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A method to calculate the elastic scattering amplitude at low energies in two-dimensional
quantum field theories is proposed and tested in a numerical simulation of the O(3) non-linear
o-model on a simple square lattice. We also compute the isospin current form factor in this
model and compare our results with the known exact expressions for the S-matrix and the form
factor in the continuum limit. As a technical improvement, we introduce a two-cluster simulation
algorithm which leads to significantly reduced statistical errors in the calculation of four-point
correlation functions.

1. Introduction

In the past few years, numerical simulations of (euclidean) quantum field
theories have become a widely used and highly successful technique to determine
their fundamental properties in various regions of the parameter space. In most
cases, the quantities calculated are the particle mass spectrum and bulk quantities,
such as specific heats, internal energies and fermion condensates. For partly
technical and partly physical reasons, it is much harder to also determine coupling
constants and the elastic scattering matrix, i.e. quantities that are derived from
three- and four-point correlation functions. Thus, as far as we know, the ¢>4-theory
is actually the only four-dimensional field theory where one has succeeded to
compute the scattering lengths associated with the scattering of the fundamental
particles [1, 2].

The most important result obtained in this paper is the practical demonstration
that the scattering phase shifts at low momenta can be calculated in a rather direct
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and comparatively simple manner in two-dimensional quantum field theories. The
basic idea (which has already been sketched in an earlier publication [6]) is to
compute the energy spectrum in the two-particle sector in a sufficiently large but
finite periodic box. For any observed level with zero total momentum, definite
internal quantum numbers and energy W, the corresponding scattering phase shift
8(k) at momentum k in the center-of-mass frame is then given by

ez:‘a(k):e—ikL. (1'1)
Here, 1. denotes the box size and k is related to W through

W=2/m?+k?, (1.2)

m being the mass of the scattered particles (which we have assumed to be identical
for simplicity). Thus, if W and m have been accurately determined in a numerical
simulation, the momentum k can be extracted from eq. (1.2) and the scattering
phase at this momentum is then given by eq. (1.1). Note that for any fixed value of
L, one obtains the scattering phase at a discrete set of momenta & according to the
measured spectrum of energy values W. If desired, a whole range of momenta &
can be covered by varying L at fixed m.

As we shall discuss in greater detail later on, the fundamental relation (1.1) is
only valid when scaling violations and polarization effects can be neglected, i.e.
only when one is sufficiently close to the continuum limit and when the box size L
is so large that virtual particle exchanges “around the world” are strongly sup-
pressed. Physically speaking, what is required is that the Compton wave length
m~! of the particles should be several lattice spacings at least; in particular, the
relativistic energy-momentum dispersion should be accurately valid for small
momenta. Furthermore, the box size L should be significantly larger than the
interaction range so that when two particles are contained in the box, they will
have some space to propagate freely before they feel the presence of each other.

It is quite clear from these remarks that the procedure outlined above will
require large lattices to be simulated at large correlation lengths and thus the
calculation may turn out to be impractical for a given model due to critical slowing
down of the commonly used simulation algorithms. To test the method we have
therefore decided to consider the O(3) non-linear o-model where a highly efficient
algorithm (the “‘one-cluster update algorithm™) has recently been found [8-11].
There seems to be no critical slowing down for this algorithm and thus we are able
to obtain interesting results with about 240 hours of single processor CPU time on
a CRAY-XMP.

Of course, there is also an independent interest to study this particular model,
because here an exact formula for the scattering matrix in the continuum limit has
been proposed many years ago by Zamolodchikov and Zamolodchikov [15] on the
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basis of the existence of higher conservation laws plus some (weak) qualitative
assumptions, and thus we have a good opportunity now to check to what extent the
lattice model is able to reproduce these expressions. If we find agreement, not only
our method and the exact S-matrix would be confirmed, but one would also obtain
additional evidence that the continuum limit of the lattice model exists in the
expected way, a commonly made assumption which has recently been critically
discussed in a series of papers by Patrascioiu et al. [24-27].

There is actually another, more easily accessible quantity which can be used to
obtain a similar consistency test of the lattice O(3) o-model. This is the form factor
G(k) of the isospin current j2*(x) defined through

(p.c|jt(0)|g,d) = —i(p, +q,) (88 — 5°'5)G(k), (1.3)
where |p, c) denotes the one-particle state with momentum p and isospin label c,
and k is given by

k=2~ (p—-q)’ >0. (1.4)

Starting from the known S-matrix, an exact formula for the form factor has been
derived by Karowski and Weisz [21], and thus we have decided to also compute
this quantity at low momenta, which is, in principle, a much simpler task than the
calculation of the scattering matrix.

The organization of our paper is as follows. We first summarize the known exact
results on the scattering matrix and the form factor in the O(3) non-linear o-model
(sect. 2). The lattice version of the model is introduced in sect. 3 and the
simulation algorithm that we have used is briefly discussed. In particular, a
modification of the cluster algorithm is described here which is particularly
effective for the calculation of the four-point correlation function of the funda-
mental spin field. In sect. 4 we explain how to compute the current form factor
G(k) and discuss our results for this quantity. We then proceed to the calculation
of the scattering matrix according to the technique outlined above (sect. 5). This
section also includes a discussion of the proof and limitations of the fundamental
eq. (1.1). The paper ends with a few concluding remarks in sect. 6.

2. Exact results on the O(n) model

In this section we summarize what is known about the scattering matrix and the
current form factor in the continuum limit of the O(n) non-linear o-model in 1 + 1
dimensions [15-23]. Apart from introducing our notations, this discussion gives us
the opportunity to list the critical assumptions that have to be made to be able to
derive the exact S-matrix and thus some feeling will result as to how credible this
formula is.
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2.1. NOTATIONS AND BASIC PROPERTIES

On a classical level, the O(n) model describes an n-component spin field*

s9(z), a=1,...,n, x=(x"x')eR? (2.1)
of unit length, viz.
s(x)-s(x)=1. (2.2)
The classical action is
S = ifdzxa s(x)-a*s(x), (2.3)
2f .

where f> 0 denotes the coupling constant. The conserved current associated with
the obvious O(n) symmetry (the “isospin” symmetry) of the action reads

j&(x) = %[s“(x)aus”(x) —sb(x)aus“(x)] ) (2.4)

There are many more symmetries in this model, which we shall briefly refer to
later on.

It is well known that the scale invariance of the classical theory is broken after
quantization by the conformal anomaly, and thus it is commonly believed that a
mass gap develops. More specifically, one has reason to expect that the particle
spectrum in the quantized model consists of an O(n) vector of particles of mass m
and that the ground state |0) is O(#n) invariant. Thus, there are one-particle states

p,ay, a=1,....n, (2.5)

labelled by a momentum

p=(p%p"), p°=\/m>0, (2.6)

and an isospin index a. The normalization and phase of these states may be
chosen such that

(p,alq,by=8"2p"278(p' —q'), (2.7)
Ofs“(x)|p, by = 8°VZ e~ (2.8)
where Z >0 is some constant that depends on how the regularization and

* Greek indices p,v,... run from 0 to 1 and Latin indices a,b ... from 1 to n. Repeated indices are
summed over. The space-time metric is taken to be g,, = diag(1,—1), and the associated scalar
product reads xy =g, x*y" =x*y,. Partial derivatives are abbreviated by 4, =g,,, 8" =/dx".
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renormalization of the theory has been performed. Instead of the momentum p,
many authors use the rapidity variable

n=In(p’+p')/m, (2.9)
p’=mcoshn,  p'=msinhn. (2.10)

Accordingly, we shall also write |7, a) for the one-particle states and the normal-
ization (2.7) then reads

(n,alx,b)=28478(n —x). (2.11)

As already mentioned above, the O(n) symmetry is expected to be unbroken in the
quantized theory. The charge

Jeb = /dx‘jgb(x) (2.12)

thus annihilates the vacuum state |0) and we may choose the normalization of the
isospin current in such a way that

Jn,cy =i 8*In, by — 8%|n,a)). (2.13)

(On a formal level, eq. (2.13) is implied by the definition (2.4) and the canonical
quantization rules; in what follows we just fix the normalization of the current by
imposing (2.13).)

2.2. ELASTIC SCATTERING MATRIX

Consider now an elastic scattering process where two particles with initial
momenta p,q and isospin labels a,b scatter and end up in the final state
described by the momenta p’, ¢’ and isospin labels a’, b’. Due to Bose symmetry, it
suffices to discuss the case where the corresponding rapidities satisfy

n>x, 7m'>x". (2.14)
The associated scattering matrix element then reads
(n',a'sx',b out|n, a; x, b in) = (47)°8(n" = 1)8(x" = x)S(0) ypr up» (2.15)
where § = — y and the matrix §(8) can be decomposed according to
S(6) ypr.ap =880 (08) + 8576 0,(6) + 59%6"“c,(8) . (2.16)

In what follows we list a number of properties which the invariant amplitudes
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a,(0) are expected to have, and these almost fix their analytic form, as has first
been remarked by Zamolodchikov and Zamolodchikov [15].
The most crucial set of relations satisfied by the o,’s are the “factorization
equations”, viz.
27 o, 2w oy

y O3= — ——°

6 n-—2

(2.17), (2.18)

7 im—6 n-—2
These relations follow directly from the higher non-local conservation laws, whose
existence has been established making only weak structural assumptions [16-19]. A
further consequence of the conservation laws (which is also implied by the higher
local conserved currents [20]) is the absence of particle production. Thus, elastic
unitarity holds for arbitrary energies, and, using the factorization equations, one
concludes that

2

loy)? = A=2m/(n-2), (2.19)

8%+ A%’
for all 6 > 0.

From eq. (2.16) it is apparent that o,(8) is a forward elastic scattering ampli-
tude. On very general grounds (basically the Wightman axioms), it can therefore be
analytically continued into the strip 0 < Im 6 < 7 and, due to eq. (2.19), o,(#) then
extends to a meromorphic function in the whole complex plane. Furthermore,
crossing symmetry and reality imply

o(im—0) =0y(0), oy (0)*=0y(—6%),  (2.20),(2.21)
and the unitarity relation (2.19) may be rewritten in the form
02
o)y ~0) = —— (2.22)

24227

which is valid for arbitrary complex 6.

The point now is that eqs. (2.20)—(2.22) almost determine o,(6). In fact, if we
add the constraint that ¢,(6) is bounded by a power of cosh 8 for large Re 6 (which
is reasonable because of asymptotic freedom) the most general solution is

0,(0) =f(8)Q(6)Q(im—6), (2.23)
where ((0) is defined by

r(a—ie/2m)r(s—ie/2m)

Q(9) = r(S+a—io/2m)I(—i6/2m)’

A=1/(n-2), (2.24)
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and f(#) is a so-called CDD factor, viz.

fo)=+1] ——-

k=1 sinhB—izk . (225)
The constants z, that enter here are arbitrary, except that they should either be
real or come in complex conjugate pairs.

In our opinion, the presence of this CDD factor is the main ambiguity that
remains and there is actually no very strong argument known today that would fix
it. However, it has been remarked that the choice f(#) =1 is minimal in the sense
that o,(8) then has no zeros in the physical sheet besides at # = 0 (while there are
additional zeros for all other choices), and this particular solution was therefore
proposed to be the scattering matrix of the O(n) model [15]. Further evidence for
f(8) = 1 was later obtained by working out the scattering matrix to order 1/n? in
the large n expansion [23]. For these reasons, we shall in what follows refer to the
solution with no CDD factor as the exact scattering matrix of the O(x) model.

Later on in the numerical work, we shall be mainly interested to calculate the
scattering phase shifts 8,(k) for a definite isospin I =0,1,2. These are obtained
from the scattering matrix S(8) by going to isospin eigenstates, i.e. we decompose
S(8) according to

2

S(H)a'b’,ab= Z s;(0)P,(a'b'|ab) , (2.26)
1=0

where the isospin projectors are given by

r

Py(a'b'|ab) = —8°'5 (2.27)
n
r -

P,(a'b'|ab) = Z(57°6"" — 55", (2.28)
1 1

Py(a'b'|ab) = = (5°5"" + 505" ) = —5" 5. (2.29)

n

For physical values of 8, unitarity implies |s,(8)|*> =1 so that, following standard
conventions, we can define the scattering phases through

e?? P =5 (0), k=msinh30 (2.30)

(in the centre-of-mass frame, k = p' is the absolute value of the momentum of the
incoming particles).
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From the exact expressions (2.23) and (2.24) for o,, the other amplitudes o, and
o, can be determined through the factorization equations and hence an exact
formula for the scattering phases is obtained. In the case of the O(3) model, the
resulting expressions assume the intriguingly simple form

2isgcey _ O 20T 231
© 6 - 2im’ (2:31)
25 k) 0+ 2im 6—imw (2.32)
8, — . .
¢ 6 2im 6+im’
) 6 —im
0k = —— (2.33)

(see fig. 1). Note that §,(k) is only slowly (logarithmically) going to zero for k —
in accordance with asymptotic freedom.

We would like to mention at this point that in a weakly coupled linear o-model,
the phase shifts at low energies have the same qualitative behaviour as in the
non-linear model, except that &,(k) starts at —w/2 and then monotonically
increases towards zero for k — o, i.e. §,(k) has a similar shape as §,{(k). When the
(renormalized) quartic coupling in the model is increased to its maximal value,
corresponding to the non-linear model, the phase shift develops a zero and, at
some intermediate coupling, its value at & = 0 jumps from —=/2 to + /2 (this
can be verified explicitly in the large » limit). Thus, the fact that §,(k) behaves as
shown in fig. 1 is indicative of the truly nonperturbative nature of the non-linear
o-model in two dimensions.

L ] T T T ] T T T
i
2
Bo
0 — & ]
62
_Tt |
2
1 10 kim

Fig. 1. Scattering phase shifts in the O(3) non-linear o-model (eqs. (2.31)-(2.33)). The scale on the
abscissa is linear for k/m < 1 and logarithmic for k/m > 1.
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2.3. CURRENT FORM FACTOR

The current form factor is defined through egs. (1.3) and (1.4) and the normal-
ization condition (2.13). This implies, in particular, that

G(0) =1. (2.34)

For general values of k&, an exact formula for the form factor has been derived by
Karowski and Weisz [21]. The ideas involved in this derivation are similar to the
ones that led to the exact scattering matrix. In particular, one relies on the
analyticity, as implied by fundamental principles, the absence of particle produc-
tion and the known form of the scattering phase shift in the isospin-1 channel.
Their result is

G (k) = (6 5 «dt 1—e 24 sin?(0t/2m) 5 35
)= ()exp{ /(-) t 1+e¢ sinh ¢ ’ (2.35)
where the rapidity variable @ is related to & through

k =msinh 38, (2.36)

and A(6) is some real polynomial in cosh 8 with A(0) = 1.

The polynomial A(8) remains unspecified if only the general requirements of
analyticity etc. are to be fulfilled, and in this respect 2(8) is similar to the CDD
factor f(6) which appears in the exact scattering matrix. However, because the
O(n) model is asymptotically free, one would be very surprised if the form factor
would increase to infinity at large momenta k. Thus, if we require that G(k)
remains bounded, it follows that #(#) = 1 and the form factor is then completely
determined. In the case of the O(3) model, the integral (2.35) can be evaluated
analytically and one ends up with

172

G(k) = :
() 2tanh10 7>+ 6°

(2.37)

(a plot of the form factor will be shown later). We finally remark that an exact
formula for the matrix elements of the current between in- and out-states with
an arbitrary number of particles has recently been proposed by Kirillov and
Smirnov [22].

3. Cluster simulation of the lattice O(3) model

In the following we define the lattice regularized non-linear o-model and then
briefly review the collective mode Monte Carlo method [8] that we employ for its
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simulation. A new two-cluster (2C) variant of the basic algorithm is presented, that
is particularly suitable for the calculation of the required four-point functions.

3.1. LATTICE FORMULATION

We use the lattice regularization as a standard tool to define a quantum field
theory rigorously and independently of perturbation theory. The continuum limit
for a large but finite physical volume is approached through a sequence of systems
with a growing but finite number of degrees of freedom for which numerical
simulation techniques are applicable. More precisely, we shall use euclidean
square lattices A with [A| =T X L sites and periodic boundary conditions. The
temporal extent 7 will always be kept very large compared to (inverse) physical
energies, i.e. we work at zero temperature. The spin field s(x) of sect. 2 is
restricted to the sites of A, and d, is reinterpreted as the difference operator

a,5(x) =s(x+ i) —sx), (3.1)

where 4 is the unit vector in the positive u-direction*. The lattice version of eq.
(2.3) then corresponds to the standard action for the O(n) non-linear o-model,

S=-BYs(x)-s(x+a), B=n/f, (3.2)

up to an irrelevant additive constant. Expectation values of arbitrary euclidean
observable A[s] are given by

1
(A = 5 [TTdu(s(x)) ™ ALs], (33)

where du(s) denotes the O(x) invariant single spin distribution, normalized to 1,
and the partition function Z is such that (1) =1. Finally, the euclidean O(n)
current on the lattice is defined by

je(x) =B[s“(x) d,5"(x) —s"(x) 8,Ls“(x)] . (3.4)

As we shall discuss later on, this current is conserved in the sense that it satisfies
the exact Ward identities which are associated with the O(n) symmetry of the
lattice theory.

* We use the symbol x both for continuum points and for lattice sites. Dimensionful quantities on
the lattice will always be given in lattice units, i.e. the lattice spacing a is set equal to 1. In
particular, a lattice site x = (x°, x') has integer coordinates. The operator d, means derivative or
difference depending on the context.
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3.2. COLLECTIVE MODE MONTE CARLO

The present study has become feasible due to the availability of new global
Monte Carlo techniques, which, for all practical purposes, climinate the problem
of critical slowing down for O(n) symmetric spin models [8-12]. As originally
suggested by Swendsen and Wang for discrete Potts spins [7], a bond percolation
process is coupled with spin configurations in such a way, that certain global spin
flips on whole percolation clusters furnish updates that respect detailed balance.
For each such update step a random direction in spin space r € R",r2=1, is
chosen, and only the components r-s(x)=ys,(x) will be affected by this step.
Bonds on links (x, x + ) are activated with probabilities

1- exp[ —2Bs,(x)s,(x +ﬁ)] if 5,(x)s,(x+4) >0, (3.5)

s x,p) =
P “ {0 otherwise.

For n =1, eq. (3.5) coincides with the prescription of Swendsen and Wang [7] for
the Ising model. In their algorithm all bonds on the lattice are conditionally
activated with probability (3.5), and the resulting clusters ¢, define a decomposi-
tion of the lattice

A= U c;. (3.6)

The update is completed by flipping the spins on each cluster ¢, with probability 3.
This generalizes to a valid algorithm for n > 1 [11,12], if the sign-flips are carried
out for s, only,

s x) > s(x) —2s(x)r*. (3.7)
Further use of the information represented by the cluster geometry is made by

introducing cluster-improved estimators [12]. For the fundamental two-point func-
tion the symmetry argument

(s*(x)s®(y)y =8°f(x —y) (3.8)

allows us to write
(s(x) -s(y)) =n(s,(x)s,(¥)>. (3.9)

If we now average over the 2¥ states that a cluster update referring to r could
choose with equal probability (of which only one is actually sampled), then we
derive

(s(x)-s(y)) = n<S,(X)sr(y) E 9c,(X)9c,(Y)> , (3.10)

i=1
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where 6, is the characteristic function of cluster c. Taking into account eq. (3.5),
we notice that s,(x) has only one sign on each cluster. Therefore we average over a
positive quantity on the right-hand side of eq. (3.10). Technically, this is what leads
to a reduced variance with the deeper reason being our averaging over a larger
number of configurations. In numerical calculations we found that an exponential
decay of the two-point function in the representation (3.10) is mainly caused by the
cluster cutoff 8. This shows very clearly the linkage between the size of our
update steps and the physically relevant scale. We think that this connection is
crucial for the success of the algorithm.

In ref. [8] a single cluster (1C) variant of the many cluster Swendsen—Wang
procedure just outlined has been introduced. Its elementary steps consist of
picking a random site x, as a seed for a cluster and then growing a single cluster C
connected to x,. Again, the bond activation probability (3.5) is used here. When C
is completed, all spins on C are flipped with (3.7). In comparing XY-model results
[9,12] we found the 1C algorithm superior to the already efficient many cluster
method in decorrelating long-range observables. Similar conclusions have been
drawn for the Ising model in refs. [13, 14]. The reason for these results presumably
lies at least partly in the fact, that the random seed x, preferentially connects to
large clusters. We shall exclusively use 1C-type updating in this work.

The cluster estimator (3.10) can also be adapted to the 1C method [11]. We may
imagine to perform the sum over clusters under the average stochastically. The
probability |c,|/|A|, with which the random seed falls into cluster c;, has to be
compensated for, giving

A 1C
(s(x) 5(y)y =n <s,(x>s,(y>%ec<x>ac(y)> | (3.11)

3.3. TWO CLUSTER ALGORITHM AND CLUSTER ESTIMATORS FOR
FOUR-POINT FUNCTIONS

The physical observables that we focus on in this work lead us to consider a
variety of four-point functions. The most general such object may be decomposed
into isospin channels

2
(s°(x)s"(y)s®(x)s"(y)y = X Pi(abla'b)fi(x,y;x",y"),  (3.12)
I=0

with the isospin projectors (2.27)—(2.29). If we now introduce a pair of orthogonal
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spin directions r,u € "', r-u =0, it is trivial to contract and derive

1

(s(0)5,(y)su(x)5,(y)) = —(fo=f2), (3.13)
1

(5:(x)5,(y)5,(x)5(y')) = 5 (1 +£2) 5 (3.14)
1

<sr(x)su(y)su(x’)sr(y’)>=§(f1 —fZ) (315)

All arguments of f, are as in eq. (3.12) here. We insert these relations and find
Py(abla'd’)(s*(x)s®(y)s“(x')s" (¥'))
=n{s,(x)5,(y)5,(5)5,(¥)) + 2{5,(x) 5,5(¥) 5, (x5, (¥, (3.16)
Py(abla'b")(s"(x)s"(y)s“(x)s"(¥'))
=n(n =D (x)s,(¥)s,(x)5,4(5)), (3.17)
Py(abla'b’)(s?(x)s*(y)s ()" (¥'))
= [n(n+1) = 2] (s (2) 5,5(¥) 5, (X)) 5,5(¥)) - (3.18)
The bracketed subscripts denote (anti-) symmetrization,
spr()s(9) = 3[5,(x)5,(y) = 5.(x)5.(N)], (3.19)
s (%)8,5() = 2[8,(x) s, () +5,(x)s5.(»)] - (3.20)
Egs. (3.16)-(3.18) are the appropriate generalizations of (3.9) for the four-point

function. It is now straightforward to construct cluster estimators by linking r,u
with the update steps. To this end we pick them randomly with the measure

du(r,u) =d"rd"ud(r’—1)6(u*—1)8(r-u). (3.21)

The proof of detailed balance given in ref. [11] — both for many cluster and for
1C-updating — now trivially generalizes to the case, where we perform such steps
with both r and u. Note that, because of the orthogonality of r and u, the order in
which we perform the r-update and the u-update is irrelevant. We are dealing with
partial resamplings of independent degrees of freedom [12]. The 2C algorithm now
corresponds to building clusters C, and C,, independently.
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By arguments entirely analogous to those leading to eq. (3.11) we construct
cluster-improved versions of egs. (3.16)—(3.18). They are obtained by substituting

14|

1,2
5(x) - (H) e (x)s,(x) (3:22)

and similarly for s, and C,. A positive estimator results for the / = 2 channel, and
both tensor channels 7= 1,2 include cluster cutoffs: nonzero contributions can
only occur if the groups of points x, y and x', y’ are bridged simultaneously by C,
and C,. As for the two-point function, we therefore expect a reduced variance in
these cases while in the isoscalar case (eq. (3.16)) no comparable improvement is
expected (cf. sect. 5.3).

4. Computation of the current form factor

In this section we present our numerical results for the current form factor. All
simulations have been done for the O(3) model, and thus we set n =3 in what
follows (the generalization to arbitrary values of # is trivial). Furthermore, for the
theoretical discussion we shall always assume that the time-like extent T of the
lattice is infinite, while the space-like extent L is taken to be finite.

4.1. ONE-PARTICLE STATES ON THE LATTICE

The physical interpretation of the euclidean lattice theory is based on the
transfer matrix construction (see e.g. ref. [28]). This construction involves a Hilbert
space J#, the space of physical states, and the transfer matrix T, which is a
self-adjoint positive operator acting in -#. The hamilton operator H of the theory
is related to the transfer matrix through T = exp(—H) (recall that the lattice
spacing has been set equal to one). As in the continuum we expect that the ground
state |0) of H is non-degenerate. Without loss, we may choose the normalization of
the transfer matrix such that the ground-state energy vanishes. Furthermore, the
translations by any integer number of lattice spacings in the space direction and
the isospin symmetry (which are represented by unitary operators in the space &%
of physical states) act trivially on |0).

The connection between the euclidean correlation functions of the spin field and
the transfer matrix is expressed through

s(x) s ()

= (059 (X)) T =g (k)T §9(x))|0), (4.1)
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where we have ordered the fields such that x?>x9> ... >x) and where §*(x")
denotes the spin field operator at time x’= 0.

One-particle states |p,a) also exist on a lattice, but as compared to the
continuum case a number of complications occur. In particular, the momentum p'
is restricted to the values

27y
L >

p'=

where ve Z, -L/2<v<L/2, (4.2)

and the energy p” of these states is some function of p' and L, which is not
a priori known. If we define the particle mass m to be the one-particle energy at
p' =0 and L ==, one may however expect that the relativistic energy-momentum
relation (2.6) holds, provided L >m~'>1 and p'< 1. The first of these
inequalities expresses that L must be much larger than the physical scale in the
model so that finite-size effects are negligible. In fact, these are known to decrease
exponentially with L and their contribution to the one-particle energy can be
estimated [3, 4] to be of the order of a few per mille at most if

mL>6. (4.3)

In our simulations the observed deviations of the one-particle energy from the
relativistic form are larger than these finite size corrections and they are thus
essentially due to lattice effects, i.e. due to the presence of a finite ultraviolet
cutoff (see table 1 for an example). On general grounds [29], these effects should
decrease with approximately the square of the lattice spacing. The data listed in

TaBLE 1
One-particle energy values p” as a function of the momentum p! on a lattice
with L =128 and m ™' = 13.632(6).

v pl/m p(l/Vm2+(p1)2
1 0.6692(3) 0.9992(3)
2 1.3383(6) 0.9993(3)
3 2.0075(9) 0.9989(3)
4 2.677(1) 0.9979(4)
5 3.346(1) 0.9963(4)
6 4.015(2) 0.9947(5)
7 4.684(2) 0.9928(4)
8 5.353(2) 0.9904(4)
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table 1 can in fact be represented rather well by

PO

Vm?+(p')

and thus we conclude that the systematic errors in this part of our calculations are
under control.

The normalization and phase of the lattice one-particle states may be chosen
such that

—1-006x (p')’, (4.4)

(p,alq,by=8%2p°Lé, 1, (4.5)
O (x"p, by =8""Z(p) e, (4.6)

where the dependence of the wave-function renormalization factor Z > 0 on L has
been suppressed. These conventions are such that one recovers the normalizations
(2.7) and (2.8) in the (infinite volume) continuum limit of the model.

4.2. METHOD OF CALCULATION

The euclidean current (3.4) is proportional to the change of the lattice action
(3.2) under an infinitesimal local O(3) rotation of the spin field, and since this
operation is a symmetry of the a priori measure in the functional integral (3.3), one
concludes (as in the continuum) that the current satisfies a set of Ward identities.
In particular, we have

<8lj‘j;j”(x)sc(y)sd(z)> =8,{ (8%s%(y) — 6%5%(y))s?(x))

+8, (s(v)(8%4sP(2) — 8%%%(2)))y, (4.7)

where 4 is the backward lattice derivative (the adjoint of —d,). As we shall see
shortly, eq. (4.7) guarantees that the normalization condition (2.13) is fulfilled in
the continuum limit. Furthermore, since there is only one local field of dimension
less than or equal to 1 in this model which transforms like an anti-symmetric
tensor under O(3), operator mixing by renormalization can be excluded and the
lattice current is hence expected to converge to the continuum current, at least on
the level of correlation functions smeared with suitable test functions.

For any momentum p' in the set (4.2), we define the Fourier transform
§9(x", p') of the spin field through

L
§9x%pY)= Y e P¥s(x). (4.8)

x'=1
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By inserting the spectral resolution of T in the representation (4.1) of the spin
correlation function, it is then easy to show that the asymptotic relation
Zz
<§a(x0’p])sb(0)> U~ 3ab__2(i)ole_puxu (4‘9)
X

—

holds up to terms vanishing exponentially fast relative to the displayed term (here
and below, p° denotes the one-particle energy at momentum p'). Similarly, one
may show that the limit

def 1 (5t +1,k)jE(0)§P(—t,k))

k,L)y=—=1 4.10
gtk L) = = 5 M e o 1K) (0)) (4.10)
exists and, furthermore, that it is given by
1 b
ek 1) = = Gospal O (4.11)
12p p’=-q‘=k
The current operator j2?(x') occurring here is defined by
JeP(x') = B[3,8"(x")84(x") —a,8(x") 0 ()], (4.12)
3o84(x) = eMg?(xNe M —§2(xh). (4.13)

If we would consider the same ratio g(k, L) of correlation functions in the infinite
volume continuum limit, eq. (4.11) would hold again and j2%(x') would be —i
times the current operator of subsect. 2.1 (the factor of —i arises because we are
here dealing with the euclidean current). Recalling eq. (1.3), we therefore expect
that g(k, L) converges to the current form factor G(k) in the (large volume)
continuum limit, and thus we have found a way to extract G(k) from the euclidean
two-point and four-point correlation functions of the lattice spin field s*(x), which
are, in principle, calculable by numerical simulation. That this method of calcula-
tion also works in practice will be demonstrated in the following subsection.

As we have already mentioned above, the normalization of the lattice currents is
such that the normalization condition (2.13) (or, equivalently, eq. (2.34)) is satisfied
in the continuum limit. Indeed, it follows from the Ward identity (4.7) and Stokes’
theorem on the lattice that

g(0,L)y=1 (4.14)

for all values of the coupling 8 and all L, and hence in the continuum limit.
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4.3. SIMULATION RESULTS

We have simulated three different lattices, labelled A, B, C, as specified in table
2. On the lattice C, the quoted value for the mass m is obtained by measuring the
one-particle energy at zero momentum and subtracting an analytically determined
finite size correction Am = 0.0019 X m [3,4]. On the large lattices A and B, this
correction would be negligible compared to the statistical error. The lattices A and
B are about equally big in physical units, i.e. the difference between these two
cases is essentially that the lattice spacing is doubled when going from A to B. By
comparing the results obtained on these two lattices we can therefore estimate the
size of the finite lattice spacing effects. The lattice C, on the other hand, is
substantially smaller in physical units than A while the correlation length is about
the same (in lattice units). Thus, a comparison between A and C will give us
information on the size of the finite size effects.

For each lattice we have measured the correlation functions entering the
definition (4.10) of the lattice form factor g(k, L), where, of course, we averaged
over time and space translations to improve our statistics. It then turned out that
the ratio of these correlation functions converges to a constant at values of ¢
around one correlation length € =m . This constant is taken as our estimate for
g(k, L) (see table 3; the errors quoted there are statistical only). As a check we
have verified that eq. (4.14) holds within errors.

TaBLE 2
Basic lattice data.

lattice B TXL m~! mL
A 1.54 256 x 128 13.632(6) 9.390(4)
B 1.40 128 % 64 6.883(3) 9.298(4)
C 1.50 128 x 64 11.054(7) 5.790(4)

TasLE 3

Simulation results for the lattice form factor g(k, L) at momentum k = 2mv /L, and comparison
with the exact form factor G(k) (eqs. (2.36) and (2.37)).

lattice v k/m glk, L) G(k) g(k,L)/G(k)
A 1 0.6692(3) 0.975(2) 0.9727(1) 1.002(2)
2 1.3383(6) 0.935(4) 0.9218(1) 1.014(4)
3 2.0075(9) 0.891(7) 0.8745(1) 1.019(8)
B 1 0.6757(3) 0.982(1) 0.9723(1) 1.010(1)
2 1.3515(6) 0.947(3) 0.9208(1) 1.028(3)
3 2.0272(9) 0.921(3) 0.8732(1) 1.055(3)
C 1 1.0852(7) 0.959(3) 0.9414(1) 1.019(3)
2 2.170(1) 0.903(6) 0.8643(1) 1.045(7)
3 3.256(2) 0.874(7) 0.8072(1) 1.083(9)
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Fig. 2. Form factor G(k) in the O(3) non-linear o-model as a function of the momentum k. The solid

line represents the exact formulae (2.36) and (2.37). The dashed line includes the lattice correction

(4.15), as appropriate for the lattice A, and the data points are our result for this lattice (first block in
table 3).

Our results show that the lattice form factor reproduces the exact form factor
G(k) quite well, especially in the case of the lattice A, where the systematic errors
are expected to be minimal (see fig. 2). Still, almost all data points are off by a
small, statistically significant amount, and it is the purpose of the following
discussion to identify the possible origins of these discrepancies.

As shown in fig. 2, the data on the lattice A can be represented, within errors, by

glk,L)/G(k) =1+k?, (4.15)

and this suggests that the observed deviation from the exact curve is a lattice effect
which will disappear when we go closer to the continuum limit (recall that k is
measured in lattice units in eq. (4.15)). This first impression is corroborated by
comparing the results obtained on the lattice A with those obtained on the lattice
B, where the lattice spacing (in physical units) is about twice as large as on A. At
all values of k, the deviations from the exact form factor are much larger on B
than on A, by factors of 5, 2 and 3 for v = 1,2,3. Theoretically, one would expect
the errors to increase by a factor of 4 approximately [29] when going from A to B,
and this is roughly what we find, although the fluctuations in the factors for
different values of & indicate that our statistical errors do not allow for a more
quantitative analysis of the effect.

Another possible source of systematic errors are the finite-volume effects. Their
size can be estimated by comparing the lattice A with the lattice C which is about a
factor 1.6 smaller than A (in physical units), while the lattice spacing is about the
same. From table 3 and the interpolation (4.15), one infers that the size of this
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effect is about 1-2% for k < 2m. Finite-size effects are decreasing exponentially
with increasing ml and since they are already small on the lattice C, we expect
that they are negligible compared to the statistical errors on the large lattices A
and B.

To sum up, we believe that the systematic errors in our calculations are under
control and conclude that within statistical errors, and accounting for the presence
of small lattice effects as discussed above, there is complete agreement between
“theory” and “experiment” in the momentum range 0 <k <2m.

5. Computation of the scattering phases

As explained in sect. 1, the numerical calculation of the scattering matrix is
based on eq. (1.1), which relates the scattering phase §,(k) to the energy spectrum
of two-particle states with isospin [ in a finite volume with periodic boundary
conditions. In this section we shall first discuss the derivation and physical
interpretation of eq. (1.1). The problem of how to extract the two-particle energy
spectrum from the (euclidean) four-point correlation function will be considered
after that and, finally, the results of our numerical study of the O(3) model will be
presented.

5.1. DERIVATION OF EQ. (1.1)

The basic relation (1.1) has a simple physical meaning which can already be
understood in the following quantum mechanical model.

Consider two spinless bosons moving on a line. The Schrédinger wave function
¥ (x, y) of this system depends on the positions x, y € R of the particles and has to
be symmetric under an interchange of x and y. Thus, if we restrict ourselves to
states with vanishing total momentum, we have

g(x,y) =flx—y) (5.1)
where
f(z) =f(-z).
The stationary Schrédinger equation (in infinite volume) then reduces to
1 d?
(g + VD |(2) - E1(2), (52)
m dz

where V(|z|) is some interaction potential, which will be assumed to be short
ranged.

Since we require f(z) to be symmetric, the differential equation (5.2) has
actually only one admissable linearly independent solution, denoted by f,.(z), for



242 M. Liischer, U. Wolff / Elastic scattering matrix

any energy value E. In particular, for
E=k*/m, k>0, (5.3)
fr(2) is a stationary scattering solution, which can be normalized such that

fE(Z)V;mCOS(kIz' +8(k)), (5.4)

where 8(k) is the scattering phase.

If the particles are now enclosed in a periodic box of size L (a circle, in other
words), the corresponding wave function ¢(x,y) and hence the reduced wave
function f(z) is periodic with period L. The stationary Schrédinger equation
remains the same as before (eq. (5.2)) except that the potential is replaced by

V)= Y V(2 +wL)) (55)

y=—

to take into account interactions “around the world”. A solution to this equation
for some energy E >0 can be interpreted as a stationary scattering state, where
the particles are running around the circle in opposite directions.

For |z| <L /2 and if L is much larger than the interaction range, the additional
interactions “around the world” are negligible and the solution fz(z) to the
Schrédinger equation is therefore the same as for L =«<. The requirement of
periodicity then implies

fe(=L/2)=fi(L/2)=0 (5.6)
and, recalling eq. (5.4), one concludes that
kL +26(k) =0 (mod2m), (5.7)

which is equivalent to eq. (1.1). For any given interaction potential ' and box size
L, eq. (1.1) has a discrete set of solutions k,, »=10,1,2,..., and this then yields
the possible finite volume energy values E, =k?/m. In other words, eq. (1.1) is a
quantization condition.

The physical meaning of eq. (1.1) becomes more transparent by looking at fig. 3,
where the solution f.(2) of the Schrédinger equation is drawn for the free case
(wave a) and a typical interacting case (wave b). In both cases the momentum & is
equal to 27v /L with v = 8. Thus, in the non-interacting case, eq. (1.1) is satisfied
and the wave smoothly connects to itself when the points z = +L /2 are identified.
This is in general not so in the presence of interactions, because these distort the
wave in the interaction region around z = ( in such a way that the asymptotic free
waves near z = +L /2 (where the interactions are negligible) are phase shifted



M. Liischer, U. Wolff / Elastic scattering matrix 243

relative to each other by 28(k). In fig. 3, this phase shift is half a wavelength, and
the wave therefore does not smoothly connect to itself at z= +1 /2 in this case.
However, it is obvious from the picture that periodicity of the wave can be
achieved either by increasing L by half a wavelength or by increasing k by some
amount until eq. (1.1) is satisfied. In other words, eq. (1.1) just says that the
kinematical phase shift (equal to kL), which one picks up when translating a free
wave of momentum k by the distance L, and the phase shift, which results from
the scattering of the particles, must compensate each other (modulo 27) to
guarantee the periodicity of the wave.

In view of this simple physical meaning of the fundamental relation (1.1), it
should be quite plausible now that it is also valid in quantum field theory. Indeed,
the interpretation of the scattering phase shift is the same as above and the phase
by which a free-particle state transforms under translations over a distance L is
again kL, where k denotes the momentum of the particle. The only place where a
change occurs is in the energy—momentum relation, where eq. (1.2) should be used
instead of eq. (5.3).

Eq. (1.1) can actually be derived in the framework of the Feynman diagram
expansion which was set up in sect. 3 of ref. [6] to establish certain asymptotic
formulas for the finite-volume energy spectrum in four-dimensional quantum field
theories. It is not our aim to present this proof in full detail here, but for the
interested reader we briefly describe the key steps involved.

The crucial observation is that in quantum field theory an equation can be
derived, which plays almost exactly the role the Schrédinger equation (5.2) did in
the non-relativistic case. For a simple one-component scalar field theory, such as
the ¢*-theory, this equation reads

1 1
= —f'(2) + 5 [d2'Up(2,2) () = Ef(2), (5.8)

where Uz, z') is the Fourier transform of the modified Bethe—Salpeter kernel
Ug(k,k') introduced in ref. [6]. E is a parameter, which is related to the true

a
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Fig. 3. Plot of the solution fz(z) of the Schrédinger equation (5.2) for k = 167 /L. Wave a is for the
non-interacting case (V' = 0), while wave b is what one expects for a short range attractive potential.
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energy W of the two-particle state described by f through

W=2Vm?+mE . (5.9)

In the elastic region 0 < E <3m, the “potential” Ug(z, z') is an analytic function
of E and a rapidly decaying C”-function of z and z’'. By the Fredholm theory, eq.
(5.8) therefore has in general a unique solution fg(z), and this solution can be
shown to have the asymptotic behaviour (5.4), where 8(k) is the true scattering
phase shift (this can be proved, for example, by expanding f(z) in a Born series
and comparing with the corresponding expansion of the four-point vertex function
established in ref. [6]).

For finite L, the two-particle energy spectrum below the four-particle threshold
is also determined by the wave equation (5.8), where U.(z, z") is to be replaced by
its periodic extension and the integration over z’ is from —L /2 to L /2. Actually,
as discussed in more detail in ref. [6], this is only true up to polarization effects
which vanish more rapidly than any power of L~ ! for L — . If we neglect these
corrections, the discussion now proceeds in exactly the same way as in the
non-relativistic case, and one finds that the spectrum of two-particle energy levels
is determined by egs. (1.1) and (1.2) as anticipated.

From the above, one expects that eq. (1.1) holds in any two-dimensional
quantum field theory with only massive particles provided the following conditions
are satisfied:

(1) The finite-volume two-particle states considered have quantum numbers and
energies such that mixing with other many particle states are impossible. For
example, in the non-linear o-model at zero total momentum, fixed isospin / and
positive isospin parity, all states below the four-particle threshold W =4m are
two-particle states, and mixing with other states can be excluded. For W> 4m,
multi-particle states interfere and it is, in fact, no longer clear that one means by a
two-particle energy eigenstate in this case.

(2) L must be much larger than the interaction range so that the wave function
fe(2) is accurately given by the free wave (5.4) when z is near +L /2.

(3) L must also be sufficiently large to suppress the polarization effects men-
tioned above. These arise from virtual particles going “around the world” and
decay rapidly with increasing mL. We therefore expect them to be small as soon as
(2) is satisfied.

(4) If the theory is formulated on a euclidean lattice, there will be further
corrections to eqs. (1.1) and (1.2), which vanish like a power of the lattice spacing.

5.2. NUMERICAL CALCULATION OF THE TWO-PARTICLE ENERGY SPECTRUM

We now proceed to discuss the problem of how to extract the two-particle
energy spectrum from the (euclidean) four-point correlation functions of a given
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lattice quantum field theory. This is not entirely trivial, because we are not only
interested in the lowest level and because the level spacing is small for large L.

Consider for simplicity a lattice theory of a single scalar field ¢(x), such as the
¢*-theory, and suppose ¢ — —¢ is an unbroken symmetry of the system and that
the particle spectrum consists of a single massive particle, which has odd parity
under this symmetry. In the sector with even parity, zero total momentum and
energy 0 < W <4m, all energy eigenstates are two-particle states, and it is the
energies of these states that we are interested in.

Let us now define the two-particle fields

ﬁj(x()) - Z eip](x]—yl)(b(x(l’xl)d)(x()’yl)’ (5.10)

[I
X,y

where p'=(j— 1)27/L and j=1,...,r (r will be fixed below). From the above,
one expects the two-particle states to contribute to the spectral decomposition of
the correlation function

C.y(1) = (L) *E(0)) — (L)} (). (5.11)

The general form of this decomposition is, for ¢ = 0,

Clj(t) = ;lvia*uﬁeitw‘ya (512)
vt =(alZ(0)|0, Hia) = W,la), (5.13)

where « labels the even parity energy eigenstates |a) with W, > (. Furthermore,
the labelling may be chosen such that the two-particle levels come first, i.e. such
that W, < W, < ... < W, <4m and W, > 4m for a > A (the number A of pure
two-particle states is approximately equal to mL /3 and is thus much smaller than
L close to the continuum limit).

In a numerical simulation, the correlation matrix C(¢) can be expected to be
computable for some range of ¢, and the basic technical problem then is to extract
the levels W, from C(¢). From egs. (1.1) and (1.2), it is clear that degeneracies in
the two-particle spectrum occur only accidentally and we shall therefore assume
for simplicity that W, <W, < ... <W, and that the r-component vectors v,
a=1,..., A, are linearly independent. This requires, in particular, that the num-
ber r of two-particle operators considered is greater or equal to 4. In practice r
will not be chosen much greater than A because the statistical errors in the
correlation functions in general increase with growing momenta. In any case, r
should be less than or equal to L /2 to guarantee that the fields & are linearly
independent.
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An important mathematical result now is

Lemma. For every t >0, let A_(¢) be the eigenvalues of the correlation matrix
C(¢) ordered such that A, > A, > ... 2 A,. Then, for all @ =1,..., A we have

A (1) = c e (1 +O(e )], (5.14)
f—x

where ¢, >0 and AW, is the distance of W, from the other spectral values W.

The proof of this technical lemma is simple but somewhat lengthy and it is
therefore deferred to appendix A. In principle, the lemma provides a basis for the
calculation of the two-particle energy spectrum given the correlation matrix C(t).
However, C(z) cannot usually be determined very accurately at large ¢ so that it
may not be possible to guarantee that the error term in eq. (5.14) is negligible.

A method which we expect to be superior to a straightforward application of the
lemma starts from the generalized eigenvalue problem

C(t)=A(t,1,)C(ty) ¥, (5.15)

where ¢, is fixed and small (¢, = 0 for example). This problem is well posed if C(¢,)
is non-singular, which is certainly the case, because the euclidean fields ﬁj(t),
j=1,...,r, are linearly independent. Thus, there are r independent solutions to
eq. (5.15), and it is not difficult to show that the corresponding eigenvalues
ALt ty), a=1,..., A, again satisfy eq. (5.14). However, the amplitudes ¢, and the
coefficients of the subleading exponentials are different. More precisely, one
expects that c, = e""« and that the other coefficients are suppressed so that the
leading term in eq. (5.14) dominates already at moderately large values of ¢.

To see this, first note that the spectral sum (5.12) is absolutely convergent even
for ¢ = 0. Thus, by appropriate selection of the states |a) with a =A +1,...,r, the
truncated correlation matrix

Ci(t) = ) v*vre We (5.16)
a=1
can be expected to approximate C(¢) rather well. In particular, C°(¢,) will be
non-singular and one may show immediately that the spectrum of eigenvalues
X2(¢,t,) of the associated modified eigenvalue problem is exactly given by

N(t,tg)=e "W foralla=1,...,r. (5.17)

Now we write C =C%+ C! and treat C' as a perturbation. At least the larger
eigenvalues (the two-particle levels, in particular) should not be strongly affected
by this perturbation, and they are thus approximately equal A%(¢, ¢,), i.e. the higher
exponential corrections are suppressed as asserted above.
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To sum up, what we propose is to calculate the eigenvalues A (z,7,) of
C(ty) " '2C(6)C(t,)~'/? and to extract W, by

At tg) )

—_— 5.18
A(T+1,1) ( )

[e3

w =ln(

where ¢ is taken as large as possible and ¢, is small (although this would be
theoretically desirable, it is our experience that ¢, cannot be chosen large, because
the inversion of C(¢,) then becomes numerically unstable and the statistical errors
run out of control). Of course, an energy value W, determined in this way will only
be accepted if the right-hand side of eq. (5.18) is stable within errors in the range
of + where it is evaluated. In addition one can check for the stability with respect
to changes of ¢, and, finally, one can compute the amplitude ¢, to see whether
indeed it is close to e‘ o™=,

5.3. RESULTS FOR THE O(3) NON-LINEAR o-MODEL

The scheme proposed above can be readily applied to the lattice O(3) spin
model introduced in sects. 3 and 4. The appropriate two-particle field is

For(x%) = ¥ el yhga(x0 1y sh(x0 y1) (5.19)

x! yl

and the associated correlation functions with only isospin / intermediate states are
defined by

Cl(1) = P(abled) ([£0(1)* = 8,08 (1 + 1)*]£9(0) ). (5.20)

The subtraction for / =0 in this formula is made to cancel the vacuum contribu-
tion in the spectral representation of C’(¢), which looks as in egs. (5.12) and (5.13)
except that a factor 1 —38,,e %= must be included in the definition of v*. Note
that due to bose symmetry C,-'j vanishes if i =1 or j=1, and these indices are
hence restricted to values greater or equal to 2 for /=1 in what follows. The
theoretical analysis presented in the preceding subsection thus applies to all
correlation functions C’(¢) in the same way, but the subtraction needed for I =0
goes along with a loss of numerical significance and this eventually leads to
substantially larger statistical errors in the final result for / = 0 as compared to the
other cases*.

Using the cluster algorithm described in sect. 3, we have computed the correla-
tion functions C’(¢r) on the lattices A,B,C (cf. table 2). On the lattice A, the

* A related reason for the lower quality of our /=0 data is that with the measured correlations
saturating to nonzero constants at large ¢, the cluster variance reduction is less powerful.
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TaBLE 4
Simulation results for the two-particle energies W and the associated scattering phase shifts
&,(k) as determined through egs. (1.1) and (1.2).

lattice 1 W/m k/m 8,(k)

A 0 2.14(1) 0.38(1) 1.36(7)
0 2.94(1) 1.077(7) 1.22(3)
1 2.372(2) 0.638(2) 0.15(D
1 3.264(3) 1.290(2) 0.23(1)
2 2.086(2) 0.296(4) -1.39(2)
2 2.681(3) 0.893(2) —1.05(1)
2 3.639(4) 1.520(2) —-0.85(1)

B 0 2.12(D) 0.35(2) 1.51(7)
0 2.97(3) 1.10(2) 1.2(D)
1 2.381(3) 0.646(3) 0.14(1)
1 3.299(4) 1.312(3) 0.18(1)
2 2.086(2) 0.296(4) -1.382)
2 2.683(3) 0.894(2) —1.02(1)
2 3.649(5) 1.526(3) ~0.81(2)

C 0 2.34(1) 0.61(1) 1.38(3)
1 2.851(5) 1.016(4) 0.20(1)
2 2.180(3) 0.434(4) —1.26(1)
2 3.411(5) 1.382(3) —0.86(1)

number r of independent momenta used in (5.19) and (5.20), and thus the rank of
C’ was 5, 8 and 9 for I =0, 1 and 2 respectively. An increase of these numbers up
to a factor of 2 did not affect our results. For ¢,= 0,1, the ratio of eigenvalues
Ao(t, 1) on the r.his. of eq. (5.18) turned out to converge rapidly to a constant as ¢
increases and W, could be determined at #=1.5W, "' for I=0 and r=2W, "' in
the other cases. Within statistical errors, no dependence on ¢, was observed and
¢, = e« was satisfied to an accuracy better than 10% (for I =0) and 3% (for
1=1,2).

The results of our numerical study are listed in table 4 along with the scattering
phase shifts §,(k) calculated according to egs. (1.1) and (1.2). The table includes
all levels below the four-particle threshold.

We finally compare our numerical data with the exact expressions (2.31)-(2.33)
for the scattering phases. As can be seen from figs. 4 and 5, the data closely follow
the analytic curves. Within statistical errors, there is no discrepancy between the
data from the lattices A and C, i.e. we do not observe any systematic effects of the
type expected when the conditions (2) and (3) listed at the end of subsect. 5.1
would be violated.

Although barely significant, the data for I = 1,2 from lattice B are systematically
farther away from the exact curves than those from A, and this could very well be a
lattice effect, especially so since the deviation is monotonically increasing with k. It
would actually be surprising if no such effect would have been observed, because
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Fig. 4. Scattering phase shift 8,(k) for isospin Fig. 5. Same as fig. 4 but for I=1,2. The
I =0 versus momentum k in the O(3) non-linear curves represent the exact expressions (2.32)
o-model. The curve represents the exact expres- and (2.33).

sion (2.31), and the numerical data (table 4) are
plotted in the form of vertical bars (full bars
refer to the latti