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Monte Carlo methods ChE210D 

Today's lecture: basic principles of stochastic Markov processes and Monte Carlo 

simulations. 

Overview 

In the previous lectures, we saw that the molecular dynamics (MD) approach generates a 

deterministic trajectory of atomic positions as a function of time, by way of solving Newton’s 

equations of motion.  In doing so, we are able to extract both thermodynamic and kinetic 

property averages from the simulations. 

In this lecture, we cover the other major method for generating atomic trajectories: the Monte 

Carlo (MC) approach.  Unlike MD, Monte Carlo methods are stochastic in nature—the time 

progression of the atomic positions proceeds randomly and is not predictable given a set of 

initial conditions.  The dynamic principles by which we evolve the atomic positions incorporate 

random moves or perturbations of our own design; as such, the dynamics of Monte Carlo 

trajectories are not representative of the true system dynamics and instead depend on the 

kinds of random moves that we perform.  However, Monte Carlo methods rigorously generate 

correct thermodynamic properties as they are designed by construction to do so. 

MC and MD approaches are complementary.  If we are interested in kinetic properties, MD is a 

natural choice.  On the other hand, MC methods offer several attractive features: 

• MC methods naturally and easily treat different thermodynamic ensembles.  For exam-

ple, it is quite simple to perform (rigorously) a constant temperature simulation using 

MC methods.  This contrasts with the special thermostat techniques often required with 

molecular dynamics simulations. 

• MC methods offer great flexibility in choosing the random moves by which the system 

evolves.  This can often greatly speed equilibration in complex systems, e.g., in dense 

polymeric systems. 

• MC methods are not subject to inaccuracies due to discrete-time approximations of 

the equations of motion. 

• MC methods require only energies in order to generate the atomic trajectories.  These 

approaches, therefore, do not require expensive force calculation and can handle con-

tinuous and discrete intermolecular potentials in an equivalent way. 
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The MC approach was first developed in the 1940s and 50s by researchers at Los Alamos 

working on nuclear weapons projects.  It was later applied extensively to model atomic sys-

tems, most notably the hard-sphere system, and has since become widely employed as a 

modern tool in molecular simulation and many other fields (e.g., statistics and finance).  Nota-

bly, the MC method was one of the earliest algorithms to be used on the first computers.   

Our discussion here will center on the use of the Monte Carlo method in computing thermody-

namic properties of atomic systems in the canonical ensemble. 

Simple example of canonical Monte Carlo 

Before diving into the details of the method, let’s consider a simple example.  We will examine 

a Monte Carlo simulation of the Lennard-Jones liquid, whose energy function is given in dimen-

sionless units by: 

����� = �4	
��
�� − 
��
�����
 

The simulation will be performed at reduced temperature �.  Our simulation progresses 

through iterations of the following basic Monte Carlo step: 

1. Randomly pick one of � particles. 

2. Perturb each of the �, �, � coordinates separately by three random values taken from 

the uniform distribution on the interval [– δ
max,  
max].  Here, δrmax is the maximum 

displacement. 

3. Compute the change in potential energy due to the particle move, Δ� = �� − ��. 

4. Use the following rule, called the Metropolis criterion, to decide whether or not to keep 

the move or instead revert back to the original configuration before step 2: 

• If Δ� < 0, accept the move.   

• If Δ� > 0, compute 'acc = )
*+ ,⁄ .  Draw a random number 
 on the interval [0.0, 1.0� and accept the move if and only if 'acc > 
. 

5. If the move is accepted, keep the new configuration and update any running averages 

with it (e.g., the potential energy).  If the move is rejected, discard the new configura-

tion and update any running averages with the original state.   

Ultimately, aggregated over many MC steps, our simulation produces configurations that obey 

the canonical distribution at �.  In other words, configurations appear with probability 
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℘���� ∝ )
+	�2�,  

Any property of interest, such as the average potential energy or pressure (via the virial), can 

then be computed as a “time”-average over the sequence of configurations produced during 

the Monte Carlo steps. 

The perturbation that we apply in each step to the coordinates of an atom is called a single-

particle displacement and it one of many possible kinds of Monte Carlo moves.  A single-

particle displacement move looks something like the following: 

 

Notice that we have a free parameter in our approach: the maximum displacement  
max.  This 

is a parameter that we can tune to adjust the efficiency of our moves.  If it is too large, particles 

will be displaced far from their original positions and will likely have core overlaps with other 

particles in the system, resulting in a rejection of the move.  If it is too small, the evolution of 

the system with MC steps will be very slow.  Generally, maximum displacements are adjusted 

such that the average acceptance rate of proposed moves is 30-50%. 

In step 4, we compute the acceptance probability and draw a random number to determine 

whether or not we accept the proposed move.  Aside from the random move proposals, this is 

the stochastic element in our simulation.  We can draw random numbers in the computer using 

pseudorandom number generators, discussed more below.   

Statistical mechanics in the canonical ensemble (constant 3,4, 5)  

Before we proceed with a detailed treatment of the Monte Carlo method, we review some 

statistical mechanical concepts.  If one connects a system to a very large heat bath and allows 

exchange of energy, the total energy of the system is no longer constant, but fluctuates.  

Instead, the system temperature is held constant, equal to that of the heat bath.  Such condi-

tions give rise to the canonical ensemble, perhaps the most common ensemble of physical 

interest. 

δ
max 
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In the canonical ensemble for a classical system, the microstate distribution is proportional to 

the Boltzmann factor: 

℘�6� , ��� ∝ )
78	62,�2� 
where 9 = 1/;<�.  The normalizing factor for the probabilities is the canonical partition 

function: 

=��, >, �� = 1ℎ@��!B )
78	62,�2�C6�C�� 

Since the Hamiltonian is additive in kinetic and potential energies, the integral over momenta 

can be performed analytically.  For spherically-symmetric particles, 

=��, >, �� = D��, >, ��Λ���@��! 										where D ≡ B)
7+	�2� C��	, Λ��� ≡ H ℎ�2JK;<�L
��

 

D��, >, �� is called the configurational integral, and it only depends on the potential energy 

function for the particles.  Λ��� is the thermal de Broglie wavelength. For heteroatomic sys-

tems, we have to account for the different atomic masses and employ multiple de Broglie 

wavelengths in this expression, one for each atom type. 

In the canonical ensemble, the distribution of particle positions (configurations) is separable 

from the momentum degrees of freedom.  One can write, 

℘�6�, ��� = ℘�6��℘���� 
℘�6�� = )
7M	62�ℎ@�Λ���
@� 

℘���� = )
7+	�2�D��, >, �� 

Note that the momenta distribution is known analytically, but the configurational distribution 

requires solution of the integral D��, >, ��, which depends on the specific form of the potential 

energy function.  Also notice that, by construction, 

B℘����C�� = 1								 B℘�6��C6� = 1 

The canonical partition function can also be written as a sum over energies using the microca-

nonical partition function or density of states, 
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=��, >, �� = BΩ�O, >, ��)
7PCO 

The distribution of total energies in the canonical ensemble is: 

℘�O� = Ω�O, >, ��)
7P=��, >, ��  

The mean energy is given by both 

〈O〉 = BO℘�O�CO 

= BS�6� , ���℘�6� , ���C6�C�� 

Because the partition function is separable, this can be split into kinetic and configurational 

parts: 

〈O〉 = BT�6��℘�6��C6� +B�����℘����C�� 

= VTW + V�W 
= 3�;<�2 + V�W 

At a macroscopic level, the canonical partition function relates to the Helmholtz free energy, 

Y��, >, �� = −;<� ln=��, >, �� 

whose macroscopic differential form is given by, 

CY = −\C� − 'C> + ]C� 

Monte Carlo simulation in the canonical ensemble 

Problem formulation 

Once we know the microstate distribution ℘�6� , ���, we can compute virtually any property of 

interest.  Consider a generic property Y�6� , ���, which could be the potential energy, kinetic 

energy, local density, coordination number, radius of gyration, etc.  The average value of Y in 

any ensemble is given by: 

VYW = BY�6� , ���℘�6�, ���C6�C�� 
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In other words, we simply average Y over every microstate using the microstate distribution 

function.  This general expression applies to any equilibrium property, i.e., to any property that 

is time-independent.  This does not include kinetic transport coefficients, which depend on 

integrals of time. 

How might we compute averages of this sort?  We need a way to determine ℘�6� , ���. 
Our earlier considerations show that the microstate probability in the canonical ensemble is 

separable, and that the kinetic part is analytic.  For example, to compute the average total 

energy: 

VOW = VTW + V�W 
= 3�;<�2 + B℘���������C�� 

Therefore, the real challenge is to develop an expression for the configurational distribution ℘����.  In any case, many bulk properties depend only on the configurational coordinates, and 

not on the momenta, so we will take as our baseline problem the computation an average of 

the form: 

VYW = BY����℘����C�� 

= ^Y����)
7+	�2�C��^ )
7+��2�C��  

We might think about how we would compute this configurational average.  We can certainly 

compute the exponential involving the potential energy, since this simply requires numerical 

evaluation of the force field for a given configuration ��.  On the other hand, the integrals are 

problematic: 

• There are 3� integrand variables, each of which varies between 0 and _ (for a cubic 

volume). 

• There are certainly numerical approaches for evaluating integrals, such as the trapezoi-

dal or Simpson methods.  However, we have far too many integrand variables for such 

methods to be practical.  We would need to discretize each variable into a finite number 

of steps between 0 and _.  If we only chose the three values for each, `0, _ 2⁄ , _a, we 

would have to evaluate the potential energy 3@� times.  For � = 100, this would mean ≈ 10�c@ evaluations, far exceeding what we can realistically perform. 

• It further turns out that these integrals are sharply peaked: there are very small regions 

of phase space where the energies are very low and the exponential very large.  Thus, 
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discrete approximations to these integrals are bound to fail unless we use a very large 

number of steps. 

We seem to be at a statistical deadlock because we cannot evaluate the integrals accurately 

using a numerical quadrature approach of the form 

VYW = ∑ ∑ …fghg ∑ Y����)
7+	�2�i2∑ ∑ …fghg ∑ )
7+��2�i2  

The underlying challenge with this approach is that we must systematically discretize configu-

ration space, an extremely high-dimensional space. 

Monte Carlo integration and importance sampling 

The basic problem with evaluating a configurational average is that we must perform high-

dimensional integrals.  For such integrals, the Monte Carlo method provides a way to compute 

these averages and hence is often termed Monte Carlo integration. 

The idea is the following: rather than discretize all of the integrand coordinates and systemati-

cally iterate through different configurations, we instead generate a finite number of configura-

tions according to the probability ℘����: 
VYW = 1j�Y�����

k
�l�

														���	generated	according	to	℘(��) 
That is, we pick s random configurations according to ℘(��) and from this finite set of config-

urations take the average (unweighted) value of Y.  In this way, the probability weight ℘(��) is 

included in the average implicitly, by virtue of the fact that we have picked representative 

conformations according to that probability. 

Here is an example that illustrates the difference between the importance sampling approach 

and systematic discretization.  Imagine we have one particle in one dimension whose potential 

energy function is described by a harmonic potential tethering the particle to the origin: 

�(�) = ;�� 

The distribution of particle positions in the canonical ensemble is then Gaussian: 

℘(�) = t;9J )
7uhv  
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We want to compute the average squared distance from the origin, V��W.  If we were to sys-

tematically discretize � into 12 values, we would take 12 configurations similar to the following: 

 

Then we would compute the average squared distance as 

V��W = ∑ ���)
7uhwv�∑ )
7uhwv�  

On the other hand, we could pick 12 configurations randomly with probabilities according to 

the distribution: 

℘��� ∝ )
7uhv  

This might look something like: 

 

Notice that the configurations are not evenly spaced for two reasons: 

• Configurations where ℘��� is larger are more likely to be chosen. 

� 

℘��� 

� 

℘��� 
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• Configurations are chosen randomly, and not systematically.  Thus, we would expect a 

different collection of configurations each time we performed this procedure. 

In this case, our estimated value of V��W is 

V��W = 112����
��
�l�

 

You may be concerned that our estimate for VYW now involves a stochastic element, in that we 

could arrive at different results each time we averaged in this way.  We can be confident, 

however, that as we pick more representative configurations, the two methods converge to the 

same average.  For low-dimensional integrals (including this simple example), stochastic inte-

gration typically converges slower compared to systematic discretization.  However, for high-

dimensional integrals of the kind we normally encounter in many-atom systems, stochastic 

integration typically converges much faster than systematic discretization. 

Monte Carlo integration provides us with a way to compute thermodynamic property averages 

of molecular systems: we take a set of configurations generated according to ℘���� and simply 

compute the averages from a simple unweighted mean over them.  The generation of configu-

rations according to a distribution is called importance sampling. 

Markov chains 

We now have a new challenge: in importance sampling, how do we generate configurations 

randomly according to ℘����? 

It turns out that we can importance-sample configurations using a statistical construct called a 

Markov chain of states.  A Markov chain describes a stochastic process in which the state of a 

system (here, the instantaneous atomic configuration) changes randomly with time and has no 

memory of previous states.  At each step in time, the system can move randomly to another 

state (another configuration).   

In the context of a Monte Carlo simulation, a Markov chain can be generated using the follow-

ing basic procedure: 

1. At some step x, the system has an atomic configuration (state A). 

2. The configuration is randomly perturbed to generate a new atomic configuration (state 

B).  A typical perturbation might be a single-particle displacement: randomly pick an at-

om and displace it’s �, �, and � location variables by small random amounts.  In general, 

these perturbations are termed Monte Carlo moves.   
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3. The new configuration is considered a proposed or attempted new state of the system.  

Either the proposal is accepted (the system moves to the new state) or rejected (the 

system stays where it was before the proposed move is generated).  The configuration 

at step x + 1 is then either the proposed configuration if accepted or the original config-

uration if rejected. 

4. The acceptance or rejection of the proposed moves is performed in such a way that con-

figurations are generated according to ℘���� in the long-time limit. 

5. The process is repeated over and over again to generate a trajectory of configurations. 

6. The trajectory includes the states of the system after each acceptance or rejection.  

That is, if the proposed move was rejected at step x, then the configuration appearing at 

step x is also the same as the one at step x − 1, i.e., it does not include the proposed 

configuration at step x. 
In this way, Monte Carlo moves can be considered as methods for imposing artificial, random 

dynamics on the system that propagate it in time according to pre-specified configurational 

probabilities.  Then, using the computed trajectory, one can perform averages according to the 

importance-sampling formula: 

VYW = 1jtot�Y�����
ktot
�l�

 

Here, jtot is the total number of MC steps in the simulation and ��� are the generated configu-

rations. 

One might compare a Monte Carlo trajectory of configurations to that generated from a molec-

ular dynamics trajectory: 

• Both simulation approaches examine discrete-time trajectories.  That is, the changes 

from state to state in a Markov chain occur at pre-determined discrete intervals.  We 

call the smallest basic interval at which the state can change (or stay the same) to be a 

step or Monte Carlo step in the simulation. 

• Unlike an MD trajectory, a Markov chain is stochastic and is not deterministic.  

• Also unlike MD, we do not consider velocities in the Markov chain; we only consider 

configurational degrees of freedom.  The main reason we ignore the velocities (and 

momenta) is that these contributions to the total partition function are known analyti-

cally, and thus we do not need to evaluate them via simulation. 
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An important property of Markov processes is that the future state of a system after one step 

only depends on the current state, and no previous state.  That is, it doesn’t matter how our 

system arrived to its current state; the probabilities that it will move at the next time step to 

any other state in the future only depend on where it currently is.  This is called the Markov 

property. 

Detailed balance 

In order for this approach to work, we need a way to decide how to accept or reject proposed 

configurations in our simulations.  We need to choose the acceptance criterion in such a way 

that our long-time trajectory correctly generates configurations according to the canonical 

probabilities ℘����.  We can do this by considering the evolution of state probabilities in our 

simulation. 

For simplicity of notation, let’s make the following definitions: 

• ℘y�x� – probability that an instantaneous snapshot of our simulation at step x will be in 

state / configuration K 

• Jyk – probability that, given the system is currently in state K, it will move to state j.  

This is called the transition probability.   

Although we know that our classical system actually has access to an infinite number of mo-

lecular configurations K and j, we will assume for convenience that their number is actually 

finite and that we can count them.  This will not affect our final conclusions and, moreover, the 

number of configurations is actually finite since computers have limited precision. 

Since the above quantities are probabilities, we have at any point in time 

�℘yy
= 1 

�Jykk
= 1 

Here, the sums are performed over all states / configurations available to the system. 

Imagine that our system has evolved for some time, randomly according to the Markov chain.  

Knowing only the initial configuration, we cannot specify the configuration to which the system 

has since evolved because the dynamics are not deterministic.  However, we can characterize 

the probabilities that we would be in each configuration after many steps.  This is the set `℘ya.  
Ultimately we want 
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lim�→{℘y�x� = )
7+|D  

That is, we want these probabilities to converge to a stationary distribution, independent of 

time, that is equal to the equilibrium distribution in the canonical ensemble. 

Now imagine we move one step forward in the Markov chain from x to x + 1.  How do the 

probabilities ℘y change?  For a given state K, we have to consider both the decrease in 

probability associated with the system transitioning out from K to other states j and the 

increase in probability associated with the system transitioning from other states j into K: 

℘y�x + 1� = ℘y�x� −�Jyk℘y�x�k
+�Jky℘k�x�k

 

If we are at equilibrium, the probabilities cannot change with time and we therefore must have: 

�Jyk℘yk
= �Jky℘kk

							for	all	K 

Here, we have omitted the step dependence to signify that these are equilibrium, time-

independent probabilities. This equation is termed the balance equation.  If our transition and 

state probabilities obey this equation, then we will be at equilibrium. 

One way in which the balance equation can be satisfied is through the detailed balance condi-

tion: 

Jyk℘y = Jky℘k							for	all	K, j 

That is, detailed balance applies a constraint to the transition and state probabilities for every 

pair of states.  It is more specific than the general balance equation.  All Markov processes that 

obey the detailed balance condition automatically obey general balance; however, the reverse 

is not true. 

The detailed balance equation provides us with a way to determine the acceptance criterion in 

our Monte Carlo simulation.  We can write the transition probability as the product of two 

quantities: 

Jyk = ~yk'ykacc 
Here, ~yk is a move proposal probability.  It gives the probability that we will propose a 

random move from state K to j.  It depends entirely on the kind of Monte Carlo move that we 

perform.  Once we pick a kind of MC move, such as a single particle displacement, this probabil-

ity is determined. 
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The quantity 'ykacc is the acceptance probability.  It gives the probability that we should accept a 

proposed move.  This is the critical quantity of interest in MC simulations. We must determine 

what acceptance probability to use so that we reproduce the correct importance sampling 

probabilities.  If we impose the detailed balance condition, the acceptance probability should 

obey: 

'ykacc'kyacc =
~ky℘k~yk℘y 

This equation now gives us a starting point for correctly performing our Monte Carlo simula-

tion.  We imposed detailed balance to arrive at it.  Detailed balance is not required, but it gives 

a convenient way to obey general balance in order to reach a stationary distribution. 

We can impose this equation at any moment in time in our Markov chain as a way to guarantee 

that we converge to an equilibrium distribution.  Let us be at state K = 1 initially.  A move is 

proposed to state j = 2.  We can then write this expression as: 

'��acc'��acc =
~��℘�~��℘� 

Keep in mind that 1 and 2 correspond to two atomic configurations ��� and ���, respectively.  

This equation provides us with a way to determine the acceptance criterion given the move 

type (and hence the ~’s) and the ensemble (hence the ℘’s). 

Symmetric moves and the Metropolis criterion 

So-called symmetric Monte Carlo moves have move proposal probabilities that are equal in the 

forward and reverse directions.  In other words, 

~�� = ~�� 

Such is the case for single-particle displacements: the probability for moving from one state to 

another is either a uniform constant or zero.  That is, either we can get from configuration 1 to 

2 and vice versa by moving one particle within δ
max in each of its position components or we 

cannot get there at all.  There are many kinds of move types in Monte Carlo, and not all of them 

are symmetric. 

If moves are symmetric, we have 

'��acc'��acc =
℘�℘� 

We can also use the fact that the microstate probabilities in the canonical ensemble are 
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℘y = ℘����C�� 

= )
7+	�2�C��D��, >, ��  

Here, we need to include the differential configurational volume element because the ℘y are 

dimensionless state probabilities.  Using this result, 

'��acc'��acc =
)
7+vC�� D��, >, ��⁄)
7+gC�� D��, >, ��⁄  

= )
7�+v
+g� 
In the last line, notice that the partition functions cancel since we incur the same probability 

normalization constant for each configuration in the canonical ensemble.  If we had wanted to 

simulate in another ensemble, we would have used a different expression for the microscopic 

probability distribution ℘. 

We still have flexibility in choosing the acceptance criterion.  We can choose any procedure that 

satisfies the above equation.  The most frequently used criterion, and typically the most effi-

cient in simulation, is the Metropolis criterion: 

'��acc = min�1, )
7�+v
+g�� 
The min function is incorporated into this criterion.  If �� < ��, the acceptance probability is 

always one.  Otherwise, it is less than one.  Thus, this move specifies that we should always 

move downhill in energy if we can, an aspect which helps reach equilibration faster in Monte 

Carlo simulations than alternative criteria. 

The rule above must be applied equally to the reverse move.  We can thus show that this 

acceptance criterion satisfies the detailed balance equation: 

'��acc'��acc =
min�1, )
7�+v
+g��min[1, )
7�+g
+v�] 

=
��
�)
7�+v
+g�1 if	�� > ��1)
7�+g
+v� if	�� > ��

 

= )
7�+v
+g� 
The Metropolis criterion is not a unique solution for the acceptance criterion.  One can also use 

the so-called symmetric criterion, although this is not frequently employed because it typically 

results in longer correlation times and slower equilibration: 
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'��acc = )
7+v)
7+g + )
7+v  

Practical aspects  

The above considerations describe the principles underlying the simple Monte Carlo example 

presented at the beginning of this lecture.  Practical considerations are described below. 

Computing potential energy and virial changes 

In computing the change in potential energy Δ� = �� − ��, we don’t actually need to compute 

the total potential energy.  Since this is a system of pairwise interactions and since we only 

moved one particle, we only need to compute the � − 1 interactions of the moved particle 

with all other particles.  This is an important time savings because it means the interaction loop 

expense scales as � rather than ��.  The general procedure for each MC step is: 

1. Pick a random particle x. 
2. Compute the current energy of x with all other particles, ��,� = ∑ ������ . 

3. Make a random move proposal. 

4. Compute the new energy of x with all other particles, ��,� = ∑ ������  . 

5. Compute the change in potential energy Δ� = ��,� −��,�. 
One can maintain the total potential energy by doing updates for accepted moves of the form � ← � + Δ�.  Due to precision issues, however, it is a good idea to do a full update of the 

energy (the entire pairwise loop) once in a while, say every 10-100 or so moves per particle 

(e.g., every 1000-10000 moves for a 100 particle system).  Moreover, it is important not to do 

the update � ← � + Δ� until after a move has been accepted; otherwise, a high-energy Δ� 

from a rejected move could overwhelm � and cause precision errors. 

If the pressure is being calculated, the approach above can also be used to compute the change 

in the virial upon displacement Δ�, which can then be used to update � ← � + Δ�.  

At first, the scaling of the expense with � rather than �� may seem to make MC methods much 

more efficient than the MD approach.  However, one must keep in mind that every particle 

moves at each time step in a MD simulation.  In MC, only one particle moves with each step.  If 

we compare the expense of one move per atom in a MC simulation, we find that it actually 

scales as ��, just like MD methods.  Therefore there is no particular gain in efficiency.  The 

flexibility to impose MC moves of various kinds, however, may result in faster equilibration than 

MD techniques. 
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Equilibration and production periods 

Like MD simulations, MC runs require separate equilibration and production periods of simula-

tion.  Initial structures can be chosen in a variety of ways, but it is important to allow the system 

to lose memory of them as it approaches equilibrium.  This corresponds to the Markov chain 

approaching long-time behavior where it reaches the imposed, canonical stationary distribution 

of states. 

What constitutes the MC trajectory 

Keep in mind that every step should be included in running averages, not just the accepted 

steps.  This is because there is a finite Markov chain probability that we will remain in the same 

state, i.e., Jyy > 0.   

What constitutes the trajectory are the configurations remaining at each step after acceptance 

or rejection.  Consider the following scenario.  We start at state 1 and moves are proposed and 

rejected ten times before finally moving to state 2.  For property averages over these eleven 

MC time steps, we should include state 1 ten times and state 2 one time.  It would be a mistake 

to only include state 1 once. 

Property averages 

As with molecular dynamics techniques, the average of any quantity from a MC trajectory is 

subject to statistical error according to correlation times.  That is, successive configurations in 

an MC trajectory are not statistically independent, but related by the MC perturbations.   

The general formula for the squared error in the mean of a property average Y is given by: 

��̅� = ����tot �2�� + 1�⁄  

Here, �tot gives the total number of MC steps used to compute the average Y̅.  �� is a correla-

tion time based on the discrete-time MC dynamical trajectory.  It is sensitive to the kinds of MC 

steps performed, and is given by the formula: 

�� = ����x�
{
�l�

 

Here, x is an index for the discrete Monte Carlo steps and ���x� is the autocorrelation function 

for Y computed at these intervals.  Note that if successive steps are perfectly uncorrelated, ���x ≥ 1� = 0 and �� = 0. 
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Orientational moves 

For rigid polyatomic molecules, one needs to perform Monte Carlo moves that make random 

perturbations to the molecular orientations in addition to the center-of-mass translational 

degrees of freedom.  Typically, translational moves are separated from orientational moves, 

and one draws a random number to decide which to attempt.  A basic procedure is: 

1. Pick a random rigid molecule x. 
2. Draw a random number 
 in [0.0,1.0�: 

• If 
 < 0.5, then perform a single-molecule displacement move for x.   
• If 
 ≥ 0.5, perform an orientational displacement move for x. 

There are a number of procedures for orientational displacement.  One of the simplest is the 

following: 

1. Pick a random unit vector.  This is equivalent to picking a random point on a sphere, and 

there are a number of methods for doing this. 

2. Pick a random angular displacement  � in [− �max,  �max]. 
3. Rotate the molecule along the axis of the random vector and about its center of mass by 

the amount  �. 

Similar to translational displacements, orientational moves also involve a maximum displace-

ment  �max that can be tuned to attain acceptance ratios in the range 30-50%. 

Orientational moves of this form are also symmetric, ~yk = ~ky, so that 

'��acc = min�1, )
7�+v
+g�� 
Random number generators 

When we pick a random number in the computer, we are actually picking a pseudo-random 

number.  These numbers are not truly random—they follow a specific mathematical sequence 

that is ultimately deterministic—but they have statistical properties that are reminiscent of 

actual random variables.   

Random numbers are produced by algorithms that take in a seed value, an integer number that 

is used to begin the sequence of pseudorandom numbers.  A random number generator will 

produce the same sequence of random numbers for the same initial seed.  One can explicitly 

specify the seed at the beginning of a simulation, which can be helpful in debugging programs 
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as it produces deterministic behavior.  Alternatively, if a seed is not specified, programming 

languages (like Python) will often create a seed from the current time. 

The basic random number generator will produce a random real number from the uniform 

distribution in the range [0.0,1.0�.  Random numbers from other distributions, such as the 

Gaussian or Poisson distributions, can be generated by drawing one or more random numbers 

from this basic distribution.   

Algorithms for random number generation have been the subject of much interest.  Some early 

algorithms were found to be flawed in that they produced sequences of numbers in which 

subtle patterns and correlations could be detected.  Currently a popular random number 

generator, and the one used by the numpy.random module in Python, is the Mersenne twister.   

This random number generator has quite good statistical properties (sequences of random 

numbers have low correlation).  It also has a period of 2���@�, meaning that the same random 

number will not be drawn with a frequency greater than 1 in 2���@�. 

Reduced units 

When working with systems defined by dimensionless or reduced units, such as the monatomic 

Lennard-Jones system, the temperature is typically defined in units of the energy scale and ;<: 

�∗ = ;<��  

Thus the acceptance criterion does not involve an explicit ;< because it is already included in 

the dimensionless temperature: 

'��acc = min �1, )
*+∗,∗ � 
Summary 

A general approach to any Monte Carlo simulation involves the following steps: 

1. The system potential energy function is determined.  One chooses a functional form 

for �����. 
2. The statistical-mechanical ensemble of interest is chosen.  This uniquely specifies the  

probabilities ℘ywith which each microstate K should be sampled.  In a classical atomic 

system, each microstate K corresponds to a set of particle coordinates ��.  In the ca-

nonical ensemble, ℘y ∝ exp�−9�y�. 



© M. S. Shell 2009 19/19 last modified 5/3/2012 

3. The set of Monte Carlo moves is chosen.  For atomic systems, this might consist of sin-

gle-particle displacements.  For rigid molecules, this might consist of both molecule 

translational and orientational displacements (two kinds of moves).  These moves 

uniquely specify the move proposal probabilities ~yk.  For symmetric moves, ~yk = ~ky. 

4. One determines the appropriate acceptance criterion.  Typically we use the Metropolis 

criterion.  The acceptance criterion then follows directly from the relation, 

'��acc = min �1,℘�~��℘�~��� 
5. A simulation is performed using the determined acceptance criterion.  Equilibration 

must first be achieved by propagating the system for several relaxation times. 

6. Ensemble property averages are computed from trajectory averages.  The average val-

ue of any configurational property in the ensemble of interest then follows from a sim-

ple average over the “time”-progression of the production phase of the simulation: 

VYW = 1jtot�Y�����
ktot
�l�

 


