Lecture XIII 37

Lecture XIII: Double Well Potential: Tunneling and Instantons

How can phenomena of QM tunneling be described by Feynman path integral?
No semi-classical expansion!

> E.g QM transition probability of particle in double well: G(a, —a;t) = (ale=*#/"| — q)

V(x) Potential
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/ potential \
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> Feynman Path Integral:

q(t)=a i t m
G(a, —a;t) = / Dqexp [—/ dt' (—¢* —V(q) }
q(o):_a h 0 < 2 )

Stationary phase analysis: classical e.om. mg = -9,V
— only singular (high energy) solutions Switch to alternative formulation...

> Imaginary (Euclidean) time Path Integral: Wick rotation ¢t = —it

N.B. (relative) sign change! “V — —V”

q(T)=a 1 T m
G(a,—a;T) :/ Dgexp {——/ dr' (=¢* + V(q) }
q(o):_a h 0 < 2 >

Saddle-point analysis: classical e.o.m. m§ = +V"'(¢) in inverted potential!
solutions depend on b.c.
(1) G(a,a;7) ~ qa(T) = a
(2) G(—a,—a;T) ~ qa(T) = —a
(3) G(a,—a;T) ~ qq : rolls from —a to a
Combined with small fluctuations, (1) and (2) recover propagator for single well
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(3) accounts for QM tunneling and is known as an “instanton” (or “kink”)
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> Instanton: classically forbidden trajectory connecting two degenerate minima
— i.e. topological, and therefore particle-like

For 7 large, g ~ 0 (evident), i.e. “first integral” mgy®/2 — V(qa) =¢ — 0
precise value of € fived by b.c. (i.e. T)

Saddle-point action (cf. WKB f dqp(q))

S = [ ' (a4 Vi) = [ drmi = [ daamis = [ dau2mV(aa))”?
0 0 —a —a

Structure of instanton: For ¢ >~ a, V(q) = smw?(¢ — a)® + -+, ie. qu ~ w(ga —a)

e~ i.e. temporal extension set by w™! < 7

T—00

qa(t) =" a-

Imples existence of approximate saddle-point solutions
involving many instantons (and anti-instantons): instanton gas

> Accounting for fluctuations around n-instanton configuration
An,cl.An,qu.

g 1 Tn—1 PR N,
G(a,xa;1) ~ Z K”/O dﬁ/o d7'2~--/0 Aty An(T1, .o Tn),

n even /odd
constant K set by normalisation

Apa = e Sinst. /I <clagsical’ contribution

A qu. — quantum fluctuations (imported from single well): Gy (0,0;¢) ~ \/ﬁ

n 1 n
An u ™~ ~ —w(Tip1—Ti)/2 ~ —wT/2
o 1:[ \/Sin(_iw(ﬂ‘ﬂ - 7)) 1:16 ¢

7" /n!
7\
~

Ve

T T1 Tn—1
G(a,xa;T) ~ Z K”e_”si““'/he_wm/ dTl/ dTo - - / dr,,
0 0 0

n even /odd

_ Z €_WT/2% (TKe—Sinst_/h>n

n even / odd

Using e = Y (2" /nl,
G(a,a;7) =~ Ce ™/ cosh (1Ke Smse/M)

Ce /2 ginh (TKe—Smst,/h)

N.B. non-perturbative in A!

G(a,—a;7) =~
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Consistency check: main contribution from

n nin!

no. per unit time, n/7 exponentially small, and indep. of 7, i.e. dilute gas

n=(n)

4
A

Exact States Oscillator States

> Physical interpretation: For infinite barrier — two independent oscillators,
coupling splits degeneracy — symmetric/antisymmetric

Gla, +a;7) ~ (a|S)e ™MS| £ a) + (a|A)e 4" A| + a)

(aS)P = (alS)S| —a) = S {alA) = ~(alAYA] —a) = S
Setting: €4/ = hw/2 £+ Ae/2

Gla, a;7) = % (e7em /2t g (R BT/ = Cemerl? { Zfﬁﬁfﬁﬁf/%)
> Remarks:
(i) Legitimacy? How do (neglected) terms O(h?) compare to Ae?

In fact, such corrections are bigger but act equally on |S) and | A)

i.e. Ae = hKe Sms./M is dominant contribution to splitting

V()

(ii) Unstable States and Bounces: survival probability: G(0,0;t)? No even/odd effect:

T=1 —i r
G(0,0;7) = Ce ™% exp [TKe’Si“St/h} =" Ce ™2 exp {_575]
Decay rate: I' ~ |K|e=%nt/" (i.e. K imaginary) N.B. factor of 2
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