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A method to calculatethe elastic scatteringamplitudeat low energiesin two-dimensional
quantumfield theoriesis proposedand testedin a numericalsimulationof the0(3) non-linear
if-model on a simple squarelattice. We alsocompute the isospin current form factor in this
model andcompareour resultswith theknown exactexpressionsfor theS-matrix andthe form
factorin thecontinuumlimit. As a technicalimprovement,we introducea two-clustersimulation
algorithm which leadsto significantly reducedstatisticalerrorsin the calculationof four-point
correlationfunctions.

1. Introduction

In the past few years, numerical simulations of (euclidean)quantum field
theorieshavebecomea widely usedandhighly successfultechniqueto determine
their fundamentalpropertiesin various regionsof the parameterspace.In most
cases,the quantitiescalculatedare the particlemassspectrumandbulk quantities,
such as specific heats, internal energiesand fermion condensates.For partly
technicalandpartly physicalreasons,it is much harderto also determinecoupling

constantsand the elastic scatteringmatrix, i.e. quantitiesthat are derivedfrom
three-and four-point correlationfunctions.Thus,as far as we know, the 4.4-theory
is actually the only four-dimensionalfield theory where one has succeededto
compute the scatteringlengthsassociatedwith the scatteringof the fundamental
particles[1, 21.

The most importantresult obtainedin this paperis the practicaldemonstration
that thescatteringphaseshifts at low momentacanbe calculatedin a ratherdirect

0550-3213/90/$03.50© ElsevierSciencePublishersB.V.
(North-Holland)



M. Lhscher,U. Wolff / Elastic scatteringmatrix 223

and comparativelysimple mannerin two-dimensionalquantumfield theories.The
basic idea (which has alreadybeen sketchedin an earlier publication [6]) is to
computethe energyspectrumin the two-particle sectorin a sufficiently largebut
finite periodic box. For any observedlevel with zero total momentum,definite
internalquantumnumbersandenergyW, thecorrespondingscatteringphaseshift
~(k) at momentumk in the center-of-massframe is thengiven by

~ e_ikL. (1.1)

Here, L denotesthe box size and k is related to W through

W=2Vm2+k2, (1.2)

m beingthe massof the scatteredparticles(which we haveassumedto be identical
for simplicity). Thus, if W and m havebeenaccuratelydeterminedin a numerical
simulation, the momentumk can be extractedfrom eq. (1.2) and the scattering
phaseat this momentumis thengiven by eq.(1.1). Note that for any fixed valueof
L, oneobtainsthe scatteringphaseat a discreteset of momentak accordingto the
measuredspectrumof energyvaluesW. If desired,a whole rangeof momentak
can be coveredby varying L at fixed m.

As we shall discussin greaterdetail lateron, the fundamentalrelation(1.1) is
only valid when scalingviolations and polarizationeffects can be neglected,i.e.
only whenoneis sufficiently close to the continuumlimit andwhenthe box size L
is so large that virtual particle exchanges“around the world” are strongly sup-
pressed.Physically speaking,what is required is that the Compton wave length
rn’ of the particlesshould be severallattice spacingsat least; in particular, the
relativistic energy-momentumdispersion should be accuratelyvalid for small
momenta.Furthermore,the box size L should be significantly larger than the
interactionrange so that when two particles are containedin the box, they will
havesome spaceto propagatefreely beforethey feel the presenceof eachother.

It is quite clear from theseremarks that the procedureoutlined above will
require large lattices to be simulatedat large correlation lengths and thus the
calculationmay turn out to be impracticalfor a given model dueto critical slowing
down of the commonly usedsimulation algorithms. To test the method we have

thereforedecidedto considerthe 0(3) non-linearcr-modelwherea highly efficient
algorithm (the “one-clusterupdatealgorithm”) has recently been found [8—11].
There seemsto be no critical slowing down for this algorithmandthuswe areable
to obtain interestingresultswith about240 hours of singleprocessorCPU time on

a CRAY-XMP.
Of course,thereis also an independentinterestto studythis particularmodel,

becauseherean exact formula for the scatteringmatrix in the continuumlimit has
beenproposedmany yearsago by Zamolodchikovand Zamolodchikov[15] on the
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basis of the existenceof higher conservationlaws plus some (weak) qualitative
assumptions,andthuswe havea good opportunitynow to checkto what extentthe
lattice model is ableto reproducetheseexpressions.If wefind agreement,not only
our methodandthe exact S-matrixwould be confirmed,but onewould also obtain
additional evidencethat the continuum limit of the lattice model exists in the
expectedway, a commonly made assumptionwhich has recently been critically
discussedin a seriesof papersby Patrascioiuet al. [24—271.

There is actually another,moreeasilyaccessiblequantity which canbe usedto
obtain a similarconsistencytestof thelattice 0(3) u-model.This is theform factor

G(k) of the isospin currentj~(x) definedthrough

(p,c~j~(0)~q,d) = —i(p~+ q )(~ac
6bd — ~ad6bc)G(k) (1.3)

where Ip~c) denotesthe one-particlestatewith momentump andisospinlabel c,
and k is given by

k= ~— (p —q)
2 ~ 0. (1.4)

Startingfrom the known S-matrix, an exact formula for the form factor hasbeen
derivedby Karowski andWeisz [21], and thuswe havedecided to also compute
thisquantityat low momenta,which is, in principle, a much simplertask than the
calculationof the scatteringmatrix.

The organizationof our paperis asfollows. We first summarizethe known exact
resultson the scatteringmatrix andthe form factor in the 0(3)non-linearcr-model

(sect. 2). The lattice version of the model is introduced in sect. 3 and the
simulation algorithm that we have used is briefly discussed.In particular, a
modification of the cluster algorithm is described here which is particularly
effective for the calculation of the four-point correlation function of the funda-
mental spin field. In sect. 4 we explain how to computethe current form factor
G(k) anddiscussour results for this quantity.We thenproceedto the calculation
of the scatteringmatrix accordingto the techniqueoutlined above(sect.5). This

sectionalso includesa discussionof the proofand limitations of the fundamental
eq.(1.1). The paperendswith a few concludingremarksin sect. 6.

2. Exactresultson the 0(n) model

In thissectionwe summarizewhat is known aboutthe scatteringmatrix andthe
currentform factor in the continuumlimit of the 0(n) non-linearcr-model in 1 + 1
dimensions[15—23].Apart from introducingour notations,thisdiscussiongives us
the opportunityto list the critical assumptionsthat haveto be madeto be ableto
derivethe exact S-matrix andthussome feelingwill result as to how crediblethis
formula is.
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2.1. NOTATIONS AND BASIC PROPERTIES

On a classicallevel, the 0(n) model describesan n-componentspin field*

a = 1,..., n, x = (x°,x’) ~ EI~ (2.1)

of unit length,viz.

s(x) s(x) = 1. (2.2)

The classicalaction is

S= ~fd~x~s(x) ~a~s(x), (2.3)

wheref> 0 denotesthe couplingconstant.The conservedcurrent associatedwith
the obvious0(n) symmetry(the “isospin” symmetry)of the actionreads

jab(x) = ~ [~a(~)B~Sb(X) - Sb(X)dSa(X)] (2.4)

There are many more symmetriesin this model, which we shall briefly refer to
lateron.

It is well known that the scaleinvarianceof the classicaltheory is broken after
quantizationby the conformal anomaly,and thus it is commonly believedthat a
massgap develops.More specifically, one has reasonto expect that the particle
spectrumin the quantizedmodelconsistsof an 0(n) vector of particlesof massm
andthat the groundstate 0) is 0(n) invariant.Thus, thereareone-particlestates

p,a), a=1 n, (2.5)

labelledby a momentum

~(~O~1) pO=~m2+(p1)2>O (2.6)

and an isospin index a. The normalization and phaseof thesestatesmay be
chosensuch that

(p,a~q,b)= ~ab
2pO2~.3(pI — q’), (2.7)

<O~sa(x)~p,b) = (2.8)

where Z> 0 is some constant that dependson how the regularization and

* Greek indices~s,v,... run from 0 to I and Latin indices a, b... from I to n. Repeatedindicesare

summedover. The space-timemetric is taken to be g~,= diag(1,—1), and the associatedscalar
product reads.~y=gx~’y” =x~’y~.Partial derivativesareabbreviatedby d.,~=g~,,ü’~



226 M. Lüscher,U Wolff / Elastic scatteringmatrix

renormalizationof the theoryhas beenperformed. Insteadof the momentump,
many authorsusethe rapidity variable

= ln(p°+pt)/m, (2.9)

p°=mcoshij, p’=msinhs~. (2.10)

Accordingly, we shall also write ~,a) for the one-particlestatesand the normal-
ization (2.7) thenreads

(~,aI~,b) ab

4~(~ —x). (2.11)

As alreadymentionedabove,the 0(n) symmetryis expectedto be unbrokenin the
quantizedtheory. The charge

Jab = fdxl j~(x) (2.12)

thusannihilatesthe vacuumstate10) andwe may choosethe normalizationof the
isospincurrent in sucha way that

Jabl~C) =i( 5~l~,b)— ~I~,a)). (2.13)

(On a formal level, eq. (2.13) is implied by the definition (2.4) and the canonical
quantizationrules; in what follows we just fix the normalizationof the currentby
imposing(2.13).)

2.2. ELASTIC SCATTERING MATRIX

Consider now an elastic scattering processwhere two particles with initial
momenta p, q and isospin labels a,b scatter and end up in the final state
describedby the momentap’, q’ and isospinlabels a’, b’. Dueto Bosesymmetry,it
sufficesto discussthe casewhere the correspondingrapidities satisfy

~>x, ?1’>x’. (2.14)

The associatedscatteringmatrix elementthen reads

<n’, a’; x’~b’ outI~,a;x~b in) = (4)25(~ — ~i)~(x’— X)5(0)ab,ab, (2.15)

where a = — x andthe matrix 5(0) canbe decomposedaccordingto

5(0)ahab ~a’h~ahu(0) + ~ + b~~o~(0). (2.16)

In what follows we list a numberof propertieswhich the invariant amplitudes
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o-k(0) are expectedto have, and thesealmost fix their analytic form, as has first

beenremarkedby Zamolodchikovand Zamolodchikov[15].
The most crucial set of relationssatisfied by the o~k’5are the “factorization

equations”,viz.

2~-i o~ 2iri cr
2

— . , cr3= ————~ . (2.17),(2.18)
z~—0 n—2 0 n—2

Theserelationsfollow directly from the highernon-local conservationlaws,whose
existencehasbeenestablishedmaking onlyweakstructuralassumptions[16—19].A
further consequenceof the conservationlaws (which is also implied by the higher
local conservedcurrents[20]) is the absenceof particle production. Thus, elastic
unitarity holds for arbitrary energies,and,using the factorizationequations,one
concludesthat

02

1u21
2= 2A2’ A=2~/(n—2), (2.19)

for all 0> 0.
From eq. (2.16) it is apparentthat 0-2(0) is a forward elastic scatteringampli-

tude.On very generalgrounds(basicallythe Wightmanaxioms),it canthereforebe
analyticallycontinuedinto the strip0 © Im 0 ~ ~rand,dueto eq.(2.19),o-

2(0) then
extendsto a meromorphicfunction in the whole complex plane. Furthermore,
crossingsymmetryand reality imply

u2(i~-—0) = 0-2(0), o2(0)* = 0-2( _fl*), (2.20), (2.21)

and the unitarity relation(2.19) may be rewritten in the form

02

cr2(0)o2(—0) = 0
2+A2 (2.22)

which is valid for arbitrarycomplex 0.
The point now is that eqs.(2.20)—(2.22)almostdetermine0-2(0). In fact, if we

addtheconstraintthat 0-2(0)is boundedby apowerof cosh0 for large Re0 (which
is reasonablebecauseof asymptoticfreedom)the mostgeneralsolution is

~2(0) =f(o)Q(o)Q(i~— 0), (2.23)

where Q(0) is definedby

— i0/2~-)T(~— iO/2ir)
Q(6) = F(~+L1—i0/2~-)F(—i0/2ir), Li = 1/(n —2), (2.24)
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and f(0) is a so-calledCDD factor, viz.

K sinh0+izk
f(0)= ±fl . . . (2.25)

k=1 slnhO—lzk

The constantsZk that enterhere are arbitrary,except that they shouldeitherbe
realor come in complex conjugatepairs.

In our opinion, the presenceof this CDD factor is the main ambiguity that
remainsandthereis actuallyno very strongargumentknown today that would fix

it. However, it hasbeenremarkedthat the choice f(0) = 1 is minimal in the sense
that cr2(0) thenhasno zerosin the physicalsheetbesidesat 0 = 0 (while thereare

additional zeros for all other choices),and this particular solution was therefore
proposedto be the scatteringmatrix of the 0(n) model [151.Furtherevidencefor
f(0) = 1 was laterobtainedby working out the scatteringmatrix to order1/n

2 in
the largen expansion[23]. For thesereasons,we shall in what follows refer to the

solutionwith no CDD factor as the exactscatteringmatrix of the 0(n) model.
Later on in the numericalwork, we shall be mainly interestedto calculatethe

scatteringphaseshifts 6
1(k) for a definite isospin I = 0, 1, 2. Theseare obtained

from the scatteringmatrix 5(6)by going to isospineigenstates,i.e. we decompose
5(0) accordingto

2

S(0)ab~b = E s1(0)P1(a’b’Iab), (2.26)
1=0

wherethe isospinprojectorsaregiven by

P0(a’b’Iab) = ~5ab~ah (2 27)

P1(a’b’lab) = I (5aa5hb — ~ab~ba) (2.28)

1 1
P2(a’b’Iab) = _(~5aa~3bb + ~ab6ha) — _~ab’~ab (2.29)2 n

For physical valuesof 0, unitarity implies lsj(0)1
2 = 1 so that, following standard

conventions,we can definethe scatteringphasesthrough

e21b1~= s
1(0) , k = m sinh~0 (2.30)

(in the centre-of-massframe, k ==p’ is the absolutevalueof the momentumof the
incomingparticles).
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Fromthe exactexpressions(2.23)and(2.24)for 0-2’ the otheramplitudescr~and
O~3 can be determinedthrough the factorization equationsand hence an exact
formula for the scatteringphasesis obtained.In the caseof the 0(3) model, the
resulting expressionsassumethe intriguingly simpleform

0+ 2ii~-
e

2’~i(~= , (2.31)
0 — 2i7r

0+2i7r 0—i~e2”~’~= _________ . (2.32)
0—2i7r 0+i7r’

0- i’rr
e2~b2~o)= (2.33)

0+ iTT

(see fig. 1). Note that ~
1(k) is only slowly (logarithmically)going to zerofor k —‘ ~

in accordancewith asymptoticfreedom.
Wewould like to mentionat this point that in a weakly coupledlinear cr-model,

the phaseshifts at low energieshave the samequalitative behaviouras in the
non-linear model, except that 60(k) starts at —TT/

2 and then monotonically
increasestowardszero for k —s ~,i.e. ~)(k) hasa similar shapeas 6

2(k).Whenthe
(renormalized)quartic coupling in the model is increasedto its maximal value,
correspondingto the non-linear model, the phaseshift developsa zero and, at
some intermediatecoupling, its value at k = 0 jumps from — TT/

2 to + IT/2 (this
canbe verified explicitly in the large n limit). Thus,the fact that 5

0(k) behavesas
shown in fig. 1 is indicativeof the truly nonperturbativenatureof the non-linear
a--modelin two dimensions.

2~11~~k~m

Fig. 1. Scatteringphaseshifts in the 0(3) non-linearif-model (eqs. (2.31)—(2.33)).The scale on the
abscissais linear for k/rn ~ I andlogarithmicfor k/m ~ 1.
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2.3. CURRENTFORM FACTOR

The currentform factor is definedthrough eqs.(1.3) and(1.4) andthe normal-
ization condition(2.13). This implies, in particular,that

G(0)=1. (2.34)

For generalvaluesof k, an exactformula for the form factor hasbeenderivedby
Karowski andWeisz [21]. The ideasinvolved in this derivationare similar to the
ones that led to the exact scatteringmatrix. In particular, one relies on the

analyticity, as implied by fundamentalprinciples,the absenceof particle produc-
tion and the known form of the scatteringphaseshift in the isospin-1channel.
Their result is

~~dt1— e2~tsin2(Ot/2TT)
G(k) =h(0)exp{_2f t 1 + et sinht }, (2.35)

wherethe rapidity variable 0 is related to k through

k=msinh~0, (2.36)

and h(0) is some realpolynomial in cosh6 with h(0)= 1.
The polynomial h(0) remainsunspecifiedif only the general requirementsof

analyticity etc. are to be fulfilled, and in this respecth(0) is similar to the CDD
factor f(0) which appearsin the exact scatteringmatrix. However, becausethe
0(n) model is asymptoticallyfree, onewould be very surprisedif the form factor
would increaseto infinity at large momenta k. Thus, if we require that G(k)

remainsbounded,it follows that h(0) = 1 and the form factor is then completely
determined.In the caseof the 0(3) model, the integral (2.35) can be evaluated
analyticallyandone endsup with

U IT2

G(k) = _______ . (2.37)
2tanh~0 IT2+02

(a plot of the form factor will be shown later). We finally remark that an exact
formula for the matrix elementsof the current betweenin- and out-stateswith

an arbitrary number of particles has recently been proposedby Kirillov and
Smirnov [22].

3. Cluster simulation of the lattice 0(3) model

In the following we define the lattice regularizednon-linearcr-model and then
briefly review the collective mode Monte Carlo method[81that we employ for its
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simulation.A new two-cluster(2C) variantof the basicalgorithmis presented,that
is particularly suitablefor the calculationof the requiredfour-point functions.

3.1. LATTICE FORMULATION

We use the lattice regularizationas a standardtool to define a quantum field
theory rigorously and independentlyof perturbationtheory. The continuumlimit

for a large but finite physicalvolume is approachedthrougha sequenceof systems
with a growing but finite numberof degreesof freedom for which numerical
simulation techniquesare applicable. More precisely, we shall use euclidean
square lattices A with A = T X L sitesand periodic boundaryconditions. The
temporalextent T will always be kept very large comparedto (inverse)physical
energies,i.e. we work at zero temperature.The spin field S”(X) of sect. 2 is
restrictedto the sitesof A, and is reinterpretedas the differenceoperator

ü~sa(x)= s~(x+ ~2)— Sa(X) , (3.1)

where ~I is the unit vector in the positive ,x~direction*.The lattice version of eq.
(2.3) thencorrespondsto the standardaction for the 0(n) non-linearcr-model,

5= -f3~s(x) ~s(x+~), ~=n/f, (3.2)
XI-,.

up to an irrelevant additive constant.Expectationvaluesof arbitrary euclidean
observableA[s] aregiven by

(A) = ~ffld~(s(x))e~A[s], (3.3)

where d1x(s)denotesthe 0(n) invariant singlespin distribution, normalizedto 1,
and the partition function Z is such that (1) = 1. Finally, the euclidean0(n)
currenton the lattice is definedby

Jah(~) = ~[Sa(X) a~sh(x)- sh(x) 0~sa(x)]. (3.4)

As we shall discusslateron, this currentis conservedin the sensethat it satisfies
the exact Ward identities which are associatedwith the 0(n) symmetry of the
lattice theory.

* We usethe symbol x both for continuumpoints and for lattice sites. Dimensionful quantitieson

the lattice will always be given in lattice units, i.e. the lattice spacing a is set equal to I. In
particular,a lattice site x = (x°,x

1) has integercoordinates.The operatora,~meansderivativeor
differencedependingon the context.
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3.2. COLLECTIVE MODE MONTE CARLO

The presentstudy has become feasible due to the availability of new global
Monte Carlo techniques,which, for all practicalpurposes,eliminate the problem
of critical slowing down for 0(n) symmetric spin models [8—121.As originally
suggestedby Swendsenand Wangfor discretePotts spins [71,a bond percolation
processis coupledwith spin configurationsin such a way, that certainglobal spin
flips on whole percolationclustersfurnish updatesthat respectdetailedbalance.
For each such updatestep a random direction in spin space r E li”, r2 = 1, is
chosen, and only the componentsr s(x)= Sr(X) will be affected by this step.

Bondson links (x, x + ~2)areactivatedwith probabilities

Pr~x,,~)= { 1 — exp[ ~2f3Sr(X)Sr(X + ii)] if Sr(X)Sr(X + 1) ~ 0, (35)
0 otherwise.

For n = 1, eq. (3.5) coincideswith the prescriptionof SwendsenandWang[7] for
the Ising model. In their algorithm all bonds on the lattice are conditionally
activatedwith probability (3.5), and the resultingclustersc, define a decomposi-
tion of the lattice

I,

~= Uc
1. (3.6)

1=1

The updateis completedby flipping the spinson eachclusterc, with probability~.

This generalizesto a valid algorithmfor n > 1 [11, 121, if the sign-flipsarecarried
out for Sr only,

S”(X) —*s”(x) — 2Sr(x)ra. (3.7)

Further use of the information representedby the cluster geometryis madeby
introducingcluster-improvedestimators[12]. For the fundamentaltwo-pointfunc-
tion the symmetry argument

(Sa(X)Sb(y)) = öabf(x —y) (3.8)

allows usto write

(s(x) ~s(y)) = n(sr(x)sr(y)). (3.9)

If we now averageover the 2’~statesthat a clusterupdatereferring to r could
choosewith equalprobability (of which only one is actuallysampled), thenwe
derive

(s(x) s(y)) = n( Sr(X)Sr(y) ~ 6~(x)0~(~))~ (3.10)
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where 0,~is the characteristicfunction of clusterc. Taking into account eq.(3.5),
we notice that Sr(X) hasonly onesign on eachcluster.Thereforewe averageovera
positivequantityon the right-handside of eq.(3.10).Technically,this is what leads
to a reducedvariancewith the deeperreasonbeing our averagingover a larger
numberof configurations.In numericalcalculationswe found that an exponential
decayof thetwo-point function in the representation(3.10) is mainly causedby the

cluster cutoff 0~.This shows very clearly the linkage between the size of our
updatestepsand the physically relevantscale.We think that this connectionis
crucial for the successof the algorithm.

In ref. [8] a single cluster (1C) variant of the many cluster Swendsen—Wang
procedurejust outlined has been introduced. Its elementary steps consist of
picking a randomsitex0 as a seedfor a clusterandthengrowing a singleclusterC
connectedto x~.Again, the bond activationprobability(3.5) is usedhere.WhenC
is completed,all spinson C are flipped with (3.7). In comparingXY-model results
[9,12] we found the 1C algorithm superiorto the alreadyefficient many cluster
method in decorrelatinglong-rangeobservables.Similar conclusionshave been
drawnfor the Ising model in refs. [13,14]. The reasonfor theseresultspresumably
lies at least partly in the fact, that the randomseedx0 preferentiallyconnectsto
large clusters.We shall exclusively use iC-type updatingin this work.

The clusterestimator(3.10) canalso be adaptedto the IC method [11]. We may
imagine to perform the sum over clustersunder the averagestochastically.The
probability Ic~l/IAl, with which the randomseedfalls into cluster c1, has to be
compensatedfor, giving

I A~ \IC
(s(x) . s(y)) = n ~Sr(X)Sr(Y) ~-0c(x)0c(Y)) . (3.11)

3.3. TWO CLUSTERALGORITHM AND CLUSTER ESTIMATORS FOR
FOUR-POINTFUNCTIONS

The physical observablesthat we focus on in this work lead us to considera
varietyof four-point functions.The mostgeneralsuch objectmay be decomposed
into isospinchannels

2
(Sa(X)Sb(y)Sa(X~)Sh(y~)) = ~ P1(ab~a’b’)f,(x,y;x’,y’), (3.12)

l==o

with the isospin projectors(2.27)—(2.29).If we now introducea pair of orthogonal
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spin directions r, u E S”~~, r u = 0, it is trivial to contractandderive

1

= (fo f2) , (3.13)

1
(5r(u(Y)Sr(X’)Su(Y’)) = ~(f~ +f2), (3.14)

1
(Sr(X)5u(Y)Su(X’)Sr(Y’)) = ~(f~ -f2). (3.15)

All argumentsof f1 are as in eq. (3.12) here.We insert theserelationsand find

P0(abIa’b’) (~Q( x)st’( ~)~a( x~)sb’(~

= n(Sr(x)Sr(y)su(x’)Su(y’))+ 2(S(r(X)SU)(Y)S(r(X’)SU)(Y’)), (3.16)

P1(ab a’b’) (~a( x)sb( y)Sa’( x’) sb( ~)>

= n(n — 1)(S[r( x)s~1(Y)S[r(X’)SuI( y’)), (3.17)

P2( abIa’b’) (5a( x)sb(y)~a(x’) sb’( ~))

= [n(n + 1) — 2] (S(r(X)SU)( Y)S(r(X’)Su)( y’)). (3.18)

The bracketedsubscriptsdenote(anti-) symmetrization,

= ~[S1(x)s~(y) —s~(x)s~(y)], (3.19)

5(r(~u)(Y) = ~[5r(~u(y) + S,~(X)Sr(y)]. (3.20)

Eqs. (3.16)—(3.18)are the appropriategeneralizationsof (3.9) for the four-point
function. It is now straightforwardto constructcluster estimatorsby linking r, u
with the updatesteps.To this endwe pick them randomlywith the measure

dp.(r,u) ~ (3.21)

The proof of detailedbalancegiven in ref. [11] — both for many clusterand for
iC-updating— now trivially generalizesto the case,where we perform such steps
with both r and u. Note that,becauseof the orthogonalityof r and u, the order in
whichwe perform ther-updateandthe u-updateis irrelevant.We aredealingwith
partial resamplingsof independentdegreesof freedom[12].The 2C algorithmnow
correspondsto building clustersC,. and C,~independently.
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By argumentsentirely analogousto those leading to eq. (3.11) we construct
cluster-improvedversionsof eqs.(3.16)—(3.18).They are obtainedby substituting

Al 1/2

Sr(X) 0c(x)s~(x) (3.22)

andsimilarly for s,., andC~.A positiveestimatorresults for the I = 2 channel,and
both tensor channelsI = 1, 2 include cluster cutoffs: nonzero contributionscan
only occur if the groupsof points x, y and x’, y’ arebridgedsimultaneouslyby C,.
and C~.As for the two-point function, we thereforeexpecta reducedvariancein
thesecaseswhile in the isoscalarcase(eq. (3.16)) no comparableimprovementis
expected(cf. sect.5.3).

4. Computationof thecurrentform factor

In this sectionwe presentour numericalresults for the currentform factor.All
simulationshavebeen done for the 0(3) model, and thus we set n = 3 in what
follows (the generalizationto arbitraryvaluesof n is trivial). Furthermore,for the
theoretical discussionwe shall always assumethat the time-like extent T of the
lattice is infinite, while the space-likeextent L is takento be finite.

4.1. ONE-PARTICLE STATES ON THE LATTICE

The physical interpretation of the euclideanlattice theory is based on the
transfermatrix construction(seee.g. ref. [281).This constructioninvolvesa Hilbert
space ~ the spaceof physical states,and the transfer matrix T, which is a
self-adjointpositiveoperatoracting in ~ The hamiltonoperatorF of the theory
is related to the transfer matrix through T = exp(— F) (recall that the lattice
spacinghasbeenset equalto one). As in the continuumwe expectthat the ground
state10) of LI-fl is non-degenerate.Without loss, we maychoosethenormalizationof
the transfermatrix such that the ground-stateenergyvanishes.Furthermore,the
translationsby any integernumberof lattice spacingsin the spacedirection and
the isospin symmetry(which are representedby unitary operatorsin the space~
of physical states)act trivially on 0).

The connectionbetweenthe euclideancorrelationfunctionsof the spinfield and
the transfermatrix is expressedthrough

(Sal(X) . . . Sak(X)>

= (oI~I(x~)vL . . . ~(~fl~0), (4.1)
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where we haveorderedthe fields such that x~’>~x~°>... >~x~°and where §a(~l)

denotesthe spin field operatorat time x~= 0.
One-particlestates Ip,a) also exist on a lattice, but as compared to the

continuumcasea numberof complicationsoccur.In particular,themomentump’
is restrictedto the values

2irv
pl=—, wherevE~, —L/2<p©L/2, (4.2)

and the energyp° of thesestatesis somefunction of p1 and L, which is not
a priori known. If we define the particle massm to be the one-particleenergyat
p1 = 0 and L = ~, one may howeverexpectthat the relativistic energy-momentum
relation (2.6) holds, provided L >> m— >> 1 and p1 <<1. The first of these
inequalitiesexpressesthat L must be much larger than the physical scalein the
model so that finite-sizeeffectsarenegligible. In fact,theseareknown to decrease

exponentiallywith L and their contribution to the one-particleenergy can be
estimated[3,41to be of the order of a few per mille at most if

mL>6. (4.3)

In our simulations the observeddeviationsof the one-particleenergyfrom the
relativistic form are larger than these finite size correctionsand they are thus
essentiallydue to lattice effects, i.e. due to the presenceof a finite ultraviolet
cutoff (see table 1 for an example).On generalgrounds[29], theseeffectsshould
decreasewith approximatelythe squareof the lattice spacing.The data listed in

TABLE 1
One-particleenergyvaluesp°asa functionof the momentump’ on a lattice

with L = 128 and m1 = 13.632(6).

1 0’ / 2 2v p/rn p/ym +(p)

1 0.6692(3) 0.9992(3)
2 1.3383(6) 0.9993(3)
3 2.0075(9) 0.9989(3)
4 2.677(1) 0.9979(4)
5 3.346(1) 0.9963(4)
6 4.015(2) 0.9947(5)
7 4.684(2) 0.9928(4)
8 5.353(2) 0.9904(4)
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table 1 can in fact be representedratherwell by

2 =1—0.06X(p’)2, (4.4)
~m2 + (fl)

and thuswe concludethat the systematicerrorsin this part of our calculationsare

undercontrol.
The normalizationand phaseof the lattice one-particlestatesmay be chosen

suchthat

(p, a q, b) = ~ab2pOL5,
1 (4.5)

(0l~(x’)jp,b) = 6~Iz(p) elP’X, (4.6)

wherethe dependenceof thewave-functionrenormalizationfactor Z> 0 on L has
beensuppressed.Theseconventionsare such that onerecoversthe normalizations
(2.7) and(2.8) in the (infinite volume)continuumlimit of the model.

4.2. METHOD OF CALCULATION

The euclideancurrent(3.4) is proportional to the changeof the lattice action
(3.2) underan infinitesimal local 0(3) rotation of the spin field, and since this
operationis a symmetryof the a priori measurein the functional integral (3.3), one
concludes(asin the continuum)that the currentsatisfiesa set of Ward identities.
In particular,we have

(a:j~(x)Sc(y)sd(z)) = ~XY( (ôacSb(y) — 6bcSa(y))Sd(X))

+ ~( SC( y)(~udsh(z) — ~hd5a(~))) (4.7)

where/~is the backwardlattice derivative(the adjoint of —cl,,.). As we shall see
shortly, eq. (4.7) guaranteesthat the normalizationcondition (2.13) is fulfilled in
the continuumlimit. Furthermore,sincethereis only onelocal field of dimension
less than or equal to I in this model which transformslike an anti-symmetric

tensor under0(3), operatormixing by renormalizationcan be excluded and the
lattice currentis henceexpectedto convergeto the continuumcurrent,at leaston

the level of correlationfunctionssmearedwith suitabletestfunctions.
For any momentum p’ in the set (4.2), we define the Fourier transform

~a(~() p’) of the spin field through

~a(X() p’) = ~ IP’X’Sa(X) . (4.8)

= 1
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By inserting the spectral resolution of T in the representation(4.1) of the spin
correlationfunction, it is theneasyto show that the asymptoticrelation

~ e~)X° (49)

holdsup to termsvanishingexponentiallyfast relative to the displayedterm (here
and below, p°denotesthe one-particleenergyat momentump1). Similarly, one
may show that the limit

def 1 . __________________________
g(k L) = — — lim (4.10)

2t—~ (.~c(2t+1k)Sc(O)>

existsand,furthermore,that it is given by

g(k,L) = -~~(p,aIf~(O)Iq,b)~ . (4.11)
l2p

The currentoperator.j~(x1)occurringhereis definedby

P~b(xl) .. /3{a §b(~l).~a(~l) _a
0~(xl)~~(x1)}, (4.12)

(4.13)

If we would considerthe sameratio g(k,L) of correlationfunctionsin the infinite
volume continuum limit, eq. (4.11) would hold againand j~(x’) would be —i
times the currentoperatorof subsect.2.1 (the factor of —i arisesbecausewe are
here dealingwith the euclideancurrent). Recalling eq.(1.3), we therefore expect
that g(k,L) convergesto the current form factor G(k) in the (large volume)
continuumlimit, and thuswe havefound a way to extract G(k) from theeuclidean
two-point andfour-point correlationfunctionsof thelattice spin field s’~(x),which
are, in principle, calculableby numericalsimulation.That this methodof calcula-
tion alsoworks in practicewill be demonstratedin the following subsection.

As we havealreadymentionedabove,the normalizationof the lattice currentsis
such that the normalizationcondition (2.13)(or, equivalently,eq.(2.34))is satisfied
in the continuumlimit. Indeed,it follows from the Ward identity (4.7) andStokes’
theoremon the lattice that

g(0, L) = 1 (4.14)

for all valuesof the coupling p andall L, and hencein the continuumlimit.
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4.3. SIMULATION RESULTS

We havesimulatedthreedifferent lattices,labelledA, B, C, as specifiedin table
2. On the lattice C, the quotedvaluefor the massm is obtainedby measuringthe

one-particleenergyat zero momentumandsubtractingan analyticallydetermined
finite size correction Lim = 0.0019X m [3,41.On the large lattices A and B, this
correctionwould be negligible comparedto the statisticalerror.The latticesA and
B are about equally big in physical units, i.e. the difference betweenthesetwo
casesis essentiallythat the lattice spacingis doubledwhengoing from A to B. By
comparingthe resultsobtainedon thesetwo latticeswe canthereforeestimatethe
size of the finite lattice spacing effects. The lattice C, on the other hand, is
substantiallysmallerin physical units thanA while the correlationlength is about

the same(in lattice units). Thus, a comparisonbetweenA and C will give us
information on the size of the finite size effects.

For each lattice we have measuredthe correlation functions entering the

definition (4.10) of the lattice form factor g(k,L), where,of course,we averaged
over time and spacetranslationsto improveour statistics.It then turned out that
the ratio of thesecorrelation functions convergesto a constant at values of t

aroundonecorrelationlength ~ = rn1. This constantis takenas our estimatefor
g(k,L) (see table 3; the errors quoted thereare statisticalonly). As a checkwe
haveverified that eq. (4.14) holdswithin errors.

TABLE 2
Basiclattice data.

lattice /3 TXL rn~ mL

A 1.54 256 x 128 13.632(6) 9.390(4)
B 1.40 128 < 64 6.883(3) 9.298(4)
C 1.50 128 x 64 11.054(7) 5.790(4)

TABLE 3
Simulationresultsfor the lattice form factor g(k,L) at momentumk = 2~r~/L,andcomparison

with the exactformfactor G(k) (eqs.(2.36)and(2.37)).

lattice p k/rn g(k, L) G(k) g(k,L)/G(k)

A 1 0.6692(3) 0.975(2) 0.9727(1) 1.002(2)
2 1.3383(6) 0.935(4) 0.92180) 1.014(4)
3 2.0075(9) 0.891(7) 0.87450) 1.019(8)

B 1 0.67570) 0.9820) 0.97230) 1.010(1)
2 1.3515(6) 0.947(3) 0.9208(1) 1.0280)
3 2.0272(9) 0.9210) 0.87320) 1.055(3)

C 1 1.0852(7) 0.9590) 0.94140) 1.0190)
2 2.1700) 0.903(6) 0.86430) 1.045(7)
3 3.256(2) 0.874(7) 0.80720) 1.083(9)
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k/rn

Fig. 2. Form factor G(k) in the 0(3) non-linearif-model as a functionof the momentumk. Thesolid
line representsthe exactformulae(2.36) and (2.37). The dashedline includes the lattice correction
(4.15), as appropriatefor thelattice A, and the datapointsare our resultfor this lattice (first block in

table3).

Our results show that the lattice form factor reproducesthe exact form factor
G(k) quite well, especiallyin the caseof the lattice A, wherethe systematicerrors
are expectedto be minimal (see fig. 2). Still, almost all datapointsare off by a
small, statistically significant amount, and it is the purpose of the following
discussionto identify the possibleoriginsof thesediscrepancies.

As shownin fig. 2, thedataon thelattice A canberepresented,within errors,by

g(k,L)/G(k) = 1 +k2, (4.15)

andthis suggeststhat the observeddeviationfrom the exactcurve is a lattice effect

which will disappearwhen we go closer to the continuumlimit (recall that k is
measuredin lattice units in eq. (4.15)). This first impressionis corroboratedby
comparingthe resultsobtainedon the lattice A with thoseobtainedon the lattice
B, wherethe lattice spacing(in physicalunits) is abouttwice aslarge as on A. At
all valuesof k, the deviations from the exact form factor are much larger on B
thanon A, by factors of 5, 2 and3 for v = 1,2,3. Theoretically,onewould expect
the errorsto increaseby a factorof 4 approximately[29] whengoing from A to B,
and this is roughly what we find, although the fluctuations in the factors for
different valuesof k indicate that our statistical errors do not allow for a more
quantitativeanalysisof the effect.

Anotherpossiblesourceof systematicerrors arethe finite-volume effects.Their
sizecanbe estimatedby comparingthe lattice A with the lattice C which is abouta
factor 1.6 smaller thanA (in physicalunits), while the lattice spacingis aboutthe
same. From table 3 and the interpolation (4.15), one infers that the size of this
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effect is about 1—2% for k ~ 2m. Finite-sizeeffectsare decreasingexponentially
with increasingmL and sincethey are alreadysmall on the lattice C, we expect

that they are negligible comparedto the statisticalerrors on the large lattices A
andB.

To sum up, we believethat the systematicerrors in our calculationsare under
control andconcludethat within statisticalerrors,andaccountingfor the presence
of small lattice effects as discussedabove, thereis completeagreementbetween
“theory” and“experiment” in the momentumrange0 © k ~© 2m.

5. Computation of the scattering phases

As explainedin sect. 1, the numericalcalculationof the scatteringmatrix is
basedon eq.(1.1), which relatesthe scatteringphase~,(k) to the energyspectrum
of two-particle stateswith isospin I in a finite volume with periodic boundary
conditions. In this section we shall first discuss the derivation and physical
interpretationof eq. (1.1). The problemof how to extract the two-particle energy
spectrumfrom the (euclidean)four-point correlationfunction will be considered
after that and,finally, the resultsof our numericalstudyof the 0(3)model will be
presented.

5.1. DERIVATION OF EQ. (1.1)

The basic relation (1.1) has a simple physical meaningwhich can already be
understoodin the following quantummechanicalmodel.

Considertwo spinlessbosonsmoving on a line. The Schrodingerwave function
~i(x,y) of this systemdependson thepositions x, y E LI~lof the particlesandhasto
be symmetric underan interchangeof x and y. Thus, if we restrict ourselvesto
stateswith vanishingtotal momentum,we have

~/i(x,y) =f(x—y) (5.1)

where

f(z) =f(-z).

The stationarySchrodingerequation(in infinite volume) then reducesto

/id2
(5.2)

mdz

where V(lzl) is some interactionpotential, which will be assumedto be short
ranged.

Since we require f(z) to be symmetric, the differential equation (5.2) has
actuallyonly one admissablelinearly independentsolution,denotedby fE(z), for
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any energyvalue E. In particular, for

E=k2/m, k~0, (5.3)

fE(z) is a stationaryscatteringsolution,which canbe normalizedsuchthat

fE(z) = cos(kIzl+5(k)), (5.4)
Iz~-,

where 5(k) is the scatteringphase.
If the particlesarenow enclosedin a periodicbox of size L (a circle, in other

words), the correspondingwave function ~/i(x,y) and hence the reducedwave

function f(z) is periodic with period L. The stationary Schrodingerequation
remainsthe sameasbefore (eq. (5.2)) exceptthat the potentialis replacedby

VL(lzI)= ~ V(Iz+~Ll) (5.5)
I) = —

to takeinto accountinteractions“around the world”. A solution to this equation

for some energyE > 0 can be interpretedas a stationaryscatteringstate,where
the particlesare running aroundthe circle in oppositedirections.

For lzl © L/2 andif L is much larger thanthe interactionrange,the additional
interactions “around the world” are negligible and the solution fE(z) to the

Schrodingerequation is therefore the sameas for L = ~. The requirementof
periodicity then implies

f~(—L/2)=f~(L/2) =0 (5.6)

and,recalling eq.(5.4), one concludesthat

kL+25(k)=0 (mod2ir), (5.7)

which is equivalentto eq.(1.1). For any given interactionpotential V andbox size
L, eq. (1.1) hasa discreteset of solutionskr~V = 0, 1,2,..., and this then yields
the possiblefinite volume energyvaluesEr = k~/m.In other words,eq. (1.1) is a
quantizationcondition.

The physicalmeaningof eq.(1.1) becomesmore transparentby looking at fig. 3,

where the solution fE(z) of the Schrödingerequationis drawn for the free case
(wavea)anda typical interactingcase(waveb). In both casesthe momentumk is
equalto 2ITv/L with ~i = 8. Thus, in the non-interactingcase,eq.(1.1) is satisfied
andthewave smoothlyconnectsto itself whenthepoints z = ±L/2 are identified.
This is in generalnot so in the presenceof interactions,becausethesedistort the
wave in the interactionregion aroundz = 0 in sucha way that the asymptoticfree
waves near z = ±L/2 (where the interactionsare negligible) are phaseshifted
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relativeto eachotherby 25(k). In fig. 3, this phaseshift is half a wavelength,and
the wave thereforedoesnot smoothlyconnectto itself at z= ±L/2 in this case.
However, it is obvious from the picture that periodicity of the wave can be
achievedeitherby increasingL by half a wavelengthor by increasingk by some
amount until eq. (1.1) is satisfied. In other words, eq. (1.1) just says that the
kinematicalphaseshift (equalto kL), which one picks up when translatinga free
wave of momentumk by the distanceL, and the phaseshift, which results from
the scattering of the particles, must compensateeach other (modulo 2IT) to
guaranteethe periodicity of the wave.

In view of this simple physical meaningof the fundamentalrelation (1.1), it
shouldbe quite plausiblenow that it is also valid in quantumfield theory. Indeed,
the interpretationof the scatteringphaseshift is the sameas aboveandthe phase
by which a free-particlestate transformsundertranslationsover a distanceL is
again kL, where k denotesthe momentumof the particle.The only placewhere a
changeoccursis in the energy—momentumrelation,whereeq.(1.2) shouldbe used

insteadof eq. (5.3).
Eq. (1.1) can actually be derived in the framework of the Feynmandiagram

expansionwhich was set up in sect. 3 of ref. [6] to establishcertain asymptotic
formulasfor the finite-volume energyspectrumin four-dimensionalquantumfield
theories. It is not our aim to presentthis proof in full detail here,but for the
interestedreaderwe briefly describethe key stepsinvolved.

The crucial observation is that in quantum field theory an equation can be
derived,which plays almostexactly the role the Schrodingerequation(5.2) did in
the non-relativisticcase.For a simple one-componentscalarfield theory, such as
the 44-theoiy,this equationreads

I 1
— ~f”(z) + —fdz’UE(z,z’)f(z’) =Ef(z), (5.8)

m 2

where UE(z, z’) is the Fourier transformof the modified Bethe—Salpeterkernel
UE(k,k’) introduced in ref. [61. E is a parameter,which is related to the true

a

-L/2 0 L/2

z

Fig. 3. Plotof the solution fE(z)of theSchrbdingerequation(5.2) for k = I6~r/L.Wave a is for the
non-interactingcase(V= 0), while waveb is whatoneexpectsfor a short rangeattractivepotential.
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energy W of the two-particle statedescribedby f through

W=2Vm2+mE. (5.9)

In the elastic region 0 ~ E <3m, the “potential” UE(z, z’) is an analytic function
of E anda rapidly decayingC~-functionof z and z’. By the Fredholmtheory, eq.
(5.8) therefore has in general a unique solution fE(z), and this solution can be
shown to have the asymptoticbehaviour(5.4), where 5(k) is the true scattering

phaseshift (this canbe proved, for example,by expandingfE(z) in a Born series
andcomparingwith the correspondingexpansionof the four-point vertexfunction

establishedin ref. [6]).
For finite L, the two-particleenergyspectrumbelowthe four-particlethreshold

is also determinedby the wave equation(5.8), where UE(z, z’) is to be replacedby
its periodicextensionandthe integrationoverz’ is from —L/2 to L/2. Actually,
as discussedin more detail in ref. [6], this is only true up to polarizationeffects
whichvanish morerapidly thanany power of L ‘ for L —s oo• If we neglectthese
corrections, the discussionnow proceedsin exactly the same way as in the
non-relativisticcase,andone finds that the spectrumof two-particle energylevels

is determinedby eqs.(1.1) and(1.2) as anticipated.
From the above, one expects that eq. (1.1) holds in any two-dimensional

quantumfield theorywith only massiveparticlesprovidedthe following conditions
aresatisfied:

(1) The finite-volume two-particlestatesconsideredhavequantumnumbersand
energiessuch that mixing with other many particle statesare impossible. For
example, in the non-lineara--model at zero total momentum,fixed isospin I and
positive isospin parity, all statesbelow the four-particle threshold W= 4m are
two-particle states,and mixing with other statescan be excluded.For W> 4m,
multi-particlestatesinterfereandit is, in fact, no longerclear that onemeansby a
two-particleenergyeigenstatein this case.

(2) L mustbe much larger than the interactionrangeso that the wave function

fE(z) is accuratelygiven by the free wave (5.4) when z is near ±L/2.

(3) L must also be sufficiently large to suppressthe polarizationeffectsmen-
tioned above. Thesearise from virtual particles going “around the world” and
decayrapidly with increasingmL.We thereforeexpectthem to be smallas soonas

(2) is satisfied.
(4) If the theory is formulated on a euclideanlattice, there will be further

correctionsto eqs.(1.1) and(1.2), whichvanishlike a powerof the lattice spacing.

5.2. NUMERICAL CALCULATION OF THE TWO-PARTICLE ENERGYSPECTRUM

We now proceedto discussthe problem of how to extract the two-particle
energyspectrumfrom the (euclidean)four-point correlationfunctionsof a given
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lattice quantumfield theory. This is not entirely trivial, becausewe are not only
interestedin the lowest level andbecausethe level spacingis small for large L.

Considerfor simplicity a lattice theoryof a singlescalarfield ~~(x),such as the
~4-theory, and suppose~ —~ — 4 is an unbrokensymmetryof the systemand that
the particle spectrumconsistsof a single massiveparticle, which has odd parity
under this symmetry. In the sectorwith even parity, zero total momentumand

energy0 < W < 4m, all energy eigenstatesare two-particle states,and it is the
energiesof thesestatesthat we are interestedin.

Let usnow define the two-particlefields

~( x°)= ~ ei1)’~’ ~Y’~(x0, x1)~(x°,y1), (5.10)
XI- y’

wherep’ = (I — 1)2IT/L and j = 1 r (r will be fixed below). From the above,
one expectsthe two-particle statesto contributeto the spectraldecompositionof
the correlationfunction

C~~(t)= (~(t)*~(0)) - (~.(t)*)(~.(0)). (5.11)

The generalform of this decompositionis, for t ~ 0,

C~
1(t)= ~ i~c’~ e’~’, (5.12)

al

c’J’= (aJ~(0)l0), Fla) = W,.la), (5.13)

where a labelsthe evenparity energyeigenstatesa) with W~>0. Furthermore,
the labelling may be chosensuch that the two-particle levels comefirst, i.e. such
that W1 ~ W2 ~ ... ~©WA <4m and W,.,. > 4m for a >A (the numberA of pure
two-particlestatesis approximatelyequalto mL/3 andis thus much smallerthan
L closeto the continuumlimit).

In a numericalsimulation, the correlation matrix C(t) can be expectedto be
computablefor somerangeof t, and the basictechnicalproblem then is to extract
the levels l’V~,. from C(t). From eqs.(1.1) and(1.2), it is clear that degeneraciesin
the two-particle spectrumoccur only accidentallyand we shall therefore assume
for simplicity that W1 <W2 < ... < WA and that the r-component vectors vt’,

a = 1,. .. , A, are linearly independent.This requires,in particular,that the num-
ber r of two-particleoperatorsconsideredis greateror equal to A. In practice r
will not be chosenmuch greater than A becausethe statistical errors in the
correlation functions in general increasewith growing momenta.In any case,r
should be less than or equalto L/2 to guaranteethat the fields 1~• are linearly
independent.
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An importantmathematicalresult now is

Lemma. For every t > 0, let Aa(t) be the eigenvaluesof the correlationmatrix
C(t) orderedsuchthat A, > A2> ... > A~.Then, for all a= 1,. .., A we have

Aa(t) = c~e’~[1 + 0(e’~)], (5.14)

where ca > 0 and LiW,.,. is the distanceof Wa from the other spectralvalues W~.

The proof of this technical lemma is simple but somewhatlengthy and it is
thereforedeferredto appendixA. In principle, the lemmaprovidesa basisfor the
calculationof the two-particle energyspectrumgiven the correlationmatrix C(t).
However, C(t) cannotusually be determinedvery accuratelyat large t so that it

may not be possibleto guaranteethat the error term in eq.(5.14) is negligible.
A methodwhichwe expectto be superiorto a straightforwardapplicationof the

lemma startsfrom the generalizedeigenvalueproblem

C(t)~’=A(t,t0)C(t0)~, (5.15)

where t0 is fixed andsmall(t0 = 0 for example).This problemis well posedif C(t0)
is non-singular,which is certainly the case,becausethe euclideanfields
j = 1,. .., r, are linearly independent.Thus, thereare r independentsolutions to
eq. (5.15), and it is not difficult to show that the corresponding eigenvalues
Aa(t, ta), a = 1,..., A, againsatisfy eq.(5.14).However,the amplitudesc,.,. andthe
coefficients of the subleading exponentialsare different. More precisely, one
expectsthat c~ e’~’and that the othercoefficientsare suppressedso that the
leadingterm in eq.(5.14) dominatesalreadyat moderatelylargevaluesof t.

To seethis, first note that the spectralsum (5.12) is absolutelyconvergenteven
for t = 0. Thus,by appropriateselectionof the statesa) with a =A + 1,.. . , r, the
truncatedcorrelationmatrix

C~(t)= ~ (5.16)

can be expectedto approximateC(t) rather well. In particular, C°(t0)will be
non-singularand one may show immediately that the spectrumof eigenvalues

A°a(t,tü)of the associatedmodified eigenvalueproblemis exactly givenby

A~,.(t,t0)= e
t’°~’~ for all a = 1,...,r. (5.17)

Now we write C = C° + C1 and treat C1 as a perturbation.At least the larger
eigenvalues(the two-particle levels, in particular) shouldnot be strongly affected
by thisperturbation,andtheyare thusapproximatelyequalA~(t,~ i.e. the higher
exponentialcorrectionsaresuppressedas assertedabove.
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To sum up, what we propose is to calculate the eigenvaluesAa(t~t
0) of

C(t11)~~
2C(t)C(t

0Y’~
2andto extract Wa by

A (t,t
0)

W =ln a , (5.18)a Aa(t+ I,t0)

where t is taken as large as possibleand t0 is small (although this would be
theoreticallydesirable,it is our experiencethat t0 cannotbe chosenlarge,because
the inversionof C(t0) then becomesnumericallyunstableandthe statisticalerrors
run out of control). Of course,an energyvalue U’~,determinedin this waywill only
be acceptedif the right-handside of eq. (5.18) is stablewithin errorsin the range
of t whereit is evaluated.In additiononecan checkfor the stability with respect
to changesof t0 and, finally, one can computethe amplitude ca to seewhether
indeedit is closeto ~

5.3. RESULTSFORTHE 0(3) NON-LINEAR if-MODEL

The schemeproposedabovecan be readily applied to the lattice 0(3) spin
model introducedin sects.3 and4. The appropriatetwo-particle field is

~~ah(xO) = ~ e’1~~’_Y’)ya(~O , x1)sh(x0 y
1), (5.19)

XI,yI

andthe associatedcorrelationfunctionswith only isospin I intermediatestatesare
definedby

C~(t) =Pj(abIcd)([~Y,~(t)* _5
1~~~b(t+i)*]d(o)). (5.20)

The subtractionfor I = 0 in this formula is madeto cancel the vacuumcontribu-
tion in the spectralrepresentationof C’(t), which looksas in eqs.(5.12) and(5.13)
except that a factor 1 — 510e””~must be included in the definition of v”. Note
that due to bose symmetry C1

t, vanishesif i = 1 or J = 1, and theseindices are
hence restricted to values greateror equal to 2 for I = 1 in what follows. The
theoretical analysis presentedin the precedingsubsectionthus applies to all
correlationfunctions C’(t) in the sameway, but the subtractionneededfor I = 0
goes along with a loss of numerical significance and this eventually leads to
substantiallylargerstatisticalerrorsin the final resultfor I = 0 as comparedto the
othercases*.

Using the clusteralgorithm describedin sect.3, we havecomputedthe correla-
tion functions C’(t) on the lattices A,B,C (cf. table 2). On the lattice A, the

* A related reasonfor the lower quality of our I 0 data is that with the measuredcorrelations

saturatingto nonzeroconstantsat large t, the clustervariance reductionis lesspowerful.
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TABLE 4
Simulationresultsfor thetwo-particleenergiesWandthe associatedscatteringphaseshifts

asdeterminedthrougheqs.(1.1) and(1.2).

lattice I W/m k/rn

A 0 2.14(1) 0.38(1) 1.36(7)
0 2.94(1) 1.077(7) 1.22(3)
1 2.372(2) 0.638(2) 0.15(1)
1 3.264(3) 1.290(2) 0.230)
2 2.086(2) 0.296(4) — 1.39(2)
2 2.681(3) 0.893(2) — 1.050)
2 3.639(4) 1.520(2) — 0.850)

B 0 2.12(1) 0.35(2) 1.51(7)
0 2.97(3) 1.10(2) 1.20)
1 2.3810) 0.6460) 0.140)
1 3.299(4) 1.3120) 0.180)
2 2.086(2) 0.296(4) — 1.38(2)
2 2.6830) 0.894(2) — 1.02(1)
2 3.649(5) 1.5260) —0.81(2)

C 0 2.340) 0.610) 1.380)
1 2.851(5) 1.016(4) 0.200)
2 2.1800) 0.434(4) —1.260)
2 3.411(5) 1.382(3) —0.860)

numberr of independentmomentaused in (5.19) and(5.20),andthusthe rankof
C’, was5, 8 and9 for I = 0, 1 and2 respectively.An increaseof thesenumbersup
to a factor of 2 did not affect our results. For t0 = 0, 1, the ratio of eigenvalues
A0(t, t0) on the r.h.s.of eq. (5.18) turnedout to convergerapidly to a constantas t

increasesand Wa could be determinedat t 1.5W~for I = 0 and t 2J4’~in
the othercases.Within statisticalerrors,no dependenceon t0 was observedand

= e’°~’was satisfiedto an accuracybetter than 10% (for I = 0) and 3% (for
1=1,2).

Theresultsof our numericalstudyare listedin table4 alongwith the scattering
phaseshifts 5,(k) calculatedaccordingto eqs.(1.1) and (1.2). The table includes
all levels below the four-particlethreshold.

We finally compareour numericaldatawith the exactexpressions(2.31)—(2.33)
for the scatteringphases.As canbeseenfrom figs. 4 and5, the dataclosely follow
the analytic curves.Within statisticalerrors, thereis no discrepancybetweenthe
datafrom the latticesA andC, i.e. we do not observeanysystematiceffectsof the
type expectedwhen the conditions(2) and (3) listed at the end of subsect.5.1

would be violated.
Although barelysignificant, the datafor I = 1, 2 from lattice B aresystematically

farther awayfrom the exactcurvesthan thosefrom A, andthiscouldverywell be a
lattice effect, especiallyso since the deviationis monotonicallyincreasingwith k. It
would actually be surprisingif no such effectwould havebeenobserved,because
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TE I

_ ~

~511~ _

k/rn k/rn

Fig. 4. Scatteringphase shift ö,(k) for isospin Fig. 5. Same as fig. 4 but for I = 1,2. The
I = 0 versusmomentumk in the00) non-linear curves represent the exact expressions(2.32)
if-model. Thecurverepresentsthe exactexpres- and (2.33).
lion (2.31),and thenumerical data(table4) are
plotted in the form of vertical bars (full bars
refer to the lattice A, open bars to B and the
I-shapedsymbolsto C).

Wa is as large as 0.5 (in lattice units) for the highestlevel on B. Thus, the small
discrepanciesbetweenthe data from our largest lattice and the exact curves are
probablydue to scaling violations.We againconcludethat,within errors, thereis

completeagreementbetween“theory” and“experiment”.

6. Conclusions

In this paperwe haveshown that following the method outlinedin sect. 1, the
elasticscatteringmatrix in two-dimensional(massive)quantumfield theoriescan
beaccuratelydeterminedby numericalsimulation.The only prerequisiteneededis
an efficient simulation algorithmwhich allows one to do calculationsclose to the
continuumlimit on lattices with a linear size much larger than the fundamental
correlationlength.

Our results for the current form factor and the scatteringphaseshifts in the
0(3) non-lineara--model agreewith the known exactexpressionsfor thesequanti-
ties in the continuum limit up to some small deviations,which we believe are
mainly dueto scalingviolations, i.e. to the fact that the lattice spacing(in physical

units) is not sufficiently small. Little doubt remains, therefore,that the lattice
non-linearcr-modelapproachesthe continuumlimit in the conventionallyexpected
way eventhough asymptoticscalingapparentlysets in only ratherslowly [10, 11].
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The generalizationof our method to higher dimensionsis unfortunatelynot
straightforward,becausethe relation betweenthe finite-volume energyspectrum

and the elastic scatteringmatrix is much more complicated[5,6]. The difficulty
arisesfrom the factthat for a given two-particleenergy W, thereis an infinite set
of scatteringstates,labelledby angularmomentumquantumnumbers.The finite-
volume energy eigenstatesare certain superpositionsof thesewhich must be
chosensuch that the periodic boundaryconditionsare satisfied.This leadsto a
complicatedimplicit eigenvalueequation,which, asfar as we know, hasonly been
solvedfor the lowest levelsandat large L, wherean expansionin powersof i/L is
possible[5,6]. In particular,a relationbetweenthe energyof the lowest two-par-
ticle stateandthe scatteringlength in the channelconsideredis obtained,andthis
resulthas alreadybeenappliedsuccessfullyin a recentsimulationof the 4” theory
in four dimensions[1,2].

Appendix A

We here prove the lemma statedin subsect.5.2. To this end,first considerthe

caseof an r X r matrix M,
1(t) of the form

M,~(t)= ~ u~u~’e_tE~, (A.1)
aI

wherethe matrix u’ is non-singularand E1 <E2 < ... <Er. The claim is that the
eigenvaluesp.~(t)of thismatrix, orderedsuchthat -~ > /-~2> ... > ~ satisfy

lia(t) =bae_tE~11+ 0(e’~)] (A.2)

with ha> 0 and

LiEa=minlEa—E,31. (A.3)
13~a

The proof of this statementproceedsby induction on the rank r of the matrix
M(t). For r = 1, it holdstrivially. Now supposeeq.(A.2) is true for all matricesof
the specified type with rank r = R and let M(t) be such a matrix with r = R + 1.
We thendecomposeM(t) accordingto

M(t) =M°(t) +M’(t), (A.4)

M~~(t)= ~ e’~, (A.5)

M,.t,(t) =u~*uJet~. (A.6)
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By performing a unitary transformation,we may arrange that u~’= 0 for all
a = 1,.. ., R, so that M°(t) is a matrix with zerosin the last line andcolumn.Thus,
by the inductionhypothesis,the eigenvalues~x~,.(t)of M°(t) aregiven by

= b~°e~”~’~[1+ 0(e’~’~)] for a = 1,..., r — 1, (A.7)

(A.8)

where ba°>0. In the basis chosen, the eigenvectorassociatedwith the zero
eigenvalueis = 5~. It follows from eqs.(A.7) and(A.8) that

IIM’(t)ll < minl~ct,t,(t)— i.ct,~(t)I (A.9)
a~f3

for sufficiently large t. The matrix M ‘(t) is hence an analytic perturbationof
M°(t), i.e. the Rayleigh—Schrodingerperturbationexpansionof the eigenvalues
lia(t) of M(t) in powersof M’(t) is absolutelyconvergent.To first order, we have

/~a(t) =p],t,(t) +0(etE~) fora<r, (A.10)

l_Lr(t) = lu~l2c_fE,, (A.II)

andthe higherordersareeasily seento give correctionsof ordere ~ Thus,the
eigenvalues,aa(t) satisfy eq. (A.2) as asserted(that b,. = lu~l2is not zero follows
from the fact that a,” is a non-singularmatrix andfrom our choiceof basis).

The proof of the lemmais now straightforward.We first write

C(t) =M(t) +N(t), (A.12)

M,
1(t) = a~1v~*v7c_lW,.,., (A.13)

~1(t) = ~ v,”~vJ’~ (A.14)
a=A ± I

By a constantunitary transformation,M(t) can be brought to a form where all
matrix elementsvanish except those in the upper left A x A square.This sub-
matrix is of the type consideredabove(with r = A), andwe thereforeconcludethat
the first A eigenvaluesof M aregiven by eq.(5.14)for larget while the remaining
eigenvaluesvanish.

As in the caseof the matricesM~>and M’, this implies that N(t) is an analytic
perturbationof M(t) for sufficiently large t, andthe lemma now follows from the
perturbationexpansionof the eigenvaluesA~(t)in powersof N(t).
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