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One-dimensional Anharmonic Oscillator

d2
H:—F+m2x2+gx4, x€R
Ix
» m? > 0 is anharmonic oscillator

» m? < 0 is double-well potential (or Higgs, Lifschitz)
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One-dimensional Anharmonic Oscillator

Idea is to combine in a single (approximate) wavefunction:

» Perturbation Theory near the minimum of the potential

V(x) = e—ax2(1 + B1x% + fox3..) (ground state)

» correct WKB behavior at large distances (inside of the domain
of applicability)
» Tunneling between classical minima
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One-dimensional Anharmonic Oscillator

What is known about eigenfunctions:

» For real m?, g > 0 any eigenfunction W(x; m?, g) is entire
function in x

» Any eigenfunction has finitely many real zeros (the
oscillation theorem)

and
infinitely many complex zeros situated on the
imaginary axis

A Eremenko, A Gabrielov (Purdue), B Shapiro
(Stockholm), 2008
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One-dimensional Anharmonic Oscillator

Take the Schroedinger equation
B v
2u dx?

make a formal substitution

+(E- V)W =0

finally,

dy o
B _
ax 7
the Bloch (or Riccati) equation.
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One-dimensional Anharmonic Oscillator

Semiclassical expansion

y=yo+hyr + By +...

1
yo=FQuE-V)P=2p , yi= —5logp, etc
Domain of applicability (naive)

h)/1
Yo

Definitely, it is applicable when |p| is large (x — oo for growing
potentials)

<1
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One-dimensional Anharmonic Oscillator

Main object to study is the logarithmic derivative
v'(x)
V(x)

here ¢(x) is the phase.

= G0, W(x) =P
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One-dimensional Anharmonic Oscillator

Riccati equation
Y=y = E— m’x* — ot |

In general, y is odd and

n

1
y = 7ZX—X,' 2 }/reg(X)
i=1

here x; are nodes and y,e;(0) = 0.

Ground state: n =0 (no nodes), W= Ve
=y has no singularities at real x and y(0) = 0.
y(x) =0 — > extremes of W(x)
If m? > (m?)rie, 3 single maximum at x = 0
If m? < (m?)ie, 3 two maxima and one minimum at x = 0
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One-dimensional Anharmonic Oscillator

Asymptotics

Asymptotics:
x| — o0
y = Ex+ Pom? s 2E(E7 —1;772)—3gxs+
|x| — 0
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One-dimensional Anharmonic Oscillator

Asymptotics

or, for phase

1/2,2 2 4 2
g xex| m 4gE +m* 1  m* 1
Y = 3 +2g1/2’X‘+IOg‘X’_

|x| — o0

first two terms are H-J asymptotics (classical action), the third
term also, but not its coeff is defined (quadratic fluctuations)

E

E2* 2 2EE2* 2\
80:2 + mX4+ ( m’) 3gX6

D 9 AFooe

|x| — 0
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One-dimensional Anharmonic Oscillator

Interpolation

Let us interpolate perturbation theory at small distances and
WKB asymptotics at large distances

1 { A+ax2/2+ng4}
Yo = -

/1 + C2gX2 ex (D2 +gX2)1/2

where A, a, b, ¢, D are free (variational) parameters

Very Rigid expression!
(hard to modify)
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One-dimensional Anharmonic Oscillator

If we fix )
1 1
bzg 9 a:?+m2 9 C:B
then
1 A+ (D? +3m?)x?/6 + gx*/3
Yo = —F=—=exp|— 2 2\1/2
/D? + gx? (D +gx)/

the dominant and the first two subdominant terms in the
expansion of y at |x| — oo are reproduced exactly
A, D are still two free parameters which we can vary.

Our approximation has no complex zeroes on imaginary x—axis
but branch cuts going along imaginary axis to £ioc.
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One-dimensional Anharmonic Oscillator

If 1)y is taken a variational then for all studied m? from -20 to

+20and g =2

the variational energy reproduces 7 - 10 significant digits
correctly!!

but the accuracy drops down with a decrease of m? < 0 (from 10
to 7 s.d.)
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One-dimensional Anharmonic Oscillator

Perturbation Theory and Variational Method
Take a trial function o(x) normalized to 1, then restore the
potential Vj, energy Eg

PYo(x) _ B
Yo(x) W=

and construct the Hamiltonian Hy = p? + V.

Variational energy

Ear = /%H% =/¢0Ho¢o+/¢o(HHo)¢o

V-V
=5 0 2

=E

= EBE+E(MWV=V-WV)
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One-dimensional Anharmonic Oscillator

» Variational calculations can be considered as the first two
terms in a perturbation theory,
it seems natural to require a convergence of this PT series
» By calculation of next terms Ep, Es, ... one can evaluate an
accuracy of variational calculation (i) and improve it
iteratively (i)
(if the series is convergent, of course)
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Double Well

One more, physical property must be introduced into the
approximation:

at m?> — —oo the barrier grows, tunneling between wells
decreases, the wavefunction has two maxima (corresponding
to two minima of the potential) and one minimum at origin
which value tends to zero =

1 o A+ (D*+3m*)x*/6 + gx*/3
(D2 1 gx2)1/2 P (D2 1 gx2)1/2

Yo =

ax

cosh —(D2 )i

(following the E.M. Lifschitz prescription, W1 = V(x + &) £ V(x — &))
in total, we have now three free parameters, A, D, a.
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Double Well

With this modification for all studied m? from -20 to +20 and
g=2
the variational energy reproduces 9 - 11 significant digits

correctly!!
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Perturbation Theory of Non-linealization Method

Perturbation Theory of “Non-linealization” Method

Take Riccati equation instead of Schroedinger equation

Yy —y? = E-V, y=(logV)

and develop PT there. If Wy is given, let

V = Vo+)\\/1

where Vo = W /W, then perturbation theory

y:ZA”y,,, E = Z)\”En

Alexander Turbiner Double Well Potential



Perturbation Theory of Non-linealization Method

For nth correction

A" y/n_2y0'Yn:En_Qn;

QL = W
n—1

Qn = = Yi-Yni, n=23,...
i=1

Multiply both sides by W3,

(\U% yn)/ = (En — Qn) \U%

Boundary condition: |W3 y,| — 0 at |x| — co (no particle current)
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Perturbation Theory of Non-linealization Method

ffooo Qn\U% dx
ffooo \U% dx

Yo = W52 / (E, — Qn)W3 dx’

— 00

d=1
M. Price (1955), Ya.B. Zel'dovich (1956)
ground-state
..'Y.Aharonov (1979) o AT (1979) ...
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Perturbation Theory of Non-linealization Method

g=2,m=1
D = 4.33441
A = —9.23456
a = 2.74573
* % %k

E,.r = 1.607541302594

AE,,, = —1.2552 x 10719
E. =E,., +AE,, = 1607541302469

all digits are correct
the next correction Ez is of the order of 10714
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Perturbation Theory of Non-linealization Method
2
g = 2 : m- = —]_

D = 4.059888
A = —12.4816

a = 3.07041

* K X
E,or = 1.029560832093

AE,,, = —1.0382 x 107°
E,., = E,a + AE,.,, = 1.029560831054

all digits are correct
the next correction Ez is of the order of 10713
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Perturbation Theory of Non-linealization Method
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Figure: Logarithmic derivative yy as function of x for double-well
potential with m?> = —1,g =2

X
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Figure: The first correction y; for m*> = —1,g =2
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Perturbation Theory of Non-linealization Method
2
g=2, m=-20

D = 6.765663
A

— —286.6456
a = 49.6136
X %k Xk
E,., = —43.7793127
AE,,, = —3.81x107°
E,. = E, +AE,, — —43.7793165

all digits are correct
the next correction Ez is of the order of 1078

Alexander Turbiner Double Well Potential



Perturbation Theory of Non-linealization Method

Yo

Figure: Logarithmic derivative yp as function of x for double-well
potential m?> = —20,g =2
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Perturbation Theory of Non-linealization Method

2 o .
Where €¥|,_o=0 ? = When E = 0 (classical motion
dx o
‘stops to feel’ the presence of two minima)

E(m? = (m?)erie = —3.523390749,g = 2) = 0

> for m? > (m?)ic dx2 \X 0<0
(single-peak distribution)
For 0 > m? > (m?): the potential is double well one, but
wavefunction is single peaked, no memory about two minima,
particle prefers to stay near unstable equilibrium point !

> for m? < (m?)aie dx2 Ylx=0 <0
(double-peak distribution) as it should be in WKB domain
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Perturbation Theory of Non-linealization Method

First Excited State

Similar expansions for |x| — oo and x — 0 (with addition
 log |x]).

Y1 =

1 o A+ (D +3m*)x*/6 + gx*/3 y
(D? + gx?) P (D? + gx?)1/2
ax

sinh —(D2 T d)i

(following the E.M.Lifschitz presciption)
in total, we have three free parameters, A, D, c.
For all studied m? from -20 to +20 and g = 2 the variational
energy reproduces 9 - 11 significant digits correctly!!
(similar to the ground state)
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Perturbation Theory of Non-linealization Method
2
g=2, m=-20

= 5.584375978
—246.643750
38.82768

* % %k

A =

o =

E,., = —43.77931637

AE,,, = —9.3618 x 1078
var + AE ., = —43.77931646

Evar =
all digits are correct

the next correction Ej3 is of the order of 10710
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Perturbation Theory of Non-linealization Method

Energy Gap
AE = Efirst excited state — Eground state
2 _V2m?3/2 \3/2 71 1 6299 1
AE = = —|m?¥/%e 1—— —
7 m 12 \/2|m232 576 |m?[F

at g =2

J Zinn-Justin et al , 2001
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Perturbation Theory of Non-linealization Method

*x g=2,m>=-20

AE,,, = 1.03282 x 10~
AEY — 106529 x 1077
AE?) — 106525 x 107

one — instanton = 1.12154 x 10~"  (5.3% deviation)
one — instanton + correction = 1.06908 x 10~" (0.36% deviation)

one— instanton-twocorrections = 1.06754x10~" (0.22% deviation)
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Perturbation Theory of Non-linealization Method

*x g=2,m>=-10

AE,, = 0.033303855268
AEY) = 0.033304504328
AER) = 0.033304503958

one — instanton = 0.03910369433 (17.4% deviation)
one — instanton + correction = 0.03393024864 (1.90% deviation)
one—instanton+twocorrections = 0.03350261987 (0.59% deviation)
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Perturbation Theory of Non-linealization Method

(i) What about excited states ?
(ii) How to modify the function g1 ?

P =

Py (x?) _A+ax2/2+gx4/3
(Dz +gx2)k+1/2 (D2 +gx2)1/2
ax

cosh —(D2 )i

where Py is a polynomial of kth degree with positive roots found
through conditional minimization

(¢(()k)7¢é£)) =0,¢=0,1,2, (k o 1)
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Perturbation Theory of Non-linealization Method

and for negative parity states

(k) _ Qk(X2) o 7A+ax2/2+gx4/3
1 (D2 1 gx2)krt &P (D2 + gx2)1/2
sinh — %
(D2 1 gx2)1/2

where Qy is a polynomial of kth degree with positive roots found
through conditional minimization

W v =0, £=01,2,..(k—-1)
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Perturbation Theory of Non-linealization Method

What about sextic oscillator?

d2
H:fw+m2x2+ gax* + gex® xeR

. . 2 2
If dimensionless number g = 4g—§/2 -4z =2n+3,n=0,1,2,...,
g g

6 6
the QES situation occurs, (n+ 1) eigenstates are known exactly.

& For Ground State:

Y —y* = E— m*’x? — gix* — gx® , y(0)=0

y has no simple poles at x € R.
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Perturbation Theory of Non-linealization Method

Asymptotics:

1/2 8. 1 1
28
1

84
E+ (1 — q)
1/2 2
2g6/ 2g61/

There is no limit to the quartic osc case when gg tends to zero!
Completely different expansion... But at small distances they are
similar

1
—3+ at |X|*>OO
X

E2—m? 5 2E(E>—m?) -3
y = Ex+ M 34 ( m”) 84 5

3 15

4+ ... at|X|—>0
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Perturbation Theory of Non-linealization Method

Asymptotics:

g1/2 . 1
o=0_x* 4 f2x2+—<3—q> log x +
4 4g/ 2
6
1/2

E+ gf/2 <1 — q>
4gs 28
There is no limit to the quartic osc case when gg tends to zero!

For QES case g = 3 (no log term and all subsequent ones).
At small distances

1

1
—+ ... at |x]—o0
X

2 .2 2 2y
- EX2+E m x4+2E(E m*) 3g4X6

> 1 90 +... at|x]—0
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Perturbation Theory of Non-linealization Method

Interpolation:

1
(D2 + 2bx2 + gox*) s

o A4 axX® + (g + b)x* /4 + gox° /4
P (D2 + 2bx2 +g6X4)1/2

Yo =

where A, a, b, D are variational parameters.
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Perturbation Theory of Non-linealization Method

If g = 3 the potential is

2
V= (B4 _3/3)52 + gax* + gox°

4g6
and, finally,
p g1/2
4
Yo = exp{— 1/2X2*67X4}
4g6

It is quasi-exactly-solvable case.
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Perturbation Theory of Non-linealization Method

Depending on the parameters the sextic potential has one-, two- or
three minima. The Lifschitz argument leads to
1
(D2 4 2bx? + gox*) 7"
exp A4 ax® 4 (g + b)x* /4 + gox° /4
(Dz + 2bx2 +g6X4)1/2
ax n
(D2 + 2bx? + ggx*)1/2
B
(D2 +2bx2 + g6x4)3_Tq
exp 774 +3x2 + (g4 + b)x*/4 + gx%/4
(D2 + 2bx? + ggx*)1/2

Yo =

cosh

v
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Perturbation Theory of Non-linealization Method

Zeeman Effect on Hydrogen

2
H=-A -—=++4%%, xeR3
r

where r=+/x2+y2+ 22 p=+/x2+ y? and v magnetic field.
For Ground State:

(V-¥)—y> = E-V , y=VliogV
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Perturbation Theory of Non-linealization Method

For phase
2
974
p = 5 +
|x| — o0
and

Y = r+ag,or2+ao,1p2+a370r3+al,1rp2+...+a,,7kr”(p2)k+...

|x] — 0
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Perturbation Theory of Non-linealization Method

Interpolation:

1
(D2 + az? + 442p?)1/2
o 7A—|—ar—i—b22—|—cp2—i—72rp2
(D2 + az? + 442p2)1/2

Yo =

where A, a, b, ¢, D?, v are variational parameters.

Alexander Turbiner Double Well Potential



Perturbation Theory of Non-linealization Method

What about multidimensional quartic oscillator?

H = —-A + mQZX,-Q—i— g(Zxﬁ—i—&Zx,?xJ?) =-A+V,

i#

in xeRP.
For Ground State:
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Perturbation Theory of Non-linealization Method

Interpolation:

1
(d2 +g 3 x7)?

2 4 2.2
A+ad x5+ g(be,- +CZ,-¢J-X,-XJ->
(d2+ g > x7)H?

Yo =

exp

where A, a, b, ¢, d are variational parameters.

D=2 (A.T. 1988)
D — o0?
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