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Abstract

In this thesis we investigate numerically the macroscopic tunneling rates of a coupled

system of fronts. We show that it is possible to make a new numerical approximation

to the symmetric double well potential that agrees with the analytic expression

for the ground state energy level splitting. Using this numerical method we then

make the appropriate changes to the ground state energy calculation to treat a non

symmetric potential. The introduction of an imaginary part to the ground state

energy causes a decay away from the metastable side of the potential. We then treat

a system that can decay from a metastable state into more than one lower energy

configuration. As an example of such a system we consider a multiferroic system in

which the magnetic and electric polarisations are coupled. We then proceeded to

compute the tunneling rate numerically and compare the behavior of the tunneling

rates for the two possible final states.
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Chapter 1

Introduction

If the finite characteristic lifetime of a state is greater than the timescales of other

processes in a system we say that such a state is metastable. Metastable states and

the processes by which they relax are responsible for phenomena as diverse as the

lifetime of excited states in atoms to the behavior of super cooled gases. Typically

for macroscopic systems one considers the mechanism for decay of metastable states

to be via stochastic processes in which the decay occurs through energy exchange

mediated by a coupling with the environment[6].

More recently the concept of so called macroscopic quantum tunneling has been

considered as a mechanism for systems to enter into equilibrium. In 1959 Goldanskii

showed, that at su�ciently low temperature, quantum tunnelling is the dominant

mechanism for decay and it has become possible to construct experiments in which

tunneling of macroscopic parameters occur.

We will be interested in analysing the behavior of a system where there are two

possible final states that the system might tunnel into. For these systems the form

of the potential energy is complicated and employing Schrödinger wave mechanics

would usually represent an incredibly di�cult task. In analysing these tunneling

problems it is particularly convenient to employ Feynman’s path integral represen-

tation of quantum mechanics [3, 6]. In this formalism it is necessary only to form a

Lagrangian of the macroscopic variables that describe the system in order to anal-

yses tunneling from a metastable configuration. While it might seem inconsistent

to treat macroscopic quantities in an essentially quantum mechanical frame work,

if the system is at su�ciently low energies the underlying quantum structure is not

apparent and our treatment will be acceptable.

1



1 Introduction 2

A direct example of this concept could be found in an alpha particle. At low ener-

gies we can consider a point particle and describe it by only position and momentum,

at higher energies one would need to consider the particle as four interacting parti-

cles (two protons and two neutron) and at even greater energies still we would have

to consider the structure in terms of quarks. In order for macroscopic tunneling

to be prevalent we do require that the e↵ective mass of the parameter that we are

treating be su�ciently small.

1.1 Multiferroic Materials

A real system to which our proposed numerical evaluation can be applied is a mul-

tiferroic systems which exhibit both spontaneous ferromagnetic and ferroelectric

ordering. A pure ferroelectric material is one which exhibits a spontaneous polari-

sation. For such a material there exists a static energy[14].

E
D

=
1

2

Z

Vol

dV ~D · ~E (1.1)

In real crystals the e↵ects at the surface and at defects in the crystal lattice will

cause the system to form regions of oppositely oriented polarization in the absence

of an applied electric field. Similarly ferromagnetic materials are those that exhibit

a spontaneous magnetic ordering. In order to minimise the magnetostatic energy

[11]

E
D

=
1

8⇡

Z

Vol

dV ~B · ~B, (1.2)

these materials also form regions of uniform order. In both case we refer to the

regions of uniform order as domains and the boundary between regions domain

walls. In the model presented in the 5 chapter we will consider magnetic domain

walls where the magnetization rotates perpendicular to the domain walls. For the

electric domain walls will correspond in a continuous change in the magnitude of

the polarization vector. The two walls are shown in figure (1.1)

Figure 1.1: The polarization change for the magnetic and electric systems

In 2002 the correlation of electric and magnetic domain walls was observed for

the first time in YMnO
3

[4]. We will model a multiferroic in which there is a sym-

metric energy term associated with the angle between the magnetisation and the



1 Introduction 3

polarisation that acts to create an attractive force between polarization and mag-

netization domain walls. We will then consider the case in which the system is

driven by a external electric field and introduce a planar defect that inhibits the

propagation of the magnetic domain wall and hence the coupled system. And shall

calculate under which conditions both walls are likely to tunnel and under which

conditions only the electric domain wall is able to tunnel. Multiferroic materials

are a group of compounds of great interest in condensed matter physics ([7]). They

are characterised by the fact that they display spontaneous ordering both magnet-

ically and electrically and are said to exhibit both ferroelectric and ferromagnetic

properties. Of particular importance are ferroelectromagnets, substances in which

the magnetization can be induced by a electric field (and)or the polarisation can

be induced by a magnetic field. Aside from fundamental interest, there exists the

possibility to utilise them in storage media as four state memories.

Before describing the multiferroic system in greater detail we will present some of

the key structure of the Feynman treatment. We will show a new method by which

the important integrals of the theory can be evaluated numerically and compare the

results with a known analytic solution. We will then derive a set Euler Lagrange

equations for the multiferroic system described above and investigate various be-

haviours of the system.



Chapter 2

Path Integrals and Quantum

Tunnelling

2.1 The path integral formulation of quantum me-

chanics

We begin by introducing the path integral formulation of quantum mechanics. The

functional integral formulation of quantum mechanics was first suggested by Richard

Feynman in 1948 in [3] and it is his explanation closely followed here. One might

feel that this presentation of the path integral is not entirely satisfactory. Several

important issues will not have been addressed. There are other direct and rigorous

proofs, where the path integral is derived by considering only the initial and final

states and a limiting process involving an infinite process of time evolution operators,

such a proof is presented in the book [12]. Here we do not aim to provide a proof

but rather an explanation of the key concepts. This presentation gives an intuitive

feel, by motivating a probability like amplitude associated with paths, that can be

obscured in other presentations.

We begin with a review of probability in the quantum and classical regimes.

Let P
ac

be the probability that given some measurement A gives a result a that a

measurement of C gives result c, for clarity it is useful to imagine A and C to be

repeated position measurements of a particle in one dimension (C must be made

at time t
a

< t
c

). If we now make an additional measurement B at a time between

measurements of A and C we have the result that the probability of being at a and

then b and then c is the product of the probability of being at b given that the

particle was a a with the probability of being at c given that the particle was a b or

much more succinctly,

4



2 Path Integrals and Quantum Tunnelling 5

P
abc

= P
ab

P
bc

.

(2.1)

Figure 2.1: In this idealised situation we assume that a point particle starts at A
and we wish to find the probability that at some fixed time later the particle arrives
at position C. At some interim time we make an assumption that the particle could
be in one of only two positions B or B’

In figure 2.1 we now consider that at some interim time the particle is now

allowed to take a discrete number of possible values ( in the case of the figure only

two values). Since probability is additive we have in the probability of finding the

particle at C to be,

P
ac

=
X

b

P
abc

(2.2)

where the sum is over all possible allowed values for measurement B. We would

say that P
abc

contribution to the likelihood of measuring c when the particle was

initially at some position a later at some position b and then at some position

c. So far we have not encountered anything unfamiliar. Quantum mechanically,

however, we must consider the e↵ect of not making the measurement b. Classically

this sentence does not make sense, the particle assumes some value for measurement

of b regardless of observation. The amazing result of quantum mechanics is that

when measurement B is not performed equation 2.2 is generally incorrect. We have

instead the quantum mechanical law

'
ac

=
X

b

'
ab

'
bc

(2.3)

where ' are complex numbers and it is the norm of these complex numbers (often

called probability amplitudes) that give a probability. This di↵erence is subtle but

its implications are of great importance. The distinguishing property is that the

probability amplitudes carry an amplitude and a phase allowing for interference
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e↵ects in our probability amplitudes. This is of great importance and is key to

understanding the path integral formulation. Before continuing a few comments are

in order:

1. In equations (2.2) and (2.3) the summation implied a discrete set of allowed

values for measurement B in general the allowed values will be continuous and

unbounded, hence summation will be replaced by an integral.

2. In the quantum mechanical formula (2.3) the allowed values are not limited

to those allowed in equation (2.2). When we are measuring B we are restrained to

measure values that are physically meaningful b, in the absence of this measurement

we are not. One consequence of this is that if during the interim time there existed

a potential barrier so that for all b V (b) > E where E is the energy of our particle

the probability of measuring c is non-zero. We label this non-zero probability as the

quantum tunnelling probability, since a particle will have moved from one classically

allowed state to another through a classically forbidden region.

To continue we consider the time evolution amplitude hx
b

|bU(t
b

, t
a

)|x
b

i, where bU
is the time evolution operator. Let the time interval be sliced into N parts and

indexed t
n

with n = 0, 1, 2...N and the possible values of the position of the particle

at time t
n

labeled x
n

. Remembering that the summation has been replaced with an

integral we could write our probability amplitude as:

hx
b

|bU(t
b

, t
a

)|x
b

i =

Z 1

�1
dx

0

Z 1

�1
dx

1

...

Z 1

�1
dx

N

Y
'

xnxn+1 (2.4)

where the product is over all n = 0, 1, 2...N . Noting that the product is dependent

only the values of our x
n

define a complex valued function

�(...x
i

, x
i+1

, ...) =
Y

'
xnxn+1 , (2.5)

we can interpret �(...x
i

, x
i+1

, ...) as the probability amplitude that a particle moves

from x
a

to x
b

via x
1

, ...x
i

, x
i+1

, .... Now if we increase N the spacing between points

✏ =
1

N
(t

b

� t
a

) will approach zero and the x
n

approach a continuum, defining a

smooth path. In the limit of ✏ ! 0 we write �(...x
i

, x
i+1

, ...) = �[x(t)] which

Feynman called the probability amplitude functional. By direct extension of our

discrete function we interpret this to be the probability amplitude that a particle

moves from x
a

to x
b

along path x(t) This brings us to our definition of the path

integral

limit
"!0

Z 1

�1
dx

0

Z 1

�1
dx

1

...

Z 1

�1
dx

N

�(...x
i

, x
i+1

, ...) =

Z
D[x(t)]�[x(t)]. (2.6)
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We have now that time evolution amplitude hx
b

|bU(t
b

, t
a

)|x
b

i is the sum of complex

contributions from each path between the end points. All that remains is to evaluate

�[x(t)] for each path, to do this we introduce the postulate according to Feynman:

The paths contribute equally in magnitude, but the phase of their contribution is

the classical action; the time integral of the Lagrangian of the path

Z
D[x(t)]e

i
~ S[x(t)]. (2.7)

It might seem that the probability amplitude association with each path is lost

by allowing k�[x(t)]k to be constant, however, the varying phase allows for paths

to interfere with one another. It might seem that the appearance of the classical

action is not well motivated; it is not necessary to introduce the classical action at

this point. We could have introduced an arbitrary functional and then required that

in the high mass limit classical paths be the dominant contributions to the path.

Recalling that for a standard integral of the same form we would require that the

exponent have at least one stationary point to be non-zero. It is not hard to imagine

in direct analogue that stationary paths of the functional will give us our dominant

contribution. Hence in the high mass limited we need a functional whose stationary

points are the paths taken in classical mechanics.

We now have a formulation of quantum mechanics that requires only the for-

mulation of a suitable Lagrangian and not the use of the equivalence principal to

create operators. It can be shown that this formulation is completely equivalent, it

is possible to derive the wave mechanics and matrix formulations directly from the

path integral formulation [3]. This approach has proved crucial in the calculations

of quantum field theory and can be easily extended for calculations in statistical

physics.

2.2 Tunnelling in the Low Temperature Limit: The

Wick Rotation

In order to treat situations of metastability it will be necessary to consider how

one could treat the situation of quantum tunnelling in the path integral formalism.

Consider the simple one dimensional potential given by 2.2, we will label the two

minima x
i

and x
f

referring to the metastable and stable configurations respectively,
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we also label the height of the barrier V
0

. Now consider the Feynman propagator

determining the probability that the system is found in configuration x
i

at time t
i

and then at x
f

and at time t
f

.

Figure 2.2: This potential has a local minimum that is rendered metastable by either
tunneling or thermal excitation

hx
f

|e
�iĤt

~ |x
i

i =

Z
D[x(t)]e

�iS
~ (2.8)

with

S =
m

2

Z
t

0

dt(
d

dt
x)2 � V (x)

In order to approximate this path integral one would normally attempt to find a path

that was stationary with respect to S. Since this path will provide the dominant

contribution to the integral one could make an expansion of the action around this

path. Further explanation of exactly how this is done is given below in section 2.4.2.

However, in the case of the total energy of the system being less than V
0

we know

that there cannot exist such a stationary path ( if we were able to find one it would

be correspond to a classical path from x
i

to x
f

). We could, however, treat the system

using the Schrödinger wave mechanics formulation where we would expect energy

eigensolutions to the time independent Shrödinger equation to exhibit exponential

behavior “inside” the barrier. In order to continue we perform the so called Wick

rotation t ! i⌧ . In the appendix we show that this transformation essentially has

the e↵ect of inverting the potential in the action. Mathematically we are now able

to make some progress in evaluating the integral since a stationary path is at leas

in theory now obtainable. We are however left with the problem of how to interpret
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our transformed propagator.

hx
f

|e
�Ĥ⌧

~ |x
i

i =

Z
D[x(⌧)]e

�Se
~ (2.9)

with

S
e

=
m

2

Z ⌧
2

� ⌧
2

d⌧(
d

d⌧
x)2 + V (x).

Recall that the quantum statistical partition function may be viewed as an analytic

continuation of the quantum mechanical partition function. then we can write the

Quantum statistical Partition function as

Z =

Z 1

�1
dx hx|e

�iĤt
~ |xi

���
tf�ti!�i~�

(2.10)

If it were the case that there were only a single x with a closed stationary path

associated with it one could omit the trace integral and approximate the partition

function by

Z =

Z
D[x(⌧)]e

�Se
~ (2.11)

where we have substituted the expression for the transformed propagator. We see

that our transformed propagator has the form of a partition function. Despite this,

in chapter 4 we will calculate the above expression for a state away from equilibrium

and will find that we calculate a small imaginary part which relates to the rate at

which the system tunnels from a metastable state.

2.3 Feynman-Kac Formula

In the low temperature limit it is possible to obtain an approximation to the ground

state energy of a system using the transformed propagator. This result is used in

the calculation of the ground state energy in the double well potential and will be

important in the interpretation of the imaginary part appearing in the transformed

propagator. To begin suppose that we have a complete set of energy eigenstates,

Ĥ|'
n

i = E
n

|'
n

i. (2.12)

Then we can write the propagator in terms of a complete set of energy eigenfunctions,

resulting in the so called spectral decomposition:

G(x
f

, t; x
i

, 0) = hx
f

|Û(t)|x
i

i =
1X

n=0

hx
f

|'
n

ih'
n

|e iĤt
~ |x

i

i =
1X

n=0

'
n

(x
f

)e
iEnt

~ '⇤
n

(x
i

).

(2.13)
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Now if we set x
f

to x
i

and then integrate over all x we have the result, using the

fact that energy eigenfunctions are orthonormal,
Z

dxG(x
f

, t; x
i

, 0) =
1X

n=0

e
�iEnt

~ (2.14)

We now consider the complex t behavior of the above relation with it = ⌧ we see

that as ⌧ approaches infinity that the leading contribution will come from the ground

state energy, giving the Feynman-Kac formula.
Z

dxG(x
f

, t; x
i

, 0) ⇡ e
�E0⌧

~ (2.15)

The above formula is usually presented rearranged for E
0

but current presentation

will be more suitable for the our purposes here.

2.4 Evaluating the Integral

Having derived the Feynman-Kac formula for the ground state energy level we will

consider the actual evaluation of the Wick rotated integral of equation (2.9), in par-

ticular a semi-classical approximation. At the end of this section we will give some of

the key results of the analytic solution to a symmetric quartic potential in particular

the level splitting formula. The full calculation with the exception of the evaluation

of the Rosen Moorse potential are included in the appendix. Calculation of the sym-

metric double well, while not an example of a metastable system, illustrates all the

important aspects of calculations in the semi-classical approximation, including the

‘rare gas’ treatment of the multiple instaton solutions. We use the general results

of this section in the explanation of the semi-classical tunnelling formula in chapter

4. In chapter 3 the results from the following calculation can be compared to those

of the numerical approximation.

2.4.1 General Explanation of Evaluation

We begin by considering an arbitrary potential V (x). As discussed, we are interested

in the analytically continued t ! i⌧ propagator

hx
f

|e
�Ĥ⌧

~ |x
i

i, (2.16)

in particular the leading terms in large ⌧ regime. So we wish to evaluate

hx
f

|e
�iĤt

~ |x
i

i =

Z
D[x(t)]e

�iS
~ (2.17)

with

S =
m

2

Z
t

0

dt(
d

dt
x)2 � V (x)
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taking t ! i⌧ gives a new expression for the action

S =
m

2

Z ⌧
2

� ⌧
2

(
dt

d⌧
d⌧)(

d⌧

dt

d

d⌧
x)2 � V (x) (2.18)

=� i
m

2

Z ⌧
2

� ⌧
2

d⌧ i2(
d

d⌧
x)2 � V (x)

and hence we have (with the transformed action denoted S
e

and referred to as the

euclidean propagator)

hx
f

|e
�Ĥ⌧

~ |x
i

i =

Z
D[x(⌧)]e

�Se
~ (2.19)

with

S
e

=
m

2

Z ⌧
2

� ⌧
2

d⌧(
d

d⌧
x)2 + V (x),

Note that finding the stationary points of this transformed propagator is mathemat-

ically equivalent to solving the Euler-Lagrange equations in the inverted potential

�V (x). We have to solve the path integral of 2.19. Exact solutions are not typically

available, indeed this is the case here. We must therefor make the so called semi-

classical approximation. We expand our paths in terms of weak variations around

paths that are stationary with respect to the euclidean action.

2.4.2 Instatons

So far we have referred briefly to stationary paths with out giving an explicit defi-

nition. For any functional we are able to make the expansion [5]

S
e

[x(⌧)] (2.20)

= S
e

[x(⌧) +�x(⌧)]

= S
e

[x(⌧)] +

Z
�S

e

[x(⌧)]

�x(⌧)
�x(t)d⌧

+
1

2!

Z Z
�2S

e

�x(⌧
1

)�x(⌧
2

)
�x (t

1

)�x (t
2

) d⌧
1

d⌧
2

+ O(
1

3!
�x(⌧)3)

when referring to the stationary path, denoted overlinex(⌧), we will mean the path

over which the first variation is zero ( �Se[x(⌧)]

�x(⌧)

= 0). An importan,t but not immedi-

ately obvious, result is that in the case when the action S
e

is of the form in equation

2.8 and x(⌧) is the stationary solution then the derivative of this solution ẋ(⌧) will

satisfy �2S
e

[ẋ(⌧)] = 0. We assume currently that there is only one such path, this
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is of course not generally true but we can always sum the contributions from other

such stationary paths. We express any path x(t) as a sum x(t) = x(⌧)+�x(⌧) with

x(t) the stationary point of the euclidean action. This stationary point is mathemat-

ically simular to the localised functions describing particles in wave mechanics and

is referred to as either a pseudo-particle or an instaton, I will adopt the convention

of referring to it as the instaton solution. In the situations that we are interested

in (quantum tunnelling through a barrier), this solution will take the form of an es-

sentially constant solution with a well localised change, referred to usually as either

a bubble or kink (depending on whether the path returns to it original constant

value or di↵erent one). The condition that the first functional derivative be zero for

x(⌧) implies that x(⌧) will obey the familiar Euler-Lagrange equations, albeit for

the inverted potential.

To find expressions for the terms of the expansion note that second functional

derivative of the euclidean action is

�2S
e

�x(⌧
1

)�x(⌧
2

)
= �m(

d2

d⌧ 2

�(⌧ � ⌧
2

)|
⌧!⌧1 +

d2

dx2

V (x)�(⌧
1

� ⌧
2

)). (2.21)

So the second variation is

�2S
e

=
1

2!

Z Z
�2S

e

[x(⌧)]

�x(⌧
1

)�x(⌧
2

)
�x (t

1

)�x (t
2

) d⌧
1

d⌧
2

(2.22)

=
m

2

Z
��x(⌧

1

)�x00(⌧
1

) +
d2

dx2

V (x(⌧
1

))�x(⌧
1

)2d⌧
1

the negative of the above expression is usually denoted Sfl

e

. If the series expansion

is truncated after the second order term we have

hx
f

|e
�Ĥ⌧

~ |x
i

i =

Z
D[x(⌧)]e

�Se[x(⌧)]
~ (2.23)

=

Z
D[x(⌧) +�x(⌧)]e

�Se[x(⌧)+�x(⌧)]
~

⇡ eSe[x(⌧)]

Z
D[�x(⌧)]e

�S
fl
e [�x(⌧)]

~

we usually write

⇡ e
�Se[x(⌧)]

~ F .

This truncation is referred to as the semi-classical approximation, we are only con-

sidering quantum e↵ects to first order. In doing so we have factored the problem

into the contribution from the instaton path and the contribution from quadratic

fluctuations around that path (F). Once the instaton x(⌧) has been calculated, F is
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comparatively easy to evaluate compared to the original integral. It is quadratic in

the path variations which have vanishing end points. To proceed the usual procedure

is to look for eigenfunctions and eigenvalues of:

(� d2

d⌧ 2

+ V 00[x(⌧
1

)])y
n

(⌧) = �
n

y
n

(⌧) (2.24)

since it is of the Sturm-Liouville form , ie:

� d

dx


p(x)

dy

dx

�
+ q(x)y = �w(x)y. (2.25)

When properly normalised the y
n

will form a total orthonormal Schauder basis for

the Lebesgue space L2([�T

2

, T

2

], 1dx) and hence we are able to express our fluctua-

tions �x(⌧) in terms of an infinite sum of y
n

:

�x(⌧) =
1X

n=0

⇣
n

y
n

(⌧) (2.26)

And so we can write

Sfl

e

=
m

2

Z
�x(⌧

1

)(� d2

d⌧ 2

+ V 00[x(⌧
1

)])�x(⌧
1

)d⌧
1

(2.27)

=
m

2

Z 1X

n=0

⇣
n

y
n

(⌧)
1X

m=0

⇣
m

y
m

(⌧)�
m

d⌧
1

using the orthanormality of the y
n

=
m

2

1X

m=0

⇣2

m

�
m

.

Now in order to sum over all variations of the path it is necessary to integrate over all

values of the ⇣
m

. In making this transformation to the basis of y
n

we have e↵ectively

transformed the integration of paths into a infinite product of real valued integrals.

The “Jacobian” of such a transformation is not easily defined but it will not be

necessary to determine the unknown constant N that is introduced:

F =

Z
D[�x(⌧)]e

�S
fl
e [�x(⌧)]

~ (2.28)

= N
1Y

n=0

Z 1

�1

d⇣
n

2⇡~ exp{�m

2~ ⇣2

n

�
n

}

=
NpQ1
n=0

�
n

So the original path integral has now been reduced to

hx
f

|e
�Ĥ⌧

~ |x
i

i = e
�Se[x(⌧)]

~
NpQ1
n=0

�
n

. (2.29)
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2.4.3 Evaluating the infinite product

In order to evaluate the infinite product given in 2.29 it will be necessary to remove

the normalisation N that was introduced when the path integral was transformed

to a product of integrals over ⇣
n

. To do this consider the solution x
0

(⌧) where the

position remains constant, this will be a stationary path with respect to the action,

its fluctuation term F
0

will have a fluctuation action of the form

m

2

Z
��x(⌧

1

)�x00(⌧
1

) + !�x(⌧
1

)2d⌧
1

(2.30)

with ! a constant. This is simply the fluctuation factor from a harmonic potential,

which is exactly solvable. So we can write

F =
NpQ1
n=0

�
n

=
NpQ1
n=0

�0

n

pQ1
n=0

�0

npQ1
n=0

�
n

(2.31)

= F
0

pQ1
n=0

�0

npQ1
n=0

�
n

There is still a possible divergence in the above expression that shall be addressed

in the section below.

2.4.4 Zero Eigenvalue Solution

As the limits of the integration in the euclidean action tend to positive and nega-

tive infinity we expect that the contribution to the action from the soliton solution

x(⌧) to be translationly invariant. An instaton centered at ⌧
0

and another insta-

ton, infinitesimally separated, centered at ⌧ 0
0

will give the same contribution to our

euclidean action. The di↵erence between these solutions manifests itself as a fluctu-

ation around the instaton solution that does not change the euclidean action. As a

consequence there will always exist an eigenfunction y
0

such that �
0

= 0. As men-

tioned above the eigenfunction responsible for the divergence is y
0

= ↵x0(⌧ � ⌧
0

).

The key to removing this divergence is to evaluate the contribution resulting from

the invariance of a single instaton, replacing the integral over ⇣
0

with an integral

over the position of the center of the instaton. Recalling that in order to form a basis

the eigensolutions to equation (2.24) should be normalised we have ↵ =
p

S
e

[x(⌧)].

Our divergent contribution arises from the integral
Z 1

�1

d⇣
0p

2⇡~
. (2.32)

Recalling that

x(t) = x(⌧ � ⌧
0

) +�x(⌧) = x(⌧ � ⌧
0

) +
m

2

1X

m=0

⇣2

m

y
m

(2.33)
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we have dx

d⇣0
= y

0

and dx

d⌧0
= x(⌧ � ⌧

0

) giving

xd⌧
0

= y
0

d⇣
0

(2.34)

)d⇣
0

=
p

S
e

[x(⌧)]d⌧
0

.

So we make the replacement

1p
�

0

=

r
S

e

[x(⌧)]

2⇡~

Z L
2

�L
2

d⌧
0

(2.35)

2.4.5 Key Results of the Double Well potential

Thus far our analysis has been a general motivation and definition, we now consider

the specific results of the double well potential. Aspects of the derivation that are

important to the analysis in further chapters are included in the appendix with the

remaining technicalities left as references. The solution was calculated originally

by Langer [13], however methods used in the appendix follow more closely the for-

mulation given in the books by Kleinart [12] and Schulman [15]. We define the

symmetric double well potential as the quartic function in equation (2.36) shown in

figure (2.4.5)

V (x) =
!2

8a2

(x� 2)2(x + 2)2 (2.36)

Figure 2.3: The Symmetric potential V (x) = !

2

8a

2 (x� 2)2(x + 2)2

We are interested in the solutions to the Euler-Lagrange equations of the inverted

potential in the zero temperature limit. In the limit ⌧ !1 there exists an infinite

number of solutions. We will need to evaluate explicitly only two, the first is the

trivial solution where the particle starts and remains at ±a, we shall refer to this as

the trivial or degenerate solution. The second solution is

x(⌧) = ±a tanh
⇣!

2
(⌧ � ⌧

0

)
⌘

(2.37)

Which corresponds to the particle crossing to the other side minima. The ⌧ � ⌧
0

reflects the fact that in the � !1 limit the particle can spend infinite time at its
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initial stationary point before crossing to the other stationary point where it remains

indefinitely. While we will be interested in solutions valid for finite temperatures,

we will see that the correction to this assumption are negligible.

Classical Contribution to the Action

We can now easily evaluate the “classical” contribution to the action. In the case

of the constant solutions we have S
e

[x(⌧) = ±a] = 0. For the case of the non-trivial

solution it is easily confirmed that

Z ⌧
2

� ⌧
2

d⌧(
d

d⌧
± a tanh

!

2
(⌧ � ⌧

0

))2 + V (±a tanh
!

2
(⌧ � ⌧

0

)) =
2

3
a3! (2.38)

2.4.6 Fluctuation contribution to Feynman Kernel

We must now evaluate the contribution to the propagator equation (2.23) from the

quadratic fluctuations around the action. We seek to diagonalize the fluctuation

integral in order to reduce our problem to an infinite product of eigenvalues of the

equation. We obtain (see appendix)

0

@� d2

d⌧ 2

+ !2

0

@1� 3

2 cosh2

⇣
! (⌧�⌧0)

2

⌘

1

A y
n

(⌧) = �
n

y
n

(⌧)(2.39)

At this point we are left with the problem of evaluating the product of infinite

eigenvalues, we have seen that one of these values approaches zero but that by

considering the translation invariance of the instaton solution a finite contribution

can be attributed. Conceptually we should now be able to reach our solution. There

are, however, still two properties of the calculation that will cause us di�culty. The

first is since we have argued that our instaton will decay exponentially to a constant

far from the center of the instaton, for solutions of equation (2.39) with eigenvalues

greater than the value of !2

✓
1� 3

2 cosh

2
⇣
!

(⌧�⌧0)
2

⌘

◆
we do not expect discrete values

of the eigenvalues but rather a continuum of solutions. The second di�culty is that

in addition to the instaton solution already obtained we expect that there should

exist solutions that cross the barrier in the inverted potential multiple times. In the

zero temperature limit there should in fact exist an infinite number of such solutions

and we must account for the contributions from these solutions.

Eigenvalue Contribution and Multiple Instaton solutions

In the appendix it is shown that it is possible to write the ratio of products of

eigenvalues as the ratio of solutions to two second order di↵erential equations. We
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then have the single instaton solution

hx
f

|e
�Ĥ⌧

~ |x
i

i =

r
!

⇡~e�
!L
2~ �Ke�

Se[x(⌧)]
~ (2.40)

where K =
pQ1

n=0 �

0
npQ1

n=1 �n
and we have let x

f

= a and x
i

= �a. All that remains is to

evaluate the contribution of the multiple crossing solutions. To do this we use what

is referred to as the rare gas of kinks and anti-kinks [12]. Since the instaton is well

localised and the range of the integration approaches infinity we approximate the

remaining solutions as piece wise defined combinations of the single kink solution.

To do this we use the symmetry of the potential, should we want a solution moving

from x
f

to x
i

we could simply use negative of equation (2.36). For example consider a

function that is equal to the instaton solution in one sub domain and a phase shifted

negative solution in another we have a function that returns to x
i

. An example of

one such solution is shown in figure (2.4). This function should also be a solution

to the Euler Lagrange equation with a small correction near transition between the

sub domains.

Figure 2.4: Left:A so called two kink or two instaton solution in which the system
returns to the initial state. Right:A so called three instaton solution in which the
system finishes in the opposite state. In the zero tempreture limit we can contnue
to add kinks to create an infinite number of solutions

We could continue this procedure to create solutions that cross the barrier region

numerous times as in figure 2.4. The resulting solutions are referred to as a rare gas

of instatons. So called because of the particle like nature of our solution and the

assumption that the instatons are su�ciently separated so that the contribution to

our calculation from each one is essentially separate from the others. In the finite

temperature approximation one expects that since the instatons have finite width

and the range of our ⌧ integration is finite that there must be an upper limit on

the number of instatons that can be included in a solution before the assumption of

spacing is violated. It is possible to show that the contribution from solutions with

a high number of kinks N is suppressed by a factor of 1

N !

. Using this fact we sum
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over all possible rare gas solutions to obtain

h±a|e
�Ĥ⌧

~ |ai =

r
!

⇡~e�
!�
2~ � ⇥ 1

2

h
exp

⇣
K�e

�Se[x(⌧)]
~

⌘
± exp

⇣
�K�e

�Se[x(⌧)]
~

⌘i
(2.41)

The two solutions have arisen because the solutions in the rare gas with an even

number of crossing return to their initial locations, whereas the odd ones finish on

the other side of the well. Comparison with the Feynman-Kac formula 2.15 would

suggest that we have calculated the first two energy levels, even though we argued

that higher energy level contribution should have been exponentially suppressed.

The energies are

E± = ~
⇣!

2
± Ke

�Se[x(⌧)]
~

⌘
(2.42)

Recalling that S
e

[x(⌧)] = 2

3

a2! from equation (2.40) we see that the di↵erence in the

two energies is negligible and hence they both appear as the leading terms in semi-

classical approximation. Note in limit of a tending to infinity we the potential will

have the form of two uncoupled harmonic oscillators and the ground state energy will

approach !~
2

which is consistent with the known solution of the harmonic oscillator.

In this chapter we explained how the path integral formulation of quantum me-

chanics can be used to treat quantum tunneling problems through the Wick rotation.

We also explained why the general techniques for evaluation. In the next section

where we show for the first time that it is possible to treat the double well nu-

merically. We then use this new method to treat make estimates of the value of

competing solutions in a Multiferroic system.



Chapter 3

Numerical Treatment of Double

Well Potential

In this section I present a new technique for making an approxamation to the path

integral. The technique is based on relaxation method commonly used in molecular

dynamics. Unlike initial value di↵erential equations where shooting methods are

usually utalized, in order to approximate two point boundary value problems one

starts with an intial paths that connects the boundary points. Then iteratively

perturb the path twoards the desired solution. Comparing this new technique with

the known analytic solution should motivate the validity of the treatment prior to

application to the more complex system considered in the fifth chapter. While the

key results have been given in the first chapter the unfamiliar reader would benefit

from following the analytic solution given in the appendix.

3.1 Finding the Stationary Path

The potential under consideration is the symmetric quadratic well,

V (x) =
!2

8a2

(x� a)2(x + a)2. (3.1)

When we perform the imaginary time substitution as in section 2.2, the problem

is now in the form of equation(2.9) with the euclidean action defined with V (x)

as above. From equation (2.19) we know that finding the stationary path will be

equivalent to solving the Euler Lagrange equations for the inverted potential. We

wish to solve mẍ�V 0(x) = 0 where the dots represent the derivative with respect to

the transformed time ⌧ . In the zero temperature limit we have boundary conditions

at ⌧ = ±1, the system must return to one of the minima x(⌧) ! ±a. In the

numerical case we consider a total period of transformed time T and attempt to

19
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find solution that crosses the barrier once. Our path will be represented by N

discrete values evenly spaced in transformed time. T must be chosen su�ciently

large, if the instaton width is of the same order as T we will not get an accurate

approximation to the exponential decay rate away from the center of the solution.

We define ⌧
i

= ⌧
0

+ i✏ where ✏ = T

N

and label the value of the function x(⌧) at ⌧
i

as x
i

. In order to find the minimizing path we will use a chain of states method, to

do so we will need to specify an objective function that will be minimised for our

desired values of x
i

. Since mẍ� V 0(x) = 0 we consider

V i

sup

= (mrrx
i

� V 0[x
i

])2 (3.2)

where r and r represent the forward and backwards finit element approximation

to the derivative respectively:

rrx
i

=
x

i+1

� 2x
i

+ x
i�1

✏2

(3.3)

taking the negative of the derivative of the above equation with respect to x
i

gives

a term for each x
i

that gives the direction of maximum decent with respect to our

objective function.

� d

dx
i

V i

sup

= �2(rrx
i

� V 0[x
i

])(� 2

h2

� V 00[x
i

]) (3.4)

We then follow [8] and use equation(3.4) as the second derivative in the velocity

verlet algorith:

1. ~x(t +�t) = ~x(t) + ~v(t)�t +
1

2
~a(t)(�t)2 (3.5)

2. ~v(t +
�t

2
) = ~v(t) +

~a(t)�t

2

3. ~a(t +�t) = � 1

constant
rV

4. ~v(t +�t) = ~v(t +
�t

2
) +

~a(t +�t)�t

2

While the above approach gives reasonably rapid convergence in terms of the

width of the solution, O(103) iterations of the algorithm, the result that we obtain

retains some numerical artifacts in the form of ‘humps’ (see figure (3.1)) where the

solution first moves away from the central barrier before crossing over. To correct

this the solution is used as the initial guess in a Monte-Carlo algorithm which also

takes O(103) iterations to converge to a smooth result. It is important to use the

verlet algorithm first, if the Monte Carlo method were to run from a random guess

it becomes necessary to use a far larger number of iterations.
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Figure 3.1: Left: The numerically determined path before Monte Carlo, showing the
humps characteristic of this numerical treatment. Right:The numerically determined
path after Monte Carlo, the ’hump’ characteristic has been removed

3.1.1 Classical contribution

Once a path is determined we perform a simple integration to evaluate S
e

[x(⌧)].

Below is a table of numerically and analytically obtained values. For each calculation

the user defined values of T and N were kept constant at 8000 and 200 respectively.

We see that is possible to obtain values from a variety of potential parameters with

a single choice of T and N , indicating the robustness of the algorithm.

Minimum Spacing V
max

= (aw)

2

8

Numerical Value Analytic Value

1 2.812510�7 0.000502217 0.0005

2 0.0000125 0.00665781 0.00666667

4 0.00125 0.13852 0.133333

3.2 Discrete Eigenvalue Contribution

Now that the classical path has been determined we can make an approximation to

the integral using equation A.8 from page 45 of the appendix.

h�a|e
�Ĥ⌧

~ |ai ⇡ eSe[x(⌧)]

Z
D[�x(⌧)]e

�S
fl
e [�x(⌧)]

~ (3.6)

with

Sfl

e

= �m

2

Z
��x(⌧

1

)�x00(⌧
1

) +
d2

dx2

V (x(⌧
1

))�x(⌧
1

)2d⌧
1

(3.7)

We now have to sum over fluctuations around the stationary path. We will represent

the fluctuation away from the classical path by �x(⌧). In order to evaluate the path

integral as a product of Gaussian integrals we will need to find an approximation to

the eigenvalues of the di↵erential equation A.28. We approximate this basis for the

fluctuations by

(�rr+ V )yn = �
n

yn (3.8)
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Where the yn are N vectors representing the fluctuations, �rr represent a tri-

diagonal matrix

�rr =
1

✏2

0

BBBBBBBBB@

�2 1

1 �2 1

1 �2 1

...

...

1

CCCCCCCCCA

and

V
ij

= �
ij

V [x
i

]. (3.10)

We proceed by finding the eigenvalues of this matrix. The smallest eigenvalues will

correspond to the discrete eigensolutions. Note that the equation we are solving has

the same form as a Schrödinger equation and that the potential will be well localised

( since it has explicit dependence on the stationary solution, which was well localised)

negative and approaching a constant exponentially. Due to the well localised nature

of the potential we expect only a finite number of bound state like solutions to

this equation and then a continuum of unbound solutions. In order to determine

how many discrete solutions exist and correspondingly how many eigenvalues we

should take from this matrix it is necessary to view the eigenvectors of equation(3.8).

Eigenvectors corresponding to continuum eigenvalues (those we wish to disregard)

will take the form of sinusoidal solutions with a phase shift at the potentia. Since

in our discrete approximation ⌧ will be defined only over a finite interval hence

the solutions will have finite support (in the approximation these solutions will be

analogous to a particle in a box with a small perturbation at the origin. Those

solutions corresponding to the bound state type solutions should be well localised.

In figure (3.2) the first four eigenfunctions of the matrix plotted against ⌧

Using the stationary paths obtained in the previous section we can calculate the

discrete eigenvalues and again compare with the known analytic results.

minima spacing Vmax First Eigenvalue Second Eigenvalue Analytic Second

2 0.0000125 �1.81942⇥ 10�8 0.0000746241 0.000075

1 2.812510�7 �2.95857⇥ 10�7 6.14927⇥ 10�6 6.75⇥ 10�6

4 0.00125 -0.000443809 0.00121277 0.001875

3.3 Continuum Eigenvalue Contribution

Having determined the classical path, its contribution and the discrete eigenvalues

in the expansion all that remains is the determination of the product of continuum
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Figure 3.2: In the above we see the first four eigen solutions. Top right: the single
kink solution corresponding to the zero eigen value mode. Top left: the fist positive
eigen value mode this is the only descrete eigen value. Bottom: The third and fourth
eigen value modes, these ae members of the continuum of eigen value solutions

eigenvalue solutions. From [15] we know that the product can be written in terms

of the ratio of solutions to two di↵erential equations.

1

2

d2f(⌧)

dt2
= �1

2
V 00[x(⌧)]

f(⌧)

m
(3.11)

and
d2f 0(⌧)

dt2
= �!2

f 0(⌧)

m
(3.12)

where !2 was obtained by considering the contribution from the degenerate instaton

solution. I the appendix we show that we are intersted in evaluating the object

R2 =
f 0(�)�

1

�
0

f(�)
(3.13)

Both with the boundary condition

f(0) = 0 (3.14)

df(0)

d⌧
= 1.

Since � will be large in the small temperature limit then we can easily approx-

imate the di↵erential equation related to the degenerate solution with (as in the

appendix):

f 0(�) ⇡ 1

2!
e�! (3.15)
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where ! is found by approximating the minima by a quadratic equation. this leaves

only the first equation, as in the appendix the solution to this problem can be ob-

tained from the instaton. The derivative of the stationary solution (the eigenfunction

corresponding to the zero eigenvalue solution) will satisfy equation3.11) but will fail

to satisfy the boundary conditions. There must, however, exist a second lineally

independent solution such that the two can be combined to satisfy the boundary

conditions.

f(⌧) = c
1

f
1

(⌧) + c
2

f
2

(⌧) (3.16)

Since we are interested in evaluating the functions for large tau we only need to

account for assymatotic behavior. In this limit the zero eigenvalue solution will take

the form of a decaying exponential. We can therefore approximate the exponential

by matching it the decaying edge of the numerically determined zero solution. This

does however have the potential to cause some di�culty; close to the center of the

numerical solution the approximation to an exponential is not valid, however, the

actual solution is expected to approach zero at ±1 while our numerical solution

reaches zero in a finite time. Provided we make the imaginary time interval in

which we approximate the zero eigenvalue solution su�ciently large there should

be a region between the center and the end points where the approximation to an

exponential is su�ciently good. Having now approximated the asymptotic behavior

of one solution we can easily approximate the other. In order that the second

solution be linearly independent we require that the wronksian of the two solutions

be non zero, since we have already argued that the form of the solutions should be

exponential we let the Wronksian be equal to one

f
1

f 0
2

� f
2

f 0
1

= 1 (3.17)

Combiningg this with the boundary conditions we obtain c
1

= �f
2

(0) and c
2

= f
1

(0)

from which we can show that f(�) = 1



. The remaining two discrete eigenvalues

are all that remain to be evaluated. The nonzero eigenvalue will already have been

determined leaving us with the zero eigenvalue to approximate, fortunately when

the temperature is non-zero it is possible to show that [15]

�
0

⇡ f
1

(�)

f
2

(�)
(3.18)

And hence we have all the information we need to make an approximation to the

path integral

3.3.1 Level Splitting formula

Following the argument in the appendix we can combine our calculated values to

obtain values for the level splitting formula. As in the appendix we define K for
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convenience

K =

r
S

e

[x(⌧)]

2⇡

1p
|��1

|

s Q
0

n

�
nQ

n6=0,1

�
n

, (3.19)

And recall that the magnitude of the level splitting was

�E = 2K~e
�Se[x(⌧)]

~ . (3.20)

In tables (3.1) and (3.2) we see that our approximation agrees strongly with the

analytic values for the first two entries. In the third entry we used a tall potential

leading to wide instaton solution, but we did not change the parameter T in the

numerical algorithm. Our third solution is therefore close to the limit of potential

we can treat with a single choice of parameter. We observe that there is a large

range of barrier heights that can be treated with a single choice of T making the

algorithm fairly robust.

Table 3.1: Table comparing the values of the exponent �Se[x(⌧)]

~
V

max

= (aw)

2

8

Numerical exponent (1030) Analytic exponent
2.812510�7 -4.76229 -4.74126
0.0000125 -63.1328 -63.2168
0.00125 -1385.2 -1264.3

Table 3.2: Table comparing the values of the prefactor 2K~
V

max

= (aw)

2

8

Numerical Prefactor(10�21) Analytic Prefactor
2.812510�7 1.96258 1.90404
0.0000125 22.5695 23.1752
0.00125 244.926 518.213



Chapter 4

Metastable States

In this chapter we explain how the preceding calculations di↵er when treating a po-

tential that is not symetric an example is shown in figure 2.2 in section 2.2. In order

to formulate a metastable formalism we will use the results formulated in the second

chapter and discuss how the results di↵er for assymetric potentials. We continue to

use the path integral formalism of the preceding chapters. Recall that transformed

propagator had the form of a partition function, we will calculate the propagator

despite starting in a state that we expect to decay. We have stipulated that the

life time of the state be large compared to the time scale of any other processes

occurring. We will show that for the metastable state there exists a destabilizing

fluctuation that manifests itself as an imaginary part to the free energy. We will

associate this imaginary part with the rate of decay of the metastable state.

Consider figure 2.2, where the system is in a local minimum separated from a

lower minimum by a barrier. Using the Feynman-Kac formula (2.15) on page 10 we

could proceed as with the double well problem to calculate the ground state energy.

By comparison with the double well potential we would arrive at the equation 4.1.

Unlike the symmetric case, when we consider the inverted potential there is no

solution corresponding to a single crossing of the barrier. Instead the simplest

non degenerate solution corresponds to a particle leaving the metastable minimum

moving towards the other minimum, at some “time” before reaching the minimum

the particle will have reached a point of where the potential has the same value

as the metastable minimum, see figure (4.1). The particle will then return to the

metastable state. And so we will not have considered ‘odd’ and ‘even’ solutions as

before. The imaginary time propagator will now have the form

G(x,
L

2
; x,

L

2
) = F

!

exp

"✓
S

e

[x(⌧)]

2⇡~

◆ 1
2

K 0�e
Se[x(⌧)]

~

#
(4.1)
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Figure 4.1: In the inverted potential simplest solution will cross the barrier regrion
and return to the location of the metastable minimum

where x is location of the local minimum, � is the large ⌧ limit of our integration

and K 0 is the ratio of eigenvalues excluding the zero eigenvalue.

K 0 =

s Q
0

n

�
nQ

n6=0

�
n

(4.2)

Figure 4.2: Left: The instaton must have a turning point. Right:The derivative of
the instaton which will satisfy the Euler Lagrange equations in the inverted potential

We argued that for the metastable case there was only the single class of solution

where the instaton solution will start and finish in at the local minimum, then the

solution must have a turning point as in figure (4.2). Now from the appendix and

equations A.8 A.9 we know that when we diagonalize the fluctuation contribution

to the propagator that we will be looking for solutions to the equation

(� d2

d⌧ 2

+ V 00[x(⌧)])y
n

(⌧) = �
n

y
n

(⌧) (4.3)

and that there will exist a solution proportional to the derivative of x(⌧) that will

create a zero even value �
0

. The derivative of a single node solution should have two

nodes. However V 00[x(⌧)] will exponentially decay towards a constant away from t
0

and thus take the form of a well localised potential. There must exist a one node
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solution. This one node solution should have an eigenvalue smaller than the two

node solution, a negative eigenvalue ��1

. The propagator will now carry an integral

contribution of the form Z
d⇣p
2⇡~

e
⇣2��1

2~ (4.4)

If we allow ⇣ to be imaginary a careful analytic continuation can be performed the

details of which are given in [12]. The result is
Z

d⇣p
2⇡~

e
⇣2��1

2~ =
i

2
p
|��1

|
. (4.5)

Mathematically this analytic continuation is somewhat involved and the factor of a

half is unexpected (consider evaluating for �
0

positive and then make a substitution

of a negative value). However, we will see in the next section that it has an important

physical interpretation.

4.1 Semi-Classical Tunnelling Formula

Now that the negative eigenvalue is to be included when we compare equations (4.1)

to (2.15) on pages prop FKF and observe that the ground state energy will have an

imaginary part

Eim

0

=

✓
S

e

[x(⌧)]

2⇡~

◆ 1
2

K 0e
Se[x(⌧)]

~ (4.6)

with

K 0 =

s Q
0

n

�
n

��1

Q
n6=0

�
n

(4.7)

It is important to now understand the origin of this imaginary part of the energy

as well as its interpretation. In the formulation of equation (2.15) it was necessary

to approximate the contribution to the propagator in the low temperature limit by

only the contribution from the lowest energy even value, we assumed the existence

of a complete set of energy eigenfunctions. Our assumption is that the particle is

most likely to be found in the minimum energy state of this basis. Such a state is

clearly non existent; consider the limit of T ! 0 in this case (the absence of thermal

fluctuations. It would be possible to prepare a particle into this state indefinitely.

We know from other treatments of barrier systems that tunneling occurs. This is

integral to our interpretation of Eim

0

. Recall the time evolution of a quantum state

of energy E
0

is given by

 (x, t) = '(x)e
�iE0t

~ (4.8)

= '(x)e
�iEre

0 t

~ e
��t
2~ ,
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where we have let Eim

0

= ��

2

recalling that we have argued that Eim

0

is negative so

� is positive and the norm of this state evolves according to
Z

d3x'(x)⇤'(x) = e
��t

~ (4.9)

And so using equations (4.9) and (4.6) we have arrived at the semi-classical tun-

nelling formula

�

~ =

✓
S

e

[x(⌧)]

2⇡~

◆ 1
2

|K 0| e
�Se[x(⌧)]

~ (4.10)

In the above equation the pre-factor is usually denoted the “bubble decay frequency”

or “attempt frequency” and the exponential is referred to as the “quantum Boltzman

factor”. If we consider the formulation only to zeroth order, ignoring the fluctuation

terms, the life time of the metastable state would be indefinite. It is only with

the inclusion of the fluctuation term that the metastability manifests itself in the

formulation. The instability of the state is contained in the analytically continued

negative eigenvalue term. We consider the factor of a half as describing the fact that

the instability will only have a fifty percent chance to cause the system to move into

equilibrium (it is equally likely that the system will be destabilized back into the

metastable state).



Chapter 5

Application to Multiferroic

System

In this chapter we describe a multiferroic system with coupled domain walls with

the aim of deriving the Euler Lagrange equations for this system with an inverted

potential. The solution to this equation will specify the instaton. We are then

able to consider various behaviors of the system by analysing it with the numerical

approximation described in chapter 3. In the following we treat the domain wall

propagation with a one dimensional approximation, we do not account for e↵ects

due the curvature of the walls. In this treatment it is assumed also that the domain

wall and the defect are a su�ciently separated from other defects or the surface of

the material so that it is possible to integrate the energy densities between positive

and negative infinity.

5.1 Representation of The Domain walls

5.1.1 Magnetic Domain Walls

To describe the magnetic domain wall, we will consider the profile that minimises

the competing exchange energy and an anisotropy energy along the z axis. The

exchange energy is a purely quantum mechanical e↵ect which is a manifestation of

the Coulomb interaction and Pauli exclusion principle [2]. Since the exchange energy

favours uniform magnetization, the minimum energy configuration will favour large

wall widths.

E
ex

=
JS2

a

Z 1

�1
dz

@�(z)

@z

2

, (5.1)

where J is the exchange integral (see [2]), S is the spin, a the crystal lattice spacing

and � is the angle that the magnetization makes with the z axis.

30



5 Application to Multiferroic System 31

The anisotropy energy arises due to the structure of the crystal lattice that exist in

a solid. Due to crystal symmetries in the absence of a magnetic field, ferromagnetic

materials will be magnetized along certain energy favoured directions, known as

“easy” directions or the easy axis of a material. If the z axis is perpendicular to the

easy axis we have an energy density of the form.

E
a

=

Z 1

�1
dzg(�) (5.2)

where g(�) = K cos2(�),

where � is the angle between z and this axis and K is the anisotropy strength.

It is easy to show that the magnetization profile that minimizes the functional

E
total

[�(z)] = E
ex

[�(z)] + E
a

[�(z)] is

�(z) = arctan(e(z)(

K
A

)

1
2 )� ⇡

2
. (5.3)

In obtaining this solution we have assumed that the magnetization is of constant

magnitude and constrained in the y � z plane at an angle � to the z axis. We

have described a wall where the magnetisation is rotated perpendicular to the wall

surface, this is known as a Néel wall. The above solution will act as a prototype

domain wall and describe an arbitrary domain wall profile with the two parameter

function.

'(z
M

, �
M

; z) = arctan(e
(z�zM )

⇡
�M )� ⇡

2
, (5.4)

where the z
M

is the location of the center of the magnetic domain wall and �
M

is

the width.

5.1.2 Polarization Domain Walls

We continue in a completely analogous way to find a prototype profile for the polar-

ization. The polarization must minimize the Landau Ginzberg energy density which

is derived from symmetry arguments, see [14]

E[P (z)] =

Z 1

�1
dz

 
↵P 2 + �P 4 + �

����
dP

dz

����
2

!
(5.5)

where ↵, � and � are phenomenological constants. One can easily show that the

solution minimising the above functional is

P (z) =

r
↵

2�
tanh(

↵

2��
z). (5.6)

As for the magnetic domain wall we define the domain wall in terms of the two

parameter function

P (z
p

, �
p

; z) =

r
↵

2�
tanh(

2

�
p

(z � z
p

)) (5.7)
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5.1.3 Width Dependence of Energy

We can now calculate the e↵ect on the total energy of varying the domain wall

position and width. Substituting our domain wall expressions (5.7) and (5.4) into

the above energies (5.12)(5.13)(5.15). We obtain the following energy dependence

E(�
p

, �
m

) =
2⇡A

�
m

+
2K�

m

⇡
+

4

3

�↵

��
p

+
↵�

p

3�
(5.8)

5.2 Driving Force, Defect and Coupling

We must now define the remaining energy terms in the potential; the energy near

the defect, the energy due to the domain wall coupling and the energy from the

field. We will consider a barrier to the domain wall propagation, represented by a

planar defect in the material. A suitable expression for the energy profile of a planar

defect is given in [9] where a fractional change in the anisotropy (K) energy leads

to a pinning energy of the form

E
defect

= ⇢K

r
A

K
sech2

 
z

m

� z
P

r
K

A

!
(5.9)

where ⇢ is the strength of the defect.

The the coupling between the magnetization and the polarization will be described

by an energy density of the form E
coupling

= c
s

M2P 2, where M denotes the magni-

tude of the magnetisation parallel to the polarisation and c
s

is a constant. Hence

substituting in our functions 5.4 5.7 with M = M
0

sin(�) and letting D = z
m

� z
P

be the distance between wall centers we can write

E
coupling

= c
s

M

r
↵

2�

Z 1

�1
dz

✓
1� tanh2

✓
2

�
p

(z �D)

◆
tanh2

✓
⇡

�
m

(z)

◆◆
. (5.10)

in obtaining the above expression we have made a change of variable to shift the

D = z
M

� Z
E

into one of the tanh. Writing the expression like this emphasizes the

translational invariance of the coupling energy (the fact that it is only the distance

between the walls that is of importance). Equation (5.10) is plotted in figure (??) In

which we see two essential features; first that this term in the potential is symmetric

and it rapidly approaches a constant. Considering the negative of the derivative

of this energy with respect to z
m

or Z
P

we see that the force on the domain walls

is attractive with limited range. Despite the attractive potential between them, if

su�ciently far apart the force becomes negligible and walls are essentially decoupled.

Finally the term driving the movement of the electric domain wall, an external



5 Application to Multiferroic System 33

Figure 5.1: The two important aspect of the coupling energy are that it is symmetric
and that it approaches a constant far from D = 0, where the electric and magnetic
domain walls collide

electric field. It is easy to show that for the non deforming wall we have (add from

notes)

E
driving

= 2

r
↵

2�
Ez

p

(5.11)

Where E is the applied electric field and z
P

is the position of the electric domain

wall.

5.3 Domain Wall Inertia

Having obtained static energy terms to be used in the analysis, we now need to

consider the inertia of the domain wall in order to associate a kinetic energy as-

sociated with domain wall movement. In our treatment we will assume that the

system has evolved under the influence of the electric field an that it has reached

the metastable minimum. We will assume also that the wall profiles remain static

during the tunnelling. The change of the inertia of the domain walls due changes in

the width is small and we do not expect that it should greatly e↵ect our solution.

It is necessary to associate an inertia with the position of the domain walls. The

e↵ective mass per unit area of the magnetic wall is given by [1] [16]

m
M

=
�

v2

0

, (5.12)

Where � is the energy per unit area of wall and v
0

is the so called Walker velocity v
0

=

4⇡�
1

M
0

q
JS

2

aK

. For the case of the e↵ective mass per unit area of the polarisation

domain wall we have[10]

m
E

=
Md2

Na4

(5.13)
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where M is the mass of the ions that have been displaced leading to the polarization

and d is the di↵erence in displacement between two domains. N is the width of wall

in terms of number of lattice constants a

5.3.1 Euler Lagrange Equations

Combining the above energies (5.12)(5.13)(5.15) and our expressions for the inertia

of the domain walls the condition that �S
e

[~z] = 0 for ~z = (z
m

, z
P

) after the Wick

rotation gives us the following Euler Lagrange equations.

m
M

d2z
M

d⌧ 2

+ 2Ksech
⇣ z

M

AK

⌘
2

tanh
⇣ z

M

AK

⌘
(5.14)
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✓
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�
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◆
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We can find an approximate solution to these equations using the numerical tech-

nique described in chapter 2 and hence obtain our instaton. In the next section we

discuss general features of the potential and results from performing a numerical

evaluation completely analogous to numerical evaluation of chapter 2.

5.4 Determining the End Points: Multiple Solu-

tions

In order to make an approximation of the instaton solution it is necessary to calculate

the location of the initial position and turning point of the instaton. Unlike the case

of the simple one dimensional potential, the location of the metastable minimum is

not likely to be determined analytically. However a simple numerical approximation

is easily made. In the coupled domain wall system we have the advantage that in the

absence of the coupling term the minimum configuration could be easily established.

This configuration serves as a good initial choice of parameters for our minimization.

Once this initial point is determined one must calculate the approximate location

of the point where the potential will be equal to the metastable minimum, this is

the location of the turning point of the instaton essentially defining the width of the

barrier. Unfortunately unlike the one dimensional case we now have the problem that

the equation V (~z) = Constant now defines a multi-dimensional surface as we can see

in figure 5.4. We will approximate the contribution to the tunnelling by taking the
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point that is locally the point of closest approach to the minimum to be the location

of the other side of the well. While this point will not be fixed during the subsequent

evaluation of the instaton solution, a poor approximation will dramatically increase

to the computation time required. We use the method of Lagrange multipliers

to define an objective scalar function. we wish to minimise the potential width

W (z
m

, z
P

) =
p

(z
P

� z
P0

)2 + (z
m

� z
m0

)2 subject to the constraint V (z
m

, z
P

) �
V

metastable

= 0. If we consider the G(z
m

, z
P

, M) = W (z
m

, z
P

) � M(V (z
m

, z
P

) �
V

metastable

) then we require r
zm,zP ,M

G(z
m

, z
P

, M) = 0 which will be equivalent to

minimising the scalar function

(r
zm,zP ,M

G(z
m

, z
P

, M)) · (r
zm,zP ,M

G(z
m

, z
P

, M)) = 0, (5.15)

which we minimize using basic monte Carlo.

Figure 5.2: The potential energy space, in which one can see the two possible locally
minimal distances from the metastable minimum to the equipotential surface. The
instatons are shown by dashed lines.

In figure (5.4) we see a plot of the potential energy space along with the equipo-

tential surface equal to the potential at the metastable minimum. The bold vertical

and horizontal lines represent the center of the defect. We see the point marked

corresponding to the location of the metastable minimum in the third quadrant.

In the first quadrant one can observe a point that is locally the point of closest

approach to metastable minimum, corresponding to the solution in which both the
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Figure 5.3: the various possible positions of the domain walls note that the equipo-
tential line in figure (5.4) does not cross into region A indicating that the magnetic
wall cannot tunnel independently of the domain wall

electric and magnetic domain walls are able to tunnel to the other side of the defect.

We observer that the equipotential surface does not appear in the second quadrant.

This should not be surprising at all, we do not expect a solution where the magnetic

wall tunnels through the barrier and the electric wall remains behind. Since we are

driving the only the electric wall this clearly would correspond to a configuration

of the system that is physically forbidden. Finally in the fourth quadrant we see

that there is another point on the equipotential that is locally a point of closest ap-

proach. This corresponds to the solution in which the magnetic wall remains pinned

and the electric wall is able to tunnel through the barrier created by the coupling

term and e↵ectively decouple from the magnetic domain wall. In the following we

will calculate the life times associated with both of these solutions and compare in

order to see which is the dominant behavior.

5.5 Varying the applied field

We consider an arbitrary set of parameters and vary the electric field that is driving

coupled domain walls towards the barrier. Observing the log plot below we see that

varying the electric field does not change the final state of the system. In the plot

(5.4) the coupled is has a far higher tunneling rate than the uncoupled solution.

Physically we can understand this lack of dependence by realizing that the ap-

plied electric field driving the system into equilibrium does not favor either solution.

It appears then that the relative size of the coupling energy and the magnetic barrier

should dominate our solution.
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Figure 5.4: Left: The relative tunnelling rates of the two solutions; we see changing
the electric field does not change the dominant solution. Right:In the above figure we
see the relative coupling rates of the possible solutions, coupled tunneling (circles)
and decoupling (squares) as a function of coupling strength do defect strength ratio.

5.6 Varying the coupling strength

We again choose an arbitrary set of parameters but this time consider the e↵ect of

varying the ratio of coupling strength (c
s

) and the defect strength (⇢). the results are

shown in figure (5.4). In the limit of no coupling the polarisation domain wall will

experience no barrier while the magnetic domain experiences no driving force. In the

absence of the coupling term we will no longer be treating a metastable tunneling

problem. We do however expect that when the coupling is su�ciently weak that

the decoupling solution should become dominant. In the limit of strong coupling we

expect that both walls should tunnel. In the log plot showing the tunneling rates

of the two possible solutions (5.4) we see that the tunnelling rate when the domain

walls remained coupled is not e↵ected greatly by the coupling strength, while the

uncoupled solution is dramatically favored by a weak coupling.

We can gain understanding into this behavior by considering the form of the

instaton solutions. In figure 5.4 we see that in order to tunnel into a lower energy

state the walls must cross one of two saddle points. Consider a typical instaton

solution shown in figure 5.5

in which the straight lines represent equipotential lines of the coupling energy

with the dashed line representing zero energy (zero distance between the walls). We

see that the for the coupled instaton solution the instaton remains close to the zero

coupling energy. The height of the saddle point representing the tunneling barrier

is dependent only on the defect, in this solution the walls act as a single object.

Conversely if we consider the case decoupling, we see in figure 5.5 that the instaton

has to cross the coupling equipotential lines. Changes to the coupling strength

should greatly e↵ect the tunneling rate of this solution. This solution only becomes
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Figure 5.5: Left: Here we the instaton corresponding to the solution of coupled
tunneling. The instaton closely follows the dashed line representing zero distance
between the domain walls. Right:Here we the instaton corresponding to the solution
of decoupling. Notice the instaton has to cross the coupling equipotential lines.

available if the coupling strength is su�ciently small.



Chapter 6

Conclusion

In this thesis we have investigated numerically the macroscopic tunnelling rates of

a multiferroic system with coupling between electric and magnetic domain walls.

We began by explaining the formalism for treating quantum tunneling problems

using a functional integral. In this formalism it is possible to make an approximation

to the ground state energy of a barrier system and we showed that it could be used

to calculate the ground state level splitting for symmetric quartic potential. We

then suggested a new numerical process for analyzing a path integral system and

showed that it was able to reproduce the known analytic results of the symmetric

potential.

It was then explained how the results of the calculation changed for a non sym-

metric potential. The appearance of an imaginary part to the ground state energy

indicated that the local minimum state could not exist indefinitely. This imaginary

part was related to the rate of decay away from the metastable side of the potential.

It was then suggested that the formalism could be used to investigate a system that

could decay from a metastable state into more than one lower energy configuration.

In particular we derived for the first time a pair of coupled second order di↵erential

equations that an instaton for our multiferroic system must satisfy. We then ap-

proximated the solution to these equations using the numerical technique of chapter

2.

While we were able to perform some preliminary investigation on the behavior

of this metastable system time restraints prevented a much fuller analysis. In the

future one could analyse the behaviour of the system under various choices system

parameters in order to understand how the two tunnelling rates are e↵ected. Further

more one could easily modify the potential to include other forms of coupling, other
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forms of defect or a system where perhaps both domain walls were driven by fields

of di↵erent strengths.

However there are di�culties with using this numerical method. The first of

which is the slow rate of convergence of the algorithm. While in the one dimen-

sional case the monte Carlo algorithm used to smooth the was reasonable quick to

converge, this is not the case for our two dimensional problem. Initially converg-

ing quickly the algorithm was able to reduce the value of the objective function by

around three orders of magnitude, however, from this point convergence becomes

very slow. Unfortunately, this caused di�culty in calculating the prefactor. While

the quantum Boltzman factor is determined directly form the instaton the prefactor

requires knowledge of the derivative of the instaton which is more adversely e↵ected

by a lack of smoothness. The prefactor is also determined by considering a large

⌧ extrapolation from the derivative making it particularly sensitive to small per-

turbations of the solution. Secondly the instatons calculated appear to over shoot

the equipotential slightly, this can be seen in figure (5.4), an explanation for this

is lacking but its e↵ect is small. Some success in correcting this e↵ect might come

from decreasing the point spacing near the turning point of the instaton.

Despite this the method is still su�ciently accurate to investigate possible behav-

iors of a given system. It is conceivable that it might be useful as a guide when

considering analytic approximations to similar problems. In particular one might

use the numerical method to investigate the possible mechanisms for metastable

decay and then decide which analytic approximations would be suitable for which

mechanisms. While we were motivated be a metastable multiferroic system it is

likely that there are many areas of physics where a system with competing decay

mechanisms is of interest and the methods described here could also be of use in

these areas.
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Appendix A

Analytic Treatment of Double

Well Potential

In this appendix we present the analytic treatment of the double well potential.

This should explain a general technique of evaluating path integrals in the semi-

classical (WKB) approach and providing a result for comparision with numerical

results. There are many methods for evaluating specific stages of the calculation,

the followig presentation is a mixture bewteen the presentation given by and Kleinart

[12] and Schulman [15] intented to insight into the numerical approxamations.

A.1 General Explination of Evaluation

We are interested in the analytically continued t ! i⌧ propagator

hx
f

|e
�Ĥ⌧

~ |x
i

i (A.1)

in particular the leading terms in large ⌧ regieme. So we wish to evaluate

hx
f

|e
�iĤt

~ |x
i

i =

Z
D[x(t)]e

�iS
~ (A.2)

with

S =
m

2

Z
t

0

dt(
d

dt
x)2 � V (x)

taking t ! i⌧ gives a new expression for the action

S =
m

2

Z ⌧
2

� ⌧
2

(
dt

d⌧
d⌧)(

d⌧

dt

d

d⌧
x)2 � V (x) (A.3)

=� i
m

2

Z ⌧
2

� ⌧
2

d⌧ i2(
d

d⌧
x)2 � V (x)
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and hence we have (with the tranformed action denoted S
e

and refered to as the

euclidean propagator)

hx
f

|e
�Ĥ⌧

~ |x
i

i =

Z
D[x(⌧)]e

�Se
~ (A.4)

with

S
e

=
m

2

Z ⌧
2

� ⌧
2

d⌧(
d

d⌧
x)2 + V (x)

As before we expand our paths in terms of weak variations around paths that are

stationary with respect to the euclidean action. We assume currently that there

is only one such path, this is of course no generally true but we can always sum

the contributions from oth such stationary paths. We express any path x(t) as a

sum x(t) = x(⌧) +�x(⌧) with ¯x(t) the stationary point of the euclidean action (ie
�Se[x(⌧)]

�x(⌧)

= 0).

S
e

[x(⌧)] (A.5)

= S
e

[x(⌧) +�x(⌧)]

= S
e

[x(⌧)] +

Z
�S

e

[x(⌧)]

�x(⌧)
�x(t)d⌧

+
1

2!

Z Z
�2S

e

�x(⌧
1

)�x(⌧
2

)
�x (t

1

)�x (t
2

) d⌧
1

d⌧
2

+ O(
1

3!
�x(⌧)3)

Now the condition that the fist functional derivative be zero for x(⌧) implies that

x(⌧) will obey the familiar Euler-Lagrange equations. The second functional deriva-

tive of the euclidean action is

�2S
e

�x(⌧
1

)�x(⌧
2

)
= �m(

d2

d⌧ 2

�(⌧ � ⌧
2

)|
⌧!⌧1 +

d2

dx2

V (x)�(⌧
1

� ⌧
2

)) (A.6)

So the second variation is

�2S
e

=
1

2!

Z Z
�2S

e

[x(⌧)]

�x(⌧
1

)�x(⌧
2

)
�x (t

1

)�x (t
2

) d⌧
1

d⌧
2

(A.7)

=
m

2!

Z Z
(� d2

d⌧ 2

�(⌧ � ⌧
2

)|
⌧!⌧1 +

d2

dx2

V (x)�(⌧
1

� ⌧
2

))�x (t
1

)�x (t
2

) d⌧
1

d⌧
2

performing one of teh integrals to collaps the delta function

=
m

2

Z
��x(⌧

1

)�x00(⌧
1

) +
d2

dx2

V (x(⌧
1

))�x(⌧
1

)2d⌧
1
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the negative of the above expression is usually denoted Sfl

e

so if the series expansion

is truncated after after the second order term we have

hx
f

|e
�Ĥ⌧

~ |x
i

i =

Z
D[x(⌧)]e

�Se[x(⌧)]
~ (A.8)

=

Z
D[x(⌧) +�x(⌧)]e

�Se[x(⌧)+�x(⌧)]
~

⇡ eSe[x(⌧)]

Z
D[�x(⌧)]e

�S
fl
e [�x(⌧)]

~

we usually write

⇡ e
�Se[x(⌧)]

~ F

In doing so we have factored the problem into the contribution from the classicl path

and the contribution from quadratic fluctuations around that path (F). The (F) is

much easier to deal with, it is now quadratic in the path variations with vanishing

end points. To procede the usual procedure will be to look for eigen values of

(� d2

d⌧ 2

+ V 00[x(⌧
1

)])y
n

(⌧) = �
n

y
n

(⌧) (A.9)

noting that this is of the Sturm-Liouville form

� d

dx


p(x)

dy

dx

�
+ q(x)y = �w(x)y. (A.10)

Indicates that when properly normalised the y
n

will form a total orthonormal basis

for the lebesgue space L2([�T

2

, T

2

], 1dx) and hence we can express our �x(⌧) in terms

of an infinite sum of y
n

�x(⌧) =
1X

n=0

⇣
n

y
n

(⌧) (A.11)

And so we can write

Sfl

e

=
m

2

Z
�x(⌧

1

)(� d2

d⌧ 2

+ V 00[x(⌧
1

)])�x(⌧
1

)d⌧
1

(A.12)

=
m

2

Z 1X

n=0

⇣
n

y
n

(⌧)(� d2

d⌧ 2

+ V 00[x(⌧
1

)])
1X

m=0

⇣
m

y
m

(⌧)d⌧
1

=
m

2

Z 1X

n=0

⇣
n

y
n

(⌧)
1X

m=0

⇣
m

y
m

(⌧)�
m

d⌧
1

using the orthanormality of the y
n

=
m

2

1X

m=0

⇣2

m

�
m

now in order to sum over all variations of the path it is nessesary to integrate over

all values of the ⇣
m

. In making this transformation to the basis of y
n

we have
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transformed the integration of paths into a infinite product of real valued integrals.

Unfortunately the ”Jacobian” of such a transformation is not easily defined but, as

we shall see, it will not be neccessay to determine the unknown constant that has

been introduced.

F =

Z
D[�x(⌧)]e

�S
fl
e [�x(⌧)]

~ (A.13)

= N
1Y

n=0

Z 1

�1

d⇣
n

2⇡~

�
exp{�m

2~

1X

m=0

⇣2

m

�
m

}

= N
1Y

n=0

Z 1

�1

d⇣
n

2⇡~ exp{�m

2~ ⇣2

n

�
n

}

=
NpQ1
n=0

�
n

So the origional path integral has now been reduced to

hx
f

|e
�Ĥ⌧

~ |x
i

i = e
�Se[x(⌧)]

~
NpQ1
n=0

�
n

(A.14)

A.1.1 Evaluating the infinite product

In order to evaluate the inite product given in equation A.13 it will be neccesary

to remove the normalisation N that was introduced when the path integral was

transformed to a product of integrals over ⇣
n

to do this consider a solution x
0

(⌧)

where the path remains constant this will be a stationary path with repect to the

action, and its fluctuation term, call it F
0

will have a fluctation action of the form

m

2

Z
��x(⌧

1

)�x00(⌧
1

) + !�x(⌧
1

)2d⌧
1

(A.15)

with ! a constant. This is simply the fluctuation factor from a harmonic potential,

which is exactly solvable. So we have

F =
NpQ1
n=0

�
n

(A.16)

=
NpQ1
n=0

�0

n

pQ1
n=0

�0

npQ1
n=0

�
n

= F
0

pQ1
n=0

�0

npQ1
n=0

�
n

where

F
0

=

r
!

⇡~e
!�
2~ (A.17)

The is still a possible divergence in the above expression that shall be addressed

in the section below
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A.1.2 Zero Eigenvalue Solution

As the limits of the integration in the euclidean action tend to 1 we expect that

the soliton solution x(⌧) to be translationly invarient. A instaton centered at ⌧
0

and another instaton infinitesimally separated at centered at ⌧ 0
0

will give the same

contibution to our euclidean action. The di↵erence between these solutions manifests

it self as a fluctation around the instaton solution that does not change the euclidean

action. As a consequence there will always exiest an eigen function y
0

such that

y
0

= ↵x0(⌧ � ⌧
0

) and �
0

= 0 the key to removing this divergence is to evaluate the

contribution resulting from the invarience of a single instaton, replacing the integral

over ⇣
0

with an integral over the position the center of the instaton. It is possible

to show that the ↵ above is ↵ =
p

S
e

[x(⌧). Now our divergent contribution arises

from the integral Z 1

�1

d⇣
0p

2⇡~
(A.18)

recalling that

x(t) = x(⌧�
0

) +�x(⌧) = x(⌧�
0

) +
m

2

1X

m=0

⇣2

m

�
m

(A.19)

we have
dx

d⇣
0

= y
0

(A.20)

and
dx

d⌧
0

= x(⌧�
0

) (A.21)

giving

xd⌧
0

= y
0

d⇣
0

(A.22)

)d⇣
0

=
p

S
e

[x(⌧)d⌧
0

So we make the replacement

1p
�

0

=

r
S

e

[x(⌧)

2⇡~

Z L
2

�L
2

d⌧
0

(A.23)

A.2 Specifics of Double Well potential

Thus far our anlysis has been a general motivation and definition , we now consider

the specific example of the double well potential

V (x) =
!2

8a2

(x� 2)2(x + 2)2 (A.24)
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we have seen that (with the primes denoting total derivatives with respect to ⌧)

x00 � d

dx
V (x) = 0 (A.25)

) x00x0 � d

dx
V (x)x0 = 0

) d

d⌧
(
1

2
x02 � V (x(⌧))) = 0

in the limit of ⌧ ! inf there are two solutions, the first is the trivial solution where

the particle starts and remains at ±a, the second non-trivial solution is

x(⌧) = ±a tanh
!

2
(⌧ � ⌧

0

) (A.26)

the ⌧ � ⌧
0

being a reflection of the fact that in the ⌧ ! inf limit the particle spends

infinite time at its initial stationary point of the potential before crossing to the

other stationary point where it remains indefinitely.

A.2.1 Classical Contibution to the Action

We can now easily evaluate the classical contribution to the action. In the case

of the constant solutions we have S
e

[x(⌧) = ±a] = 0 howver for the case of the

non-trivial solution it is easily confirmed that
Z ⌧

2

� ⌧
2

d⌧(
d

d⌧
± a tanh

!

2
(⌧ � ⌧

0

))2 + V (±a tanh
!

2
(⌧ � ⌧

0

)) =
2

3
a3! (A.27)

A.2.2 Fluctuation contribution to Feynman Kernal

We must now evaluate the contribution to the propagator from the quadratic flu-

cutaions around the action as we seek to digonalize the fluctution integral in order

to reduce our probem to an infinte product of eigenvalues, as such we look for

eigenvalues of the equation

(� d2

d⌧ 2

+ !2(1� 3

2 cosh2(! (⌧�⌧0)

2

)
))y

n

(⌧) = �
n

y
n

(⌧) (A.28)

At this point we are left with the problem of evaluating this infite product. There

two problems to be encounted here the first is that we expect one of these eigenvalues

to be zero, and the second is that the we expect only a finite number of descrete

eigen values before a contium of solutions that will contribute to the product.

A.3 Descrete Eigen Value Contribution

While the exact solutions to the potential are available analytically here we will

give only the result. The analytic technique used is known as the Duru-Kleinert
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transformation and is detailed in Kleinert’s book [12]. The transformation gives the

eigenfunction solutions in terms of hyper-geometric functions. In the case of our

potential they can be simplified to

y
0

=

r
3!

8

1

cosh2

⇣
!(⌧�⌧0

2

⌘ (A.29)

and

y
1

=

r
3!

4

sinh
⇣

!(⌧�⌧0

2

⌘

cosh2

⇣
!(⌧�⌧0

2

⌘ (A.30)

A.4 Continum Eigenvalue Contribution

To procede consider the form of our fluctuation contribution to the action and write

it in terms of descrete positions using the standard definition of the integral, we see

that we could write our expression in terms of a matrix

Sfl

e

=
m

2

Z
�x(⌧)(� d2

d⌧ 2

+ !2(1� 3

2 cosh2(! (⌧�⌧0)

2

)
))�x(⌧)d⌧ (A.31)

= lim
N!1

NX

j=0

�⌧�x(⌧
i

)[�rr+ V (x
i

)]�x(⌧
i

)

= lim
N!1

⌘T �⌘

where

⌘ =

2

666666666666664

�x(⌧
0

)

�x(⌧
1

)

.

.

.

�x(⌧
N

)

3

777777777777775

and



A Analytic Treatment of Double Well Potential 50

Now using the definition of the path integral [12] we can write

Z
D[�x(⌧)]e

�S
fl
e [�x(⌧)]

~ = lim
N!1

⇣ m

2⇡~�⌧

⌘N+1
2

Z
dN⌘e

⌘

T
�⌘

(A.33)

Now since all the entries of � are real there will exiest a unitary matrix U wich

can be used to diagonalise �:

� = U †�
D

U (A.34)

this allows A.33 to be written as

lim
N!1

⇣ m

2⇡~�⌧

⌘N+1
2

Z
dN⌘e

⌘

T
�⌘

= lim
N!1

⇣ m

2⇡~�⌧

⌘N+1
2

Z
dN⌘0e

⌘

0T
�

D
⌘

0

(A.35)

with ⌘0 = U⌘. Now if we take a large N approxamation we can perform our integra-

tion as a product of guassian integrals. Giving us

Z
D[�x(⌧)]e

�S
fl
e [�x(⌧)]

~ ⇡

2

4
⇣ m

2⇡~�⌧

⌘
N+1 ⇡N

det �
D

3

5

1
2

(A.36)

=

2

4
⇣ m

2⇡~�⌧

⌘
N+1 ⇡N

det U †�
D

U

3

5

1
2

since det U = 1

=

"⇣ m

2⇡~�⌧

⌘
N+1 ⇡N

det �

# 1
2

=

2

4
⇣ m

2⇡~�⌧

⌘ 1

(2~�⌧

m

)N det �

3

5

1
2

And hence all that remains is to evaluate the determinant of

(
2~�⌧

m
)N det � =

���������������

2 +�⌧ 2V [x
1

] �1

�1 2 +�⌧ 2V [x
2

] �1

�1 2 +�⌧ 2V [x
3

] �1

...

...

���������������

in order to evaluate this determinant we could consider first the determinant of the

M sub matrices S
M

where S
M

is the matrix contained in the upper left hand corner
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of the matrix in A.37 with the ultimate goal of evaluating det S
N

. By considering

the determinants of these matrices we can define the recursive relationship

|S
M

| =

✓
2� �⌧ 2

m
V [x

M

]

◆
|S

M�1

|� |S
M�2

| (A.37)

where |S
1

| = 2� �⌧

2

m

V [x
1

] is the trivial determinant of the 1⇥1 matrix contained in

the upper left corner. For consistancy we must let |S
0

| = 1. If in the above recursive

relation we group all the terms that are only dependent on the descrete time spacing

an equate them with terms that contain an explicit dependence on the mass and

potential we obtain the following,

|S
M+1

|� |S
M

| + |S
M�1

|
�⌧ 2

= �V [x
M+1

]|S
M

|
m

(A.38)

which has the form of a descrete approxamation of a second order di↵erential equa-

tion. As we take the limit of �⌧ 2 ! 1 the submatrices |S
M+1

|and|S
M�1

| will

approach |S
M

| and will have a di↵erential equation of the form

@2f(⌧, ⌧
i

)

@⌧ 2)
=

V (x(⌧))

m
f(⌧, ⌧

i

) (A.39)

with the boundary conditions f(0, ⌧
i

) = 0 and @f(0,⌧i)

@⌧

= 1. Our determinanent will

be obtained by finding the value of the function at f(⌧
i

).

Having determined the classical path and hence the contributions from this path

and the descrete eigenvalues in the expansion all that remains is the determination of

the product of continuum eigen value solutions. From [15] we know that the product

can be written in terms of the ratio of solutions to two di↵erential equations.

1

2

d2f(⌧)

dt2
= �1

2
V 00[x(⌧)]

f(⌧)

m
(A.40)

and
d2f 0(⌧)

dt2
= �!2

f 0(⌧)

m
(A.41)

where !2 was obtained by considering the contribution from the degenerate instaton

solution. We are interested in evaluating the object

R2 =
f 0(�)�

1

�
0

f(�)
(A.42)

Both with the boundary condition

f(0) = 0 (A.43)

df(0)

d⌧
= 1
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Since � will be large in the small tempreture limit the we can easily approxamate

the di↵eretial equation related to the degenerate solution with [15]

f 0(�) ⇡ 1

2!
e�! (A.44)

This leaves only the first equation. The derivative of the stationary solution (the

eigenfunction coresponding to the zero eigen value solution) will satisfy A.40 but will

fail to satisfy the boundary conditions. There must, however, exiest a second linealy

independent solution such that the two can be combined to satisfy the boundary

conditions.

f(⌧) = c
1

f
1

(⌧) + c
2

f
2

(⌧) (A.45)

Reacall that the instaton will be well localised in the large tempreture limit and that

the first derivative of the potential should dissapear near the end points. Hence the

two solutions will be exp(±x) in the large x limit. It is clear that the exponen-

tially decaying solution is will correspond to the zero eigen value mode. We can

therefore approxamate the exponential by matching it it the the decaying tail of the

numerically determined zero solution. Having now approxamated the assamatopic

behavior of one solution we can easily approxamate the other. In order that the

second solution be linearly independent we require that the wronksian of the two

solutions be non zero. We have already argued that the form of the solutions should

be expontial (and hence the wronksian constant) we let the wronksian be equal to

one

f
1

f 0
2

� f
2

f 0
1

= 1 (A.46)

Combing this with the boundary conditions we obtain c
1

= �f
2

(0) and c
2

= f
1

(0)

one can show that f(�) = 1



. The remaining two descrete eigenvalues are all that

remain to be evaluated. The nonzero eigen value have will already have been deter-

mined. The only remaining problem is that one of our eigen values has so far been

treated as zero. However in the small but non zero tempreture limit the imaginary

time translational invarience will not be infinite. We expect then that the zero eigen

value will not quite be zero. To make an approaxamation to the size of this small

eigenvalue we consider euqtion A.8 and let (� d

2

d⌧

2 + V 00[x(⌧
1

)])y(x) ! Hy(x)

Hy(x) + �
0

y(x) = 0 (A.47)

with y(0) = y(�) = 0. We can then write equation A.47 as an integral equation.

We let HG(x, z) = �(x� z) and H = 0 and we have

y(x) =  (x)� �
0

Z
�

0

G(x, z)y(z)dz (A.48)
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We can solve for  and G in terms of functions f
1

and f
2

and take the first born

approxamation to equation A.48. The final result can shown to be �
0

⇡ f1(�)

f2(�)

And

hence we have all the information we need to make an approxamation to the con-

tribution to the imaginary time propagator from a single kink instaton solution

A.5 Rare Gas of Instatons

Combing the various results above we have

h±a|e
�Ĥ⌧

~ |⌥ ai ⇡ e
�Se[x(⌧)]

~ F
0

K 0

r
S

e

[x(⌧)

2⇡~

Z L
2

�L
2

d⌧
0

(A.49)

Where we have defined

K 0 =

pQ1
n=0

�0

nqQ1
n6=0

�
n

(A.50)

Thus far considered only one stationary solution to the action. There does however

exiest numerous solutions. In the limit of zero tempretur ethere will in fact be

an infinite number of solutions. We must consider solutions that cross the barrier

region multiple times and their contribution to the trasformed propagator. We now

have two classes of solutions those that cross the barrier an odd number of times

and finish in the other side of the barrier and those that cross an even number of

times to return to the initail well. Recalling the well localised form of the single

kink solution, we assume that a solution can be approxamated by the peice wise

connection of N single solutions where we alternate between ±x(⌧), see figures ????.

We assume that the distance form the center of one solution to the center of the

next, �⌧ say, is much larger than the characteristic width of the instaton solution.

In this approxamation a solution consists of multiple transitions from one well to

the other happens with each transition from those preceding it. Noting that the

approxamatly stationary sections of the stationary path, ie far away from a kink

contribute little to the action (since they correspond to regions of negligble kinetic

and potential energy in the imaginary phase space) We can write the contribution

to the euclidean action S
e,N

as

S
e,N

= NS
e

[x(⌧)] (A.51)

We expect that contribution from the zero eigenvalue mode will still enter into

our calculation. The Jacobian factor associated with each instaton will remain

unchanged. r
S

e

[x(⌧)

2⇡~

N

(A.52)
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However the integral associated with the degrees of freedom of the placement of the

instaton will be reduced for each additional inston. If we index the placement of the

instatons starting from 1 ! �1 and label the positions of their ceters by ⌧
i

we

see that the first instaton retains the term

Z L
2

�L
2

d⌧
0

(A.53)

When considering the postion of the next instaton we must be careful to avoid

counting its contribution multiple times. An interchange of the positions of two of

the solutions is not a new solution. Each subsequent instaton will be positioned a

imaginary time greater than all preceeding instatons (ie ⌧
i

> ⌧
i�1

). The contribution

for the second instaton should be
Z

⌧0

�L
2

d⌧
1

and in general Z L
2

�L
2

d⌧
0

Z
⌧0

�L
2
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1

Z
⌧1

�L
2

d⌧
2

...

Z
⌧N�1

�L
2

d⌧
N

=
LN

N !
(A.54)

We must now consider the contribution from the the eigenvalue products. Note

that the eigenvalues that we need will no longer be solved on the inteval (�L

2

, L

2

)

but rather the sub-intervals (⌧
i�1

, ⌧
i

) giving the contribution.

NY

i=1

1
pQ1

n=0

�
n

���
(⌧i�1,⌧i)

(A.55)

We have approxamated our solution by a smooth peice wise sum of kinks. The

single kink solution on the interval (⌧
i�1

, ⌧
i

) will not have reached ±a. It is possible

to show for N kinks this introduces the additional factor.

r
!

⇡~

�(N�1)

(A.56)

The details are some what technical and shall not be presented here. The argument

involves introducing additional factors related to the fact that when finding a basis

for our x we will not have the zero boudary condition. We have had to assume

here that the the end points are close to ±a so that the bottom of the potential

can be approxamated by a harmonic potential, hence the prior assumption of non

interacting solutions.

As before we will expand around the stationary path. When evaluating the fluc-

tuation factor we could express the integral Sfl

e

[�x] = S
e

[x + x] as sum of integrals
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over the intevals [⌧
i

, ⌧
i+1

]. Recalling that previously we multipled our product of

eigen values by the known solution from the degenerate instaton in order to remove

an unknown constant. Refering to equations A.17 A.55 A.56, we have for our ratio

of eigen values
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(A.57)

We note that we could decompose the eigenvalue product due to the degenerate

solution exactly as we have the product due to the multiple kink solution giving

r
!

⇡~e
!�
2~

NY
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pQ1
n=0

�0

n

���
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���
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(A.58)

The ratio of eigen value ratios corresponds now to the contribution from a single

eigen value solution K 0. So for the N kink solution we have

h±a|e
�Ĥ⌧

~ |⌥ ai
N kinks

= e
�NSe[x(⌧)]

~ F
0

K 0N

r
S
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(A.59)

Recalling that
P

odd

x

n

n!

= sinh(x) and
P

even

x

n

n!

= cosh(x) if we sum together or the

odd or even solutions we have
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