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Abstract

We analise the benefits and pitfalls of using the generalised eigenvalue
equation to obtain the spectrum of the system from the correlation matrix.
We also suggest some improvements. ...777
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1 Introduction

In lattice theory information on energy spectra is obtained by mea-
suring the correlation functions of operators separated in Euclidean
time. It is well known (and intuitively obvious) that one can deter-
mine the spectrum of intermediate states more precisely by measur-
ing the correlation matrix C(t) of several operators (with the same
quantum numbers) instead of just the correlation function of a single
operator.

An efficient way to extract the spectral information encoded in
the correlation matrix is to consider the generalized eigenvalue equa-
tion,

C(t)vn = M\u(t, y0)C (to) vy, -

This equation for the correlation matrix has been proposed first by
Michael [1] who obtained it as a result of a variational approach,
and applied it to determine the static potential in lattice gauge
theory. Liischer and Wolff [2] arrived at the same equation from
another starting point. They applied this method to evaluate the
2-particle phase shifts in the 2d O(3) non-linear sigma-model. This
required a very precise determination of the 2-particle energy levels
in a periodic box to obtain a reasonable error for the phase shifts.

The generalized eigenvalue equation is especially valuable when
there are nearly degenerate excited states with the same quantum
numbers. This situation is met not only in the determination of the
2-particle energies mentioned above but also in many phenomena of
physical interest e.g. the static potential in pure gauge theory, heavy
QQ mesons, etc. The method is now used widely: for the glueball
spectrum [3], to observe the string breaking by adjoint sources [4],
and in many other works. Nevertheless, a systematic study of the
method seems to be lacking.

The purpose of this paper is to discuss the generalized eigenvalue
equation in more detail, and correct some misconceptions concerning
its properties which have appeared in the literature. Furthermore,
we show how to check self consistency of the assumptions made, and
suggest further improvements.



We shall illustrate the method on the same physical problem
considered in ref. [2] and [5], measuring the energy levels of the
2-particle states in the 2d O(3) sigma model. (In the latter work
some of the suggestions presented here were used.) Our aim here is
only to illustrate different modifications of the method, investigate
possible systematic errors in the procedure and compare it with
other methods. For this purpose we shall restrict the investigation
to the I = 0 isospin channel, one single coupling and one lattice
size.

2 The generalized eigenvalue problem

Consider the general case of a correlation matrix of some operators

O;, 1 =1,..., N on an infinite lattice in the Euclidean time direction
(0:(0)0,4(1)) = Cy(t) = ZeiE"t@/)ml/)nj ; (1)
n=1
where

are the ‘wave functions’ of the state |n). For notational simplicity
we consider only real observables, hence C(t) is real symmetric. The
states are labeled with increasing energy, F; < Fy < .. ..

In eq. (1) the sum extends over all eigenstates of the transfer
matrix. However, contribution of states with n > N will be small for
t > to when t; is sufficiently large for the given set of N operators.?
Following ref. [2] consider first the contribution of the first N terms
only and include the corrections later. Let

N
CP(t) = e Pl (3)
n=1

The set of operators O; should be obviously such that they distin-
guish between the lowest states of interest. It will thus be assumed

2N can be taken to be quite large: in the illustrative example below we took N = L/2 = 64.



that the vectors ¢,, n = 1,..., N are linearly independent. They
are, however, not orthogonal to each other in general. As a conse-
quence the eigenvalues and eigenvectors of C()(¢) are not given by
¢ exp(—FE,t) and v,,. However, as shown in the lemma of ref. [2],
for large t the eigenvalues approach this value:

Ao [CO@)] = cpe™ 8 (1+ 0 (e72F) | (4)
where AF, is the distance of F, from the nearest energy level,
AE, = mkin |Er — En|. (5)

In the problematic cases where AFE, is small this slow decay can
cause a systematic error, an apparent shift in E,. For example,
the determination of the static quark potential in pure QCD by
measuring a Wilson-loop could be hampered by such systematic
errors [6].

Instead of studying the eigenvalues of the correlation matrix for
large t it is useful to consider the generalized eigenvalue problem
[1, 2]

C(t)vn, = A (t,t0)C(to) vy - (6)
The 0" approximation to this is

COu = AP (t, 1) 0 (o) vy . (7)

Consider the set {vy(zo)} (n=1,...,N) dual to the set of the first
N wave functions {1, }, i.e.

(UT(LO)a 77/)n’) = Opnr, for m, n' <N. (8)
One has then from eq. (3)
CO ()l = e Frtep, . (9)

From here it follows that v satisfies eq. (7) with
A0 — o= En(t—to) (10)

n

The eigenvectors o9 are orthogonal to each other with the weight

CO)(t) (for any t):
Q. CO)p) = §,,e Bt (11)

n' n



Note that the generalized eigenvalue problem gives both the en-
ergy spectrum and the wave functions v, of the intermediate states.

Provided the perturbations to C(*)(¢) are sufficiently small the
quantity

A (t,
BT (1, 19) = log -1 (12

n(t+1,t0)

suggested in ref. [2] should converge rapidly to E, with increasing t.
The plateau of this ‘effective mass plot’ serves as a good estimator
for E,,.

3 Perturbative expansion

Here we calculate the perturbative expansion for the generalized
eigenvalue equation. For the actual case there are two different
perturbations to C(©)(t):

1. the contributions from the n > N states,

2. statistical noise.

First we consider the general case of the equation
Av, = \,Bv,,, (13)
with perturbations (considered to be first order)
A=A0 4 40 p=pBO L BW, (14)
The corresponding expansions for A\, and v, are:

Ay = A0 L AD L A& Ly =@ D
(15)

The eigenvectors of the 0" order equation are assumed to be nor-
malized by the condition

(4, BOW) = b (16)

n n



and without loss of generality v\" is such that (v,(zl), B(O)v,(zo)) = 0.
Introducing the notation

AL = A0 _ A0 M) (17)
one has in first order
AD = (10, AL {0

and

0 A(D,0)

(0.a00)
oM = Z U,(CO) : (19)
Ak

The 2°¢ order correction to the eigenvalue is given by

2

(2) (UI(CO)’AS)U%O)) (0) A(1),(0)) (4,(0) B(1),,(0)

A :Z NSO —(U AV v )(v BYVv )
kAn An = Ay (20)

Now we apply these expressions to the case of interest. As the
leading term we take A = C©(¢), B® = C©(t;). In this case
)\7(10) and vﬁbo) are the exact quantities, while the actual quantities
An and v, obtained solving eq. (6) are distorted by the two types
of unwanted perturbations. Instead of (16) it is more convenient
to use the normalization condition (8) which is independent on .
This involves a trivial rescaling of o' in the expressions above.

The final results for the perturbation due to states [ > N is given
by

AQ) — o Balt-to) (21)
)\(1)

?0) _ Ze—(El—En)to (1 _ e—(El—En)(t—to)) (07(10)’ 7/11)2,
An SN (22)



AR 1 —
no_ (B 1B, 1Bt
NORS Z 1 — o-(Br—Bn)(i—to) Ze b e

I>N

2
x (1- ef(Ele")(tftO)) (v, ) (4, U/(fo))}
+ Z e~ (BEi—En)to (1 _ e*(EZ*En)(t*to)) (U7(10)a q/)l)Z

I>N
X 37 e B0 )2 (23)

I'>N

(The summation over k is restricted of course to & < N.) Note that
)\7(11) < 0 for all n and A\ > 0 for these perturbations.
1

To first order we have

A0 £ AD) = o Enlito)g, [1 4 O (e~ (EwsiEn)(t=to))] |
(24)

where ¢, depends on t; (but not on t):
i =1+0 (e’(EN“’E")tO) . (25)

Hence both corrections are suppressed by exponential factors con-
taining the large energy difference Ey 1 — E, (as opposed to AE,).
However, this is true only in the first order approximation. In the
second order the factor 1/[1 — exp(—(Ex — Ey)(t — tp))] in eq. (23)
introduces an unwanted slow dependence. For the ground state, e.g.
this correction gives

)‘§2) (ta tO)

)\(0) (t p ) =C (to) + ¢9 (to)ei(E27E1)(t7t0) + ... (26)
1 y Y0

The behaviour (24) has, in some papers (e.g. [4]), been claimed
as being generally valid for perturbations [ > N. As we see, unfor-
tunately, this statement is valid only in the first order.

The slowly decreasing terms come from the corrections to C'® ():
states with [ > N in C(t) produce fast decaying corrections only.
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From this observation it is quite simple to see that slowly decaying
corrections should be present in A\, (¢, %) in the general case. Sup-
pose one neglects deformations of C'(t) (due to [ > N states) but
keeps them in C(tp). The latter could be arbitrary, in particular
C(to) could be deformed to a constant times the unit matrix. In
this case A,(t,tp) becomes an ordinary eigenvalue of C'(t), hence
according to lemma of ref. [2], eq. (4), such slowly decreasing cor-
rections should be present for a general deformation of C'(t).

We want to stress, however, that in spite of this negative result
the method of generalized eigenvalue problem is a significant im-
provement over considering the ordinary eigenvalues. The slowly
decaying corrections exp(—AFE,t) appear already in the eigenvalues
of C(t) due to the non-orthogonality of the wave functions 1.
The generalised eigenvalue problem for C(©)(t), C(©)(¢,) avoids this
— the eigenvalues A} (t,ty) give the exact result, eq. (10). More-
over, perturbations to C(®)(t,) in first order produce fast decaying
corrections — the slowly decaying ones appear only in second order.
Furthermore, these corrections can be controlled by choosing appro-
priate values for ¢ty and N (although this is not without additional
problems, as will be discussed later).

For the perturbations coming from the statistical noise one gets
similar effects. To first order they do not shift the expectation val-
ues, but in second order there is a systematic shift and also the same
slowly decaying factor. Under some natural assumptions about the
correlations one expects that for the ground state )\?) > 0. One has
to be careful also here: the presence of small eigenvalues in C'(tp)
enhances the effect of statistical noise and it is advisable to study
whether one is still in the linear regime. This could be done e.g. by
an artificial rescaling of the fluctuations.

NEW:

The presence of small eigenvalues of C(ty) leads to different kinds
of instabilities. It can happen that the method finds a wave function
with very small (and fake) wave function v, with some arbitrary
energy which accidentally can be the smallest one. Because the
contribution of such a term is suppressed by |1, |? it can easily arise



from small statistical fluctuations. It can appear even when the
lowest energies are still stable, but an automatic ordering of the
energy levels will misinterpret them. Another type of instability is
the split of the levels: One intermediate state can be split into two
states with nearly equal wave functions and energies. We stress here
again that it can happen only if C'(¢y) has nearly zero eigenvalues.
To avoid such artifacts it is advisable to monitor the eigenvalues of
C'(to), the wave functions v, and the dual vectors v,.

TOY EXAMPLE SHORTLY 777

4 Improvements

A proper measure of how well a set of energies F,, and the wave
functions ,,; describe the correlation matrix at a given ¢ is

X (t) = Zwij (t) (Cz'j OEDS e_E"t%an) , (27)

where Cj;(t) is the correlation matrix measured in the Monte Carlo
experiment and 1/w;;(t) is its dispersion. An overall measure is then

X* =22 X ().

It is desirable to check the calculations by using several reference
values £, and number of operators N. By increasing ¢, or N one
meets a difficulty, however. The solutions to the generalized eigen-
value problem, eq. (6) are very sensitive to the small eigenvalues of
C(to), since the procedure of solving it involves inversion of C'(tp).
(Observe that eq. (7) can be transformed to an ordinary eigenvalue
problem for the matrix C'(to)~*/2C (t)C(to)~'/2.) If the small eigen-
values are unstable against the statistical noise the extracted energy
values will be distorted and unstable. Increasing ¢, (for a given N)
could lead to such instability because the signal decreases with ¢
faster than the noise.®> Of course, whether a given t, and N is sat-
isfactory depends on the choice of the observables O;.

31n ref. [2] only ¢o < 1 has been considered to avoid this instability.



How can it happen that by increasing IV, i.e. by increasing the in-
formation obtained about the system, the results deteriorate? The
reason can obviously only lie in the improper way to extract the
results. We propose the following procedure to avoid the possible
instability. For a given t, calculate the eigenvalues of C(ty), prefer-
ably together with their statistical errors.* Take then the M largest
eigenvalues (M < N) and the corresponding eigenvectors py:

C(to)ox = ek, k=1...M. (28)

(Measuring the statistical errors of the eigenvalues could give a hint
how large M can be chosen, but this is not really necessary.) We
restrict the correlation matrix to this subspace:

N
Cht) = (o C(t)pr) = > priCi(t)rjy by l=1... M.
ij=1 (29)

Repeating the previous considerations for the corresponding M x M
matrices one obtains the wave functions 1/, and the dual vectors Ty
of the truncated problem. Since the smallest eigenvalues of C'(tp)
(i.e. M <k < N) are excluded one avoids the instability.

It is also useful to introduce X?(t) analogously to eq. (27) in the
truncated basis. This is expected to be a more sensitive character-
istic of the fit than x?(t).

Finally (if needed) one obtains the first M wave functions in the
original basis

M
(V) ZZ%M% i=1...N, (30)
=1

and similarly the M dual vectors vi. From the orthogonality of
vectors ¢y it follows that (vg, ) o< O for k k' =1,..., M, so the
orthogonality still holds for the first M vectors.

Analysing MC data it is useful to consider several values of %,
N and M, calculating the spectrum by different methods and mon-
itoring the x? values.

4 Alternatively, one can use the eigenvectors of C/(t1) for some t1 < to.
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For larger correlation length it is possible to increase the sig-
nal/noise ratio by a further modification of the generalized eigen-
value problem. We propose adding several equations (6) for different
pairs of ¢,t, with appropriate weights having a factorization prop-
erty. We replace eq. (6) by

K(1)v, = an(1)Kovy, , (31)
where
Ko=) wy(t)C(t), (32)
K(r) =) wo(t)wi (A)C(t+A+7), (33)
and
(1) = Y wi(A)e FBFT) (34)

Here wy(t) and wq(A) are some positive weights. F, can be obtained
easily from «, (7). Alternatively, one can define again an ‘effective
mass’,

(1)

) .

log

With increasing 7 this effective mass should approach E, as well .

Although it is not denoted here, it is understood that truncation
to the M-dimensional subspace of the stable eigenvectors of Ky (or
of C(ty)) is performed, if necessary.

The optimal choice of the weights wy(t) and w;(A) depends on
many things. We did not investigate this choice even in the il-
lustrative example given later, but a few general points could be
suggested, nevertheless. One should perhaps avoid the appearance
of the same correlation matrix in K and K. The optimal number
of terms in K or Kj is a result of a compromise — including more
terms is useful only if this increases the signal/noise ratio. Hence
too large t’s should not be included.

11



The results for the energy spectrum should be independent of the
various choices in some range. In the regions where the results are
inconsistent, one should see this also by checking the corresponding
x? values.

A POSSIBLE STRATEGY:

Define the dual vectors in some optimal way, by the procedure de-
scribed above. Using these fized dual vectors determine (v,,, C(t)v,y).
For n # n' it should be consistent with zero (apart from the noise
and the contribution of states with [ > N), and the diagonal terms
are used to build an effective mass plot to obtain E,. This proce-
dure will avoid the uncertainty of using different set of dual vectors
for different pairs of (¢,ty) and expected to be more robust.

AN OTHER ONE:

Use the x? in eq. (27) (summed over some range in t) in fitting
C(t) with the N(NN + 1) parameters E,, ¢,;. The number of in-
dependent terms is n;N(N + 1)/2 where n; is the number of time
slices used in x?. For n; = 2 this minimization problem is equiva-
lent to the generalized eigenvalue problem and gives exactly x? = 0
(provided C'(t) is positive definite for both values of ¢ considered).
By taking n, > 2 the minimization problem of x? cannot be worse
than for the n, = 2 case, i.e. the generalized eigenvalue problem.
Obviously, too large values of ¢, dominated by the noise have to be
excluded. Similarly, for too small values of ¢ (especially for ¢ = 0)
the sates with n > N (or n > M for the truncated case) could have
a significant contribution, and have to be excluded as well. Note
that this method has the same instability as the generalized eigen-
value equation, so it must be truncated first to the stable subspace
of C(ty) (or by some other way) and used with care. Of course,
the nonlinear minimization is very time consuming, but taking the
solution of the generalized eigenvalue equation as a starting value
considerably simplifies the procedure. ONE SHOULD TRY OUT
THIS METHOD AGAIN!

VISUALISATION: plot the whole set of energies F,, for each the
jack-knife sample, and for different values of the parameters used
(M, to, t, etc.), together with the value of x2. An instability (fake

12



eigenvalue, splitting, etc.) could be easily seen this way.

5 An illustrative example

Here we apply the method of the generalized eigenvalue problem,
together with some of its proposed modifications to the case of the 2d
O(3) non-linear sigma-model. We calculate the 2-particle energies
in the I = 0 isospin channel in a periodic box of size L. If L
is large enough the energy difference between the 2-particle states
with different momenta is small, O(1/(mL?)) compared to the lowest
energy Ey; = O(2m). With a single operator it would be very difficult
to distinguish these states, and large systematic errors are expected.
For the given problem one has to determine the energy levels F,, to
a high precision since the value of the phase shift is very sensitive to
E,. To see this we remind that the procedure suggested in ref. [2] is
to determine the momentum p, from E,, = 2,/m? + p2 and then the
phase shift §(p,,) from the periodicity condition p, L+20(p,) = 2mn.
It is clear that the error on E,, is strongly enhanced in §(p,,).

Note, however, that this example has also a property which is not
typical in MC simulations: the wave functions v, in this problem
(with the definitions of the operators O; given below) are nearly
orthogonal to each other. Therefore a simple diagonalization of
C'(t) leads to eigenvalues close to const x exp(—E,t). We shall also
investigate this naive method.

For the illustration of the procedure discussed here we used MC
results for the O(3) model with the standard action at 3 = 1.40 on
a 128 x 256 lattice (the longer size being the ‘time’ direction) from
ref. [5]. The correlation length, £ = 1/m is 6.883(3) at this coupling.
We made 120 runs with 10k measurements in each run.

The observables used here are

Ola, 1) = %iS“(z,t)S“(z baot),  T=0.1/2. "

These operators connect the vacuum with states containing even

13



number of particles in a total I = 0 isospin channel and with zero
total momentum. The lowest lying such states are the 2-particle
scattering states characterized by momenta p,, —p,. Actually, we
consider only the connected part, i.e.

Cay(t) = (O(2,0)0(y, 1)) — (O(x,0))(O(y,0)) - (37)

Since O(0,t) = 1 the vacuum contribution can be subtracted easily
from the full correlation matrix measured in MC. In the connected

correlation matrix we have therefore N = L/2 observables, for © =
1,...,L/2.

In table 1 the prediction for the first three energy levels of the
corresponding 2-particle states are given. They are calculated from
the analytic result of the S-matrix [7] (for the I = 0 channel)

o2if0(p) _ 0+ 2w
0 —2ir ’

(38)

where 6 is the rapidity, p = msinh §, with the measured 1-particle
mass. The lattice results which came out from the analysis [5] are
also given. The fact that they are in agreement with the analytic
results within the errors is not important in this study — we provide
these numbers only for comparison, to be able to see the possible
systematic errors in the methods considered below.

k exact lattice

1 0.294970 0.2956(5)
2 0.328017 0.3281(6)
3 0.385342 0.3859(9)

Table 1:  The analytic result for the three lowest energy levels of 2-particle
states in the I = 0 channel for L = 128 and 1/m = 6.883(3) (8 = 1.40).
These and the best lattice results are given to be able to judge the presence of
systematic errors of results obtained by different methods.

As the simplest method to evaluate the lowest energy value E
consider the correlation function Cya(t) = (A(0)A(¢)) of a single
operator A(t) = > O(x,t). Fig. 1 shows the ‘effective mass plot’,
i.e. log(Caa(t)/Caa(t+1)). The plot shows that the result obtained
in this way is significantly above the ‘true’ result shown here (and
in other plots) for comparison. Of course, this systematic error is

14
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Figure 1: The effective mass plot, log(C'aa(t)/Caa(t +1)) vs. t for a single op-
erator A(t) = Y, O(z,t). The solid line shows the ‘true’ lattice result, obtained
by the generalized eigenvalue method, shown here for comparison. one-op-em

due to the fact that the gap AF = Ey — E; ~ 0.033 is too small,
1/AE = 30, and the higher excitations do not die out at these ¢
values.

A more sophisticated method is to measure the eigenvalues of
the correlation matrix C'(¢) and build the effective mass plot from
its lowest eigenvalue. This would be exact if the wave functions
were orthogonal to each other (and there was no statistical noise).
Even if the wave functions are far from being orthogonal (which is
the general case) for large enough ¢ the value of the effective mass
converges to Fy, the true value. But again, the rate of convergence
is controlled by exp(—AEt). Fig. 2 shows the effective mass for the
largest eigenvalue of C'(t) (small filled circles). For ¢ > 3 it agrees

15
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Figure 2: The filled circles show the ‘effective mass’ for the largest eigenvalue of
C(t), log(A[C(£)]/M[C(t+1)]) vs. t for the full matrix Cpy(t), z,y < L/2 = 64.
The solid line shows the ‘true’ lattice result, as before. The open boxes show the
same for the matrix restricted to x,y < 60, while the open circles for z,y < 48.
The good agreement for the x,y < 64 is due to the fact that the wave functions
are nearly orthogonal for this case. c0-ev-em

well with the ‘best’ value. However, this is just the consequence
of the fact that in this special case (as mentioned above) the wave
functions are nearly orthogonal to each other. Restricting the range
of the matrix Cy,(t) from z,y < L/2 = 64 to z,y < 60 (open boxes)
or to z,y < 48 (open circles) no convergence to the true value is seen
from the figure. (Of course, for ¢ > 30 all these should approach the
true result.)

In ref. [2] the matrix C(t) has been considered in Fourier space
in the relative momentum (instead of x as we do here), taking the
lowest N = L/4 momenta. The filled circles in fig. 3 show the result

16
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Figure 3: Results obtained from A (¢,%p) with ¢y = 1 and different values of
t using the matrix C(t) in the Fourier space with N = L/4 = 32 states, as in
ref. [2]. The filled circles are the ‘effective mass’ values of eq. (12) plotted at
t + 1/2, while the open circles show —log Ay (t,t9)/(t — to). The solid line is as
in fig. 1. gen-four-em

for the ‘effective mass’, eq. (12) (as used in [2]) for ¢t = 1, plotted
at t+1/2. The values —log A1 (¢, t)/(t —to) are also shown by open
circles. This figure indicates that at ¢ty = 1 and N = 32 (in the given
basis) the n > N states are not completely negligible. It would be
desirable to choose ty and N so that the sum in eq. (1) could be
restricted to n < N within the statistical errors for all ¢ > .

For completeness (and to underline the contrast with the stan-
dard eigenvalue problem, the results of which were shown in fig. 2)
we did the same calculation also with Cjy, () restricted to z,y <
N = L/4 = 32, taking t; = 1 again. The results coincide with those

17
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Figure 4: Values of ¢, (L/2)| vs. n, as obtained from the generalized eigenvalue
problem with tg = 1, t = 2. gen-psi

without truncation to at least 4 digits (for the first 3 levels checked).

It is instructive to consider the dependence of the wave functions
on n. In figure 4 we plotted |¢,,(L/2)| vs. n as obtained from eq. (6)
with to = 1, t = 2. The fast decrease of v,, with n is also a specific
feature of the problem. When using e.g. in gauge theories opera-
tors given by different loops, with different smearing prescriptions
one does not expect such sharp decrease in n, i.e. higher excited
states are less suppressed in general. This affects, in particular the
smallness of the coefficient of the slowly decreasing corrections.

TAKE t, = 0 and N =?? TO ILLUSTRATE THE SLOWLY DE-
CREASING CORRECTIONS. PERHAPS ONE COULD RESCALE
b, o 1/3/n(???) TO SEE THE EFFECT BETTER.

18
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Figure 5: Eigenvalues A\,[C(t)] for t = 1,2, 3,4 vs. n. It shows that for t = 1 all
eigenvalues are well measured, while for ¢ > 1 some small eigenvalues are not,
and one needs a truncation in the number of the eigenvectors kept (M < N).
c0-ev

Note that in the present problem the xz-dependence of the wave
functions 1, (z) (not shown here) contains additional information
on the relative momentum of the two particles, and has been used
in ref. [5].

By trying to take ¢, > 1 one meets the problem discussed in
section 2 and one has to truncate to a subspace of dimension M < N.
Fig. 5 shows the eigenvalues of C'(t) for t =1,... ,4. It is seen that
for ¢ > 2 the smallest eigenvalues are unstable.

For ty = 2 the result is practically insensitive to M < 50 but
it becomes completely unstable for M = 52 (with our statistics, of
course) so the change occurs abruptly. The results are shown in fig.
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Figure 6: Results obtained from A;(t,to) with o = 2, with truncation to first
M = 40 eigenstates of C(tp). The filled circles are the ‘effective mass’ values of
eq. (12) plotted at t + 1/2, while the open circles show —log A (,t0)/(t — to).
The solid line is as in fig. 1. gen-t0-2

6. Since the decay of the correlation matrix is given by F; ~ 0.3, it
decays perhaps too fast to illustrate the usefulness of taking ¢y > 1
or of eq. (31).

TO DO:

e Construct a C(t) which is exactly N x N matrix with known
energies and wave functions, for checking different things.

e MAKE A FAKE C(t) BUILT FROM N TERMS EXACTLY,
WITH KNOWN E,, AND ,,;, ADDING TO IT A STATIS-
TICAL NOISE SIMILAR TO THE ONE OBSERVED, BY
Cij(t) — Cgt(t) + (Cij(t) — Cyj(t)) for each run separately.
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Figure 7: Results obtained from eq. (31) with tg = 1..2 and A = 1..1, with
truncation to first M = 40 eigenstates of Ky. The filled circles are the ‘effective
mass’ values plotted at ¢ + 1/2, while the open circles show ???. The solid line
is as in fig. 1. gen-t0-12

Ci;(t) is the average over the 120 runs. This way one could
separate the effect of states with n > N and the effect of non-
linearities in the general eigenvalue problem.
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