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H = − d2

dx2
+ m2x2 + gx4 , x ∈ R

◮ m2 ≥ 0 is anharmonic oscillator

◮ m2 < 0 is double-well potential (or Higgs, Lifschitz)
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Idea is to combine in a single (approximate) wavefunction:

◮ Perturbation Theory near the minimum of the potential

Ψ(x) = e−αx2
(1 + β1x

2 + β2x
3 . . .) (ground state)

◮ correct WKB behavior at large distances (inside of the domain
of applicability)

◮ Tunneling between classical minima
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What is known about eigenfunctions:

◮ For real m2, g ≥ 0 any eigenfunction Ψ(x ; m2, g) is entire
function in x

◮ Any eigenfunction has finitely many real zeros (the
oscillation theorem)

and

infinitely many complex zeros situated on the

imaginary axis

A Eremenko, A Gabrielov (Purdue), B Shapiro
(Stockholm), 2008
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Take the Schroedinger equation

~
2

2µ

d2Ψ

dx2
+ (E − V )Ψ = 0

make a formal substitution

Ψ = e−
ϕ
~

finally,

~
dy

dx
− y2 = 2µ(E − V ) , y =

dϕ

dx

the Bloch (or Riccati) equation.
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Semiclassical expansion

y = y0 + ~y1 + ~
2y2 + . . .

y0 = ±(2µ(E − V ))1/2 = ±p , y1 = −1

2
log p , etc

Domain of applicability (naive)

~y1

y0
≪ 1

Definitely, it is applicable when |p| is large (x → ∞ for growing
potentials)
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Main object to study is the logarithmic derivative

y = −Ψ′(x)

Ψ(x)
= ϕ′(x) , Ψ(x) = e−ϕ(x)

here ϕ(x) is the phase.
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Riccati equation

y ′ − y2 = E − m2x2 − gx4 ,

In general, y is odd and

y = −
n∑

i=1

1

x − xi

+ yreg (x)

here xi are nodes and yreg (0) = 0.

Ground state: n = 0 (no nodes), y = yreg

⇒ y has no singularities at real x and y(0) = 0.
y(x) = 0 − > extremes of Ψ(x)

If m2 ≥ (m2)crit , ∃ single maximum at x = 0
If m2 < (m2)crit , ∃ two maxima and one minimum at x = 0
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Asymptotics

Asymptotics:

y = g1/2x |x | + m2

2g1/2

|x |
x

+
1

x
− 4gE + m4

8g3/2

1

x |x | −
m2

2g

1

x3
+ . . .

|x | → ∞

y = Ex +
E 2 − m2

3
x3 +

2E (E 2 − m2) − 3g

15
x5 + . . .

|x | → 0
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Asymptotics

or, for phase

ϕ =
g1/2x2|x |

3
+

m2

2g1/2
|x |+ log |x | − 4gE + m4

8g3/2

1

|x | +
m2

g

1

x2
+ . . .

|x | → ∞
first two terms are H-J asymptotics (classical action), the third
term also, but not its coeff is defined (quadratic fluctuations)

ϕ =
E

2
x2 +

E 2 − m2

12
x4 +

2E (E 2 − m2) − 3g

90
x6 + . . .

|x | → 0
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Interpolation

Let us interpolate perturbation theory at small distances and
WKB asymptotics at large distances

ψ0 =
1

√

1 + c2gx2
exp

{

−A + ax2/2 + bgx4

(D2 + gx2)1/2

}

where A, a, b, c ,D are free (variational) parameters

Very Rigid expression!

(hard to modify)
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If we fix

b =
1

3
, a =

D2

3
+ m2 , c =

1

D

then

ψ0 =
1

√

D2 + gx2
exp

{

−A + (D2 + 3m2)x2/6 + gx4/3

(D2 + gx2)1/2

}

the dominant and the first two subdominant terms in the
expansion of y at |x | → ∞ are reproduced exactly

A,D are still two free parameters which we can vary.

Our approximation has no complex zeroes on imaginary x−axis
but branch cuts going along imaginary axis to ±i∞.
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If ψ0 is taken a variational then for all studied m2 from -20 to
+20 and g = 2
the variational energy reproduces 7 - 10 significant digits
correctly!!
but the accuracy drops down with a decrease of m2 < 0 (from 10
to 7 s.d.)
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Perturbation Theory and Variational Method
Take a trial function ψ0(x) normalized to 1, then restore the
potential V0, energy E0

ψ′′
0 (x)

ψ0(x)
= V0 − E0

and construct the Hamiltonian H0 = p2 + V0.

Variational energy

Evar =

∫

ψ0Hψ0 =

∫

ψ0H0 ψ0

︸ ︷︷ ︸

=E0

+

∫

ψ0 (H − H0)
︸ ︷︷ ︸

V−V0

ψ0

︸ ︷︷ ︸

=E1

= E0 + E1(V1 = V − V0)
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◮ Variational calculations can be considered as the first two
terms in a perturbation theory,
it seems natural to require a convergence of this PT series

◮ By calculation of next terms E2,E3, . . . one can evaluate an
accuracy of variational calculation (i) and improve it
iteratively (ii)
(if the series is convergent, of course)
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One more, physical property must be introduced into the
approximation:

at m2 → −∞ the barrier grows, tunneling between wells
decreases, the wavefunction has two maxima (corresponding
to two minima of the potential) and one minimum at origin
which value tends to zero ⇒

ψ0 =
1

(D2 + gx2)1/2
exp

{

−A + (D2 + 3m2)x2/6 + gx4/3

(D2 + gx2)1/2

}

×

cosh
αx

(D2 + gx2)1/2

(following the E.M. Lifschitz prescription, Ψ± = Ψ(x + α̃) ± Ψ(x − α̃))
in total, we have now three free parameters, A,D, α.

Alexander Turbiner Double Well Potential



Outline
One-dimensional Anharmonic Oscillator

Double Well
Perturbation Theory of Non-linealization Method

With this modification for all studied m2 from -20 to +20 and
g = 2

the variational energy reproduces 9 - 11 significant digits

correctly!!

Alexander Turbiner Double Well Potential



Outline
One-dimensional Anharmonic Oscillator

Double Well
Perturbation Theory of Non-linealization Method

Perturbation Theory of “Non-linealization” Method

Take Riccati equation instead of Schroedinger equation

y ′ − y2 = E − V , y = (log Ψ)′

and develop PT there. If Ψ0 is given, let

V = V0 + λV1

where V0 = Ψ′′
0/Ψ0, then perturbation theory

y =
∑

λnyn , E =
∑

λnEn

Alexander Turbiner Double Well Potential



Outline
One-dimensional Anharmonic Oscillator

Double Well
Perturbation Theory of Non-linealization Method

For nth correction

λn
∣
∣
∣ y ′

n − 2y0 · yn = En − Qn;

Q1 = V1

Qn = −
n−1∑

i=1

yi · yn−i , n = 2, 3, . . .

Multiply both sides by Ψ2
0,

(Ψ2
0 yn)

′ = (En − Qn)Ψ2
0

Boundary condition: |Ψ2
0 yn| → 0 at |x | → ∞ (no particle current)
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En =

∫ ∞

−∞
QnΨ

2
0 dx

∫ ∞

−∞
Ψ2

0 dx

yn = Ψ−2
0

∫ x

−∞

(En − Qn)Ψ
2
0 dx ′

d = 1
M. Price (1955), Ya.B. Zel’dovich (1956)

ground-state
. . . Y.Aharonov (1979) . . . A.T. (1979) . . .
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g = 2 , m2 = 1

D = 4.33441

A = −9.23456

α = 2.74573

* * *

Evar = 1.607541302594

∆Evar = −1.2552 × 10−10

Ẽvar = Evar + ∆Evar = 1.607541302469

all digits are correct
the next correction E3 is of the order of 10−14
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g = 2 , m2 = −1

D = 4.059888

A = −12.4816

α = 3.07041

* * *

Evar = 1.029560832093

∆Evar = −1.0382 × 10−9

Ẽvar = Evar + ∆Evar = 1.029560831054

all digits are correct
the next correction E3 is of the order of 10−13
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Figure: Logarithmic derivative y0 as function of x for double-well
potential with m2 = −1, g = 2
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Figure: The first correction y1 for m2 = −1, g = 2
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g = 2 , m2 = −20

D = 6.765663

A = −286.6456

α = 49.6136

* * *

Evar = −43.7793127

∆Evar = −3.81 × 10−6

Ẽvar = Evar + ∆Evar = −43.7793165

all digits are correct
the next correction E3 is of the order of 10−8
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Figure: Logarithmic derivative y0 as function of x for double-well
potential m2 = −20, g = 2
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Where d2Ψ
dx2 |x=0 = 0 ? =⇒ When E = 0 (classical motion

‘stops to feel’ the presence of two minima)

E (m2 = (m2)crit = −3.523390749, g = 2) = 0

◮ for m2 > (m2)crit , d2Ψ
dx2 |x=0 < 0

(single-peak distribution)
For 0 > m2 > (m2)crit the potential is double well one, but
wavefunction is single peaked, no memory about two minima,
particle prefers to stay near unstable equilibrium point !

◮ for m2 < (m2)crit , d2Ψ
dx2 |x=0 < 0

(double-peak distribution) as it should be in WKB domain
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First Excited State

Similar expansions for |x | → ∞ and x → 0 (with addition
− log |x |).

ψ1 =
1

(D2 + gx2)
exp

{

−A + (D2 + 3m2)x2/6 + gx4/3

(D2 + gx2)1/2

}

×

sinh
αx

(D2 + gx2)1/2

(following the E.M.Lifschitz presciption)
in total, we have three free parameters, A,D, α.
For all studied m2 from -20 to +20 and g = 2 the variational
energy reproduces 9 - 11 significant digits correctly!!
(similar to the ground state)
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g = 2 , m2 = −20

D = 5.584375978

A = −246.643750

α = 38.82768

* * *

Evar = −43.77931637

∆Evar = −9.3618 × 10−8

Ẽvar = Evar + ∆Evar = −43.77931646

all digits are correct
the next correction E3 is of the order of 10−10

Alexander Turbiner Double Well Potential



Outline
One-dimensional Anharmonic Oscillator

Double Well
Perturbation Theory of Non-linealization Method

Energy Gap

∆E = Efirst excited state − Eground state

∆E =
211/4

√
π

|m2|5/4e−
√

2|m2|3/2

6

(

1−71

12

1√
2|m2|3/2

−6299

576

1

|m2|3 +. . .

)

at g = 2

J Zinn-Justin et al , 2001
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⋆ g = 2 , m2 = −20

∆Evar = 1.03282 × 10−7

∆E
(1)
var = 1.06529 × 10−7

∆E
(2)
var = 1.06525 × 10−7

one − instanton = 1.12154 × 10−7 (5.3% deviation)

one − instanton + correction = 1.06908 × 10−7 (0.36% deviation)

one−instanton+twocorrections = 1.06754×10−7 (0.22% deviation)
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⋆ g = 2 , m2 = −10

∆Evar = 0.033303855268

∆E
(1)
var = 0.033304504328

∆E
(2)
var = 0.033304503958

one − instanton = 0.03910369433 (17.4% deviation)

one − instanton + correction = 0.03393024864 (1.90% deviation)

one−instanton+twocorrections = 0.03350261987 (0.59% deviation)
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(i) What about excited states ?

(ii) How to modify the function ψ0,1 ?

ψ
(k)
0 =

Pk(x2)

(D2 + gx2)k+1/2
exp

{

−A + ax2/2 + gx4/3

(D2 + gx2)1/2

}

cosh
αx

(D2 + gx2)1/2

where Pk is a polynomial of kth degree with positive roots found
through conditional minimization

(ψ
(k)
0 , ψ

(ℓ)
0 ) = 0 , ℓ = 0, 1, 2, ...(k − 1)
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and for negative parity states

ψ
(k)
1 =

Qk(x2)

(D2 + gx2)k+1
exp

{

−A + ax2/2 + gx4/3

(D2 + gx2)1/2

}

sinh
αx

(D2 + gx2)1/2

where Qk is a polynomial of kth degree with positive roots found
through conditional minimization

(ψ
(k)
1 , ψ

(ℓ)
1 ) = 0 , ℓ = 0, 1, 2, ...(k − 1)
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What about sextic oscillator?

H = − d2

dx2
+ m2x2 + g4x

4 + g6x
6 , x ∈ R

If dimensionless number q ≡ g2
4

4g
3/2
6

− m2

g
1/2
6

= 2n + 3, n = 0, 1, 2, . . .,

the QES situation occurs, (n + 1) eigenstates are known exactly.
♠ For Ground State:

y ′ − y2 = E − m2x2 − g4x
4 − g6x

6 , y(0) = 0

y has no simple poles at x ∈ R.
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Asymptotics:

y = g
1/2
6 x3 +

g4

2g
1/2
6

x +
1

2

(

3 − q

)
1

x
−

1

2g
1/2
6

[

E +
g4

2g
1/2
6

(

1 − q

)]

1

x3
+ . . . at |x | → ∞

There is no limit to the quartic osc case when g6 tends to zero!
Completely different expansion... But at small distances they are
similar

y = Ex +
E 2 − m2

3
x3 +

2E (E 2 − m2) − 3g4

15
x5 + . . . at |x | → 0
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Asymptotics:

ϕ =
g

1/2
6

4
x4 +

g4

4g
1/2
6

x2 +
1

2

(

3 − q

)

log x +

1

4g
1/2
6

[

E +
g4

2g
1/2
6

(

1 − q

)]

1

x2
+ . . . at |x | → ∞

There is no limit to the quartic osc case when g6 tends to zero!
For QES case q = 3 (no log term and all subsequent ones).

At small distances

ϕ =
E

2
x2+

E 2 − m2

12
x4+

2E (E 2 − m2) − 3g4

90
x6+. . . at |x | → 0

Alexander Turbiner Double Well Potential



Outline
One-dimensional Anharmonic Oscillator

Double Well
Perturbation Theory of Non-linealization Method

Interpolation:

ψ0 =
1

(D2 + 2bx2 + g6x4)
3−q

8

exp

{

−A + ax2 + (g4 + b)x4/4 + g6x
6/4

(D2 + 2bx2 + g6x4)1/2

}

where A, a, b,D are variational parameters.
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If q = 3 the potential is

V = (
g2
4

4g6
− 3

√
g6)x

2 + g4x
4 + g6x

6

and, finally,

ψ0 = exp {− g4

4g
1/2
6

x2 − g
1/2
6

4
x4}

It is quasi-exactly-solvable case.
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Depending on the parameters the sextic potential has one-, two- or
three minima. The Lifschitz argument leads to

ψ0 =
1

(D2 + 2bx2 + g6x4)
3−q

8

exp

{

−A + ax2 + (g4 + b)x4/4 + g6x
6/4

(D2 + 2bx2 + g6x4)1/2

}

×

cosh
αx

(D2 + 2bx2 + g6x4)1/2
+

B

(D̃2 + 2b̃x2 + g6x4)
3−q

8

exp

{

− Ã + ãx2 + (g4 + b̃)x4/4 + g6x
6/4

(D̃2 + 2b̃x2 + g6x4)1/2

}
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Zeeman Effect on Hydrogen

H = −∆ − 2

r
+ γ2ρ2 , x ∈ R3

where r =
√

x2 + y2 + z2 , ρ =
√

x2 + y2 and γ magnetic field.
For Ground State:

(∇ · ~y) − ~y2 = E − V , ~y = ∇ log Ψ
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For phase

ϕ =
γρ2

2
+ . . .

|x | → ∞
and

ϕ = r + a2,0r
2 + a0,1ρ

2 + a3,0r
3 + a1,1rρ

2 + . . .+ an,k rn(ρ2)k + . . .

|x | → 0
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Interpolation:

ψ0 =
1

(D2 + αz2 + 4γ2ρ2)1/2

exp

{

−A + ar + bz2 + cρ2 + γ2rρ2

(D2 + αz2 + 4γ2ρ2)1/2

}

where A, a, b, c ,D2, α are variational parameters.
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What about multidimensional quartic oscillator?

H = −∆ + m2
∑

x2
i + g

(
∑

x4
i + ĉ

∑

i 6=j

x2
i x2

j

)

≡ −∆ + V ,

in x ∈ RD .
For Ground State:

(∇ · ~y) − ~y2 = E − V , ~y = ∇ log Ψ
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Interpolation:

ψ0 =
1

(d2 + g
∑

x2
i )1/2

exp







−
A + a

∑
x2
i + g

(

b
∑

x4
i + c

∑

i 6=j x2
i x2

j

)

(d2 + g
∑

x2
i )1/2







where A, a, b, c , d are variational parameters.

D = 2 (A.T. 1988)
D → ∞?
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