenvalues is ju
the energy splitting. If the two potential wells are infinite
separated, which means that the quantum tunnelling is n
ligible, the quantization condition in either well can be wr
ten as*xt1

xt2k(x)dx1F(s)5(N1 1
2 1 1

2 )p @10#. In order for

the tunnelling not to vanish, the half-phase losses at
inner turning points 6xt1 are substituted by
tan21@(a l /k l 11)tanhFl# and tan21@(a l /k l 11)cothFl#,
which correspond to the symmetric and antisymmetric
ergy levels. So, these two split energy levels are deri
from the corresponding level of the original single potent
well.

We would like to point out that the above derivation
general, it does not involve any approximations such as
conventional short-wave limit or long-wave limit. It is exac

III. NUMERICAL COMPARISON

In order to illustrate the accuracy of our method, we ap
it to a typical example of a symmetric double-well potenti
which has the potential form as

V~x!5lx42kx2. ~25!

Here we set the particle massm5 1
2 , \51, andk51. We

calculate the energy eigenvalues via the quantization co
tions for the case of ground state and compare them with
exact values obtained by the nonperturbative method@4#.
Table I shows the details.

It is clear that our numerical results are in excellent agr
ment with the exact results. The absolute errors (uEcalculate

2Eexactu) are only about 1028. Since we just divided the
whole potential profile (2xs,x,xs) into 104 layers in cur-
rent calculations, more accurate results can be expe

TABLE I. Eigenvalues of the two split states from the groun
state in the double-well potential.

l Exact Present

0.02 1.39352758504 1.39352759203
1.39352758715 1.39352759414

0.04 1.37112223656 1.37112224729
1.37130846161 1.37130847236

0.10 1.23450716279 1.23450717706
1.34694086892 1.34694088632

0.15 1.06249924796 1.06249926237
1.42108689054 1.42108691499

0.20 0.94175034208 0.94175034299
1.53553020408 1.53553022368
2-3
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through finer divisions. Compared with other numeric
methods such as the Numerov method@5# and the symplectic
scheme-shooting method~SSSM! @6#, whose results have the
absolute errors about 1026, our method not only presents th
explicit split of energy levels but also achieves the be
accuracy. Moreover, it is noticed during our calculation th
when the separation between the two potential minima is
small, for instance, in the case ofl50.2, the antisymmetric
energy level will be higher than the height of the cent
barrier. Hereby we can only calculate the symmetric ene
eigenvalue. However, if we utilize the quantization con
tions for any arbitrary potential wells*

2x
xt2 k(x)dx1F(s)

FIG. 2. Half-phase loss at the turning points to the ground s
as a function ofl. The whole potential profile (2xs,x,xs) is
divided into 109 layers. The dashed line represents the half-ph
loss at the outer turning points and the solid line represents the
phase loss at the inner turning points.
t2

06211
l

r
t,
o

l
y
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5(N11)p @10# to calculate the antisymmetric energy eige
value, energy splitting can still be obtained.

Finally, we will discuss the half-phase losses at the tu
ing points6xt1 and6xt2. According to the analysis of Ref
@10#, if the two potential minima are infinitely separated, t
half-phase losses at both the inner and outer turning po
will approachp/2 with the increase of the layer numbe
When the two potential wells approach, the half-phase los
at the inner turning points6xt1 strongly depend on the quan
tum tunnelling. With the increase ofl, which means the
tunnelling is more and more appreciable, the deviation fr
p/2 of the half-phase losses at6xt1 also increases, while the
half-phase losses at6xt2 almost keep constant. This is illus
trated in Fig. 2.

IV. SUMMARY

We have derived the quantization conditions for ene
splitting of symmetric double-well potentials by the analy
transfer matrix method. The half-phase losses at the o
turning points arep/2, while those at the inner points ar
smaller thanp/2 and strongly depend on the quantum tu
nelling, which is totally different from the WKB method an
other modified WKB methods. With the aid of the corre
phase losses and the phase contribution of subwaves, t
retically, as the number of segment layer approaches
nitely, the exact results can be obtained.
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