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“Time, time, time, see what’s become of me.” 

- I? Simon -and A. Garf‘unkel 

0 1. Introduction 

How long does it take for a particle to tunnel through a barrier? This simple- 
sounding question has provoked much controversy over the past six decades, ever 
since the phenomenon of tunneling (i.e., barrier penetration) was first predicted 
to occur in quantum mechanics. Although tunneling has by now been observed in 
many physical settings, and has even been applied in many useful devices - such 
as the Esaki tunnel diode, the Josephson junction, and the scanning tunneling 
microscope - the speed of the tunneling process remains controversial. One 
reason for this is that some theories for the tunneling time predict - and some 
experiments confirm - that the time is so short that (in a sense to be defined 
more precisely below) the tunneling process is superluminal. 

The tunneling time question is not only of scientific, but also of technological 
interest. It is important to know if there is any limitation on the speed of 
electronic and photonic devices arising from the speed of the tunneling process. 
Although the tunneling of electrons seems to be more important at the present 
time for practical devices, the tunneling of photons is central to such devices as 
fiber couplers, laser output couplers, and scanning photon tunneling microscopes, 
to name a few examples in optics I .  

Many conflicting theoretical predictions have been made concerning the 
tunneling time, and as yet no consensus has emerged as to the theoretical answer. 
However, the situation is changing rapidly because many experiments, mainly 
in optics, have now been performed to measure the tunneling time, and the 
purely theoretical debate has been transformed into one in which actual data 
can be brought to bear on the question. In the process, it has become clear that 
one must make a careful operational definition of exactly how the measurement 
of the tunneling time is actually performed. To show that a clear operational 
definition is in fact possible at all, we give here one example (others may also 
be possible): Suppose that two particles were produced simultaneously from a 
radioactive decay. One particle tunnels through a barrier towards a detector, and 

I We use the term “optics” throughout this chapter to refer to all electromagnetic propagation 
phenomena, including not only those in the visible but also in the microwave region of the spectrum. 
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348 TUNNELING TIMES AND SUPERLUMINALITY [VL B 1 

the second particle propagates through the vacuum towards a second detector. 
If the two particles have the same speed, and the two detectors were placed at 
an equal distance from the radioactive source, the time delay between the two 
“clicks” registered in coincidence by these detectors would then constitute a clear 
operational measure of a tunneling time (Steinberg, Kwiat and Chiao [1993]). 

However, different experimental setups may measure different tunneling times, 
and the answer to the tunneling time question may differ from experiment to 
experiment. In particular, one must distinguish carefidly between a tunneling 
arrival time, which measures how long it takes a particle to cross the barrier and 
reach the detector, and a tunneling interaction time, which measures how long 
the tunneling particle interacts with the barrier while crossing it. While classical 
intuitions lead us to take for granted that these two times ought to be identical, 
there is no physical law which guarantees this. In fact, as we shall see, Gedanken- 
experiments designed to measure one or the other of these quantities will in gen- 
eral not agree in quantum mechanics. T h s  is a subtle but important distinction. 

Measurements of tunneling times by photons possess certain advantages over 
those by electrons or other particles, stemming mainly from the fact that the 
wavelength of visible light is much larger than the de Broglie wavelength of 
massive particles. (Only at temperatures on the order of microkelvins does the 
thermal de Broglie wavelength of even a light atom approach microns; see 5 6.) 
This makes the relevant physical dimensions of the tunneling barrier much 
larger, and hence makes the barrier much easier to fabricate for photons than 
for electrons. The photon also possesses an internal degree of freedom, namely 
its spin, which could be used as an internal clock during the tunneling process. 
However, electrons possess certain advantages over photons, the main one being 
that they possess an electric charge, and therefore that they interact with other 
charged particles strongly, thus allowing an easier measurement of the tunneling 
interaction time. 

There are three main types of tunnel barriers for photons which have been used 
in tunneling-time experiments: (i) periodic dielectric structures excited inside 
their band gap or stop-band, (ii) frustrated total internal reflection (FTIR) in 
glass or dielectric prisms, and (iii) waveguides beyond cutoff, which have been 
studied so far using microwaves only. The first type of barrier arises from Bragg 
reflections from the periodic structure, which leads to an evanescent (i.e., expo- 
nential) decay of the wave amplitude when the frequency is within the forbidden 
band gap (or “photonic band gap”, Yablonovitch [1993], John [1991]) at the first 
Brillouin zone edge, analogous to the evanescent propagation of electron waves 
with energies inside the band gap of a Kronig-Penney model. It should be noted 
that within a large bandwidth near the midgap region, the periodic structure is 
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nondispersive (i.e., the group velocity approaches a constant), so that tunneling 
wave packets which are tuned to midgap, although much attenuated in amplitude, 
can remain essentially undistorted upon transmission through the barrier. The 
second type of barrier (FTIR) arises from the coupling of an evanescent wave 
in the spatial gap between a pair of glass prisms when a beam of light is 
incident on the interface between the prisms beyond the critical angle (Zhu, Yu, 
Hawley and Roy [ 19861). The third type arises from the evanescent wave inside 
a waveguide whose dimensions are too small to allow the propagation at the 
incident frequency. There is negligible dispersion of the tunneling wave packet 
in FTIR, but waveguides beyond cutoff are highly dispersive. 

There are other situations besides the three mentioned above, in which 
tunneling-like phenomena occur in optics; for example, wave propagation below 
the plasma cutoff frequency, or into the shadow region of a sharp edge by 
diffraction, or outside the allowed orders of diffraction gratings or Fabry-Perots, 
or inside absorption lines. These are all “classically” forbidden phenomena, i.e., 
all are forbidden at the level of geometrical or ray optics, but all can actually 
occur at the level of physical or wave optics. Some of these phenomena have 
also been shown experimentally to be superluminal. 

There has recently been a second controversy which has arisen as a result of 
those experiments in which superluminal group delays through tunnel barriers 
have been observed. This controversy is centered around a different, but related, 
question: Can one send signals, that is, information, through a tunnel barrier 
faster than the vacuum speed of light? This controversy has been sharpened 
by the claim by Nimtz and his co-workers that they have actually transmitted 
Mozart’s 40th Symphony as a radio signal through a microwave tunnel barrier 
at a speed much faster than c (Heitmann and Nimtz [ 19941). We shall show that 
there has in fact been no violation of Einstein causality in these and closely 
related experiments. Therefore the implication that their experiments somehow 
call causality into question is in our opinion unfounded. 

In light of the second of these controversies, we have decided to include in 
this review a discussion of the problem of superluminal group velocities which 
have been predicted for the propagation of wave packets tuned to transparent 
spectral regions of media with inverted atomic populations. We shall discuss 
two cases: superluminal wave packets tuned close to zero frequency, and those 
tuned close to an atomic resonance with gain in it. In the latter case, optical 
tachyon-like propagation of collective atom-photon excitations is predicted to 
occur. These new kinds of superluminal propagation effects can occur over much 
longer distances than for tunneling. Hence they will force us to understand the 
meaning of causality, the definition of a signal, and the nature of information. 



350 TUNNELING TIMES AND SUPERLUMINALITY [VL 5 2 

5 2. A Brief History of Tunneling Times 

Despite its absence from the overwhelming majority of textbook descriptions of 
tunneling (one early exception being Bohm [ 195 I]), the tunneling-time problem 
has a long and illustrious history. At the heart of the problem is the fact 
that the kinetic energy of a particle inside a tunnel barrier is negative, so 
that a semiclassical estimate of its velocity becomes imaginary. This makes it 
impossible to make the naYve first approximation that the duration of a tunneling 
event is the barrier width divided by the velocity w. 

Within a few years of the first predictions of tunneling, discussions appeared 
of the time spent by a particle in a “forbidden” region, and of the use of 
the stationary phase approximation to calculate properties of tunneling wave 
packets (Condon [1931], MacColl [1932]). By 1955, Wigner published a paper 
discussing the relationship between scattering phase shifts and the delay time, 
making explicit the connection between these quantities and the principle of 
causality (Wigner [ 19551). As is well-known in electromagnetism, the frequency- 
derivative of the transmission phase shift yields the time-of-arrival of a well- 
behaved wave packet peak; we term this quantity the “group delay”, by analogy 
with the group velocity calculated by the same method of stationary phase2: 

where @t is the phase of the tunneling transmission amplitude. (For a free 
particle with a real momentum hk, we have &(x) = kx, and the above relation 
yields t,(x) = x/(dw/dk), where the denominator is the familiar expression 
for the group velocity.) Wigner and his student Eisenbud [1948] applied the 
interpretation of the derivative of the scattering phase shift as a time delay to 
the problem of scattering (which of course includes tunneling as a special case), 
and Wigner observed that “the ‘retardation’ cannot assume arbitrarily large 
negative values, in classical theory it could not be less than -2a”, where a is 
the radius of the scattering potential; in other words, a classical particle cannot 
leave the scattering center before it arrives. Wigner noted that “It will be seen 
that the wave nature of the particles does permit some infringement of [this 

It is important to note, however, that many workers use the terminology “phase time”. We avoid 
this, as the confusion between phase and group velocities has occasionally clouded the causality 
issues which plague the tunneling-time controversy. 

By ‘retardation’, Wigner refers to the group delay relative to the time for free propagation, 
expressed in units of distance. 
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inequality]”. It is primarily with this very infringement that we are concerned 
here. Does wave mechanics truly allow particles to exit a barrier before they 
enter it, and in particular, do such effects violate relativistic causality? One 
could reasonably suspect that the non-relativistic nature of the Schrodinger 
equation is at fault here, but more careful analyses using the Dirac equation 
show that such superluminal transmission (which occurs in cases where all 
relevant energy scales are far less than the electron rest mass in the first place) 
persists (Leavens and Aers [1989]). The conflict is made even more clear 
by turning to optical analogs of tunneling, as the same problems arise with 
Maxwell’s (fully relativistic) equations, and since one begins in the relativistic 
regime, it is relatively easy to achieve conditions under which the group delay 
is predicted to be superluminal. 

Of course, superluminal and even negative group velocities were already 
known to occur in electromagnetism, and had been reconciled with causality 
by Sommerfeld and Brillouin (Brillouin [1960]). Their work showed that no 
real signal could propagate faster than the vacuum velocity of light c in any 
medium obeying the Kramers-Kronig relations, even in regions of anomalous 
dispersion. In these regions, the absorption and the strong frequency-dispersion 
cause the stationary-phase approximation to break down, as an incident pulse is 
distorted beyond recognition and no single transmitted peak may be observed. 
Conventional wisdom has it that such a breakdown occurs in every limit 
where the group velocity exceeds c. Nevertheless, as early as 1970, Garrett 
and McCumber showed theoretically that for short enough interaction lengths, 
absorbing media could indeed transmit undistorted (but attenuated) Gaussian 
pulses at superluminal, infinite, or even negative group velocities (Garrett and 
McCumber [ 19701). The experimental verifications of these predictions will be 
discussed in 9 4.2. As we shall see, these effects are consistent with relativistic 
causality, and no signal is in fact conveyed faster than light. 

Even before this work on anomalous dispersion (which is still not as 
widely known as it deserves to be), the question of superluminal wave-packet 
transmission in tunneling was put on a firmer footing by Hartman [1962]. 
Hartman was not satisfied by MacColl’s 1932 observation that there is “no 
appreciable” delay in tunneling4, and he was concerned about the effects of 
preferential transmission of higher energy components in a wave packet. In a 

As alluded to earlier, it is the imaginary momentum which leads to difficulty. If k is imaginary, 
i.e., if  the wave function decays exponentially according to Y(x) = Y(0)e-KX, the phase Q becomes 
a constant, and the group delay of eq. ( I )  vanishes, apart from effects due to boundary conditions. 
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rigorous treatment of the tunneling of wave packets through a rectangular barrier, 
he indeed found that for very thick barriers, such distortion occurred that no peak 
could be identified which might appear at the group delay time. For thin barriers, 
his results were in agreement with the stationary phase prediction, but there was 
no conflict with causality. Roughly speaking, the prediction is that for thicknesses 
smaller than one decay length of the evanescent wave (d < U K ) ,  a transmitted 
particle of energy much less than the barrier height (E  << Vo; k << ko) will 
appear to have travelled at its initial velocity of hWm. This delay is related to the 
fact that phase is accumulated as the evanescent (0’) and anti-evanescent (e+Kx)  
waves change in relative size, as the two have different (but constant) phases. For 
thicker (i.e., “opaque”) barriers ( ~ d  >> l), there is no phase change across most 
of the barrier, since the wave function is dominated by real exponential decay. 
The group delay thus saturates at the finite value 2 m / h k ~ ,  the time it would take 
the free incident particle to traverse two exponential decay lengths 1 / ~ .  Hartman 
confirmed that for intermediate barrier thicknesses, larger than 1 / ~  but small 
enough that the pulse was not distorted significantly, this saturation effect did 
indeed occur. As the distance traversed continues to grow, but the time required 
to traverse it remains roughly constant, it is clear that one eventually reaches 
a regime where the apparent propagation speed exceeds c. (Recently, Low and 
Mende [ 199 1 ] argued that an actual measurement of such an anomalously short 
(tunneling) traversal time could not be made. However, Deutch and Low [1993] 
modified this conclusion in the case of relativistic particles.) 

We now know that there are a number of cases in both electromagnetism 
and quantum mechanics where the naive application of a causality limit to the 
description of a wave packet’s propagation may fail. The question is no longer 
whether the method of stationary phase is valid, but rather whether it is unique. 
Are there perhaps a multiplicity of timescales which describe tunneling? Does 
the superluminal appearance of a wave packet peak imply an anomalously short 
“dwell time”, or some other “interaction time”, for the particle inside a forbidden 
region? What does it say about the transport of energy, or of information? What 
of the fundamental limit on the speed of a device whose operation depends on 
tunneling ? 

Over the years, and particularly since the 1980s, numerous proposals have 
been made for other “tunneling times” which might best describe the duration 
of the tunneling process, rather than just the time of appearance of a wave 
packet peak. Biittiker and Landauer, in particular, stressed that no physical law 
guarantees that an incoming peak turns into an outgoing peak (Biittiker and 
Landauer [ 19821). They and other workers have argued strenuously that the group 
delay is not a physically significant timescale. This dispute becomes subjective, 
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of course, as recent experiments have shown unequivocally that in measurements 
of arrival time, the group delay is indeed significant. Other experiments which 
involve tunneling in solid state physics seem to be best described by the Biittiker- 
Landauer or Larmor timescales (Gueret, Baratoff and Marclay [ 19871, Gutret, 
Marclay and Meier [ 1988a,b], Esteve, Martinis, Urbina, Turlot and Devoret 
[1989], Landauer [1989]). We are thus left in the uncomfortable situation of 
being unable to identify a unique timescale for tunneling, which forces us 
to analyze each conceivable experimental situation separately. The continued 
work on tunneling times is driven largely by the hope that this potentially 
infinite number of timescales can be reduced to a manageably finite handful of 
definitions, whose relationships and physical significances can be pinned down 
precisely. Although this project is by no means complete, recent work leaves us 
hopeful that this goal is not an unreasonable one, and that we will soon arrive 
at a fuller understanding of tunneling and related phenomena. 

Most optical experiments on tunneling times have studied the group delay; in 
general, it is more straightforward to measure the arrival time of a photon or an 
electromagnetic wave than to measure the duration of its interaction with some 
barrier. In a complementary fashion, studies of tunneling in solid-state physics 
have so far been unable to observe the group delay, but have lent support to 
certain other proposed times. Here we focus primarily on the former, but we 
will also discuss to some extent other candidate times and the outlook for future 
experiments on them. 

While it is impossible in this context to provide a full description of every 
theory that has appeared on the question of tunneling times, there are certain 
leading contenders with which it is useful to be familiar. The “dwell time” zd 

seems the most straightforward answer to the question “How much time does a 
particle spend in the barrier region?” It can be defined alternately for the time- 
dependent or the time-independent case. In the former, its natural statement is 
as the time-integral of the instantaneous probability that the particle is inside the 
barrier (assumed to extend from -d/2 to d/2): 

In the latter case, it is simply the probability density within the barrier, divided 
by the incident flux Jin: 

Td (time-independent) = - 
Jin - d 2  
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In the limit of a monochromatic wave packet, these two formulas yield the same 
result, although for packets of finite extent, the corrections may be important 
(Hauge, Falck and Fjeldly [ 19871). 

The importance of definitions in the quantum regime cannot be overexagger- 
ated. In the classical limit, td (the time spent within the potential step) and rg 
(the time between arrival at the leading edge of the step and departure from 
the trailing edge) are of course identical, and equal to d/u = md/hk. There 
is only one sensible quantity to term the “traversal time” in this case. It is 
because in the quantum limit these different definitions, equivalent in all familiar, 
classical regimes, yield different answers that there is no unambiguous recipe 
for providing an experimental prescription for determining “the tunneling time” 
quantum mechanically. 

This difficulty has been traced most frequently to two characteristics of 
quantum mechanics. One is the fact that time is not an observable: there is no 
Hermitian operator corresponding to the time of arrival, or to the duration of an 
interaction. The other crucial characteristic is that unlike classical mechanics, 
quantum mechanics (or wave mechanics, more broadly) does not contain well- 
defined trajectories with determined durations. A particle’s traversal of a barrier 
may be described as a Feynman path-integral (or Huygens’-Principle sum) over 
every possible trajectory linking its emission and its subsequent detection (Fertig 
[1990, 19931, Sokolovski and Baskin [1987], Sokolovski and Connor [1990, 
19931, Hanggi [ 19931). Since the different trajectories in general have different 
durations, we see that we should not necessarily hope to find a precisely defined 
interaction time for a quantum particle. 

Nonetheless, we are free to consider specific experiments and ask by what 
timescales they are governed. In simple cases, we can perform the full quantum- 
mechanical analysis in order to arrive at a result. If we are fortunate, we may 
discern certain patterns in these results which will allow us to make inferences 
about problems too complicated for exact solution. At the least, by understanding 
some of these timescales, we hope to pin down the limits of validity of various 
approximations, such as the assumption that external degrees of freedom follow 
adiabatically the evolution of the tunneling particle, or in the opposite limit, 
remain unaffected by the motion of the particle. 

The dwell time may appear unsatisfactory as a candidate for several reasons. 
Foremost, it is a characteristic of an entire wave function, comprising both 
transmitted and reflected portions. One might well expect that transmitted and 
reflected particles could spend differing amounts of time in the barrier. (Without 
a doubt, one would expect them to spend different amounts of time on the far 
side of the barrier - a finite amount for the transmitted particles and none for the 



VI, 5 21 A BRIEF HISTORY OF TUNNELING TIMES 355 

reflected ones - whereas the formulations of eqs. (2.2) and (2.3) leave no room 
to introduce this distinction.) Its definition is so natural that many researchers 
have argued that it must at least reflect the weighted average of transmission and 
reflection times, t d  = ltI2tt + lrI2rr (with t and r the transmission and reflection 
amplitudes, respectively), but even this assertion has been disputed hotly (Hauge 
and Stervneng [ 19891, Biittiker [ 19901, Sokolovski and Baskin [ 19871, Sokolovski 
and Connor [1990, 19931, Olkhovsky and Recami [1992], Landauer and Martin 
[ 19941). 

The second seeming problem with the dwell time is one it shares with the 
group delay. It is not guaranteed to be greater than the barrier thickness upon 
the speed of light, d/c. In fact, in the low-energy limit k + 0, the wave is almost 
entirely reflected by the first interface, and I YI2 is negligible in the barrier, 
leading t d  to vanish as 2 m k h ~ k ; .  

Biittiker and Landauer [1982] have been the great champions of looking 
beyond the group delay and the dwell time to definitions related more closely 
to the kinds of experimental questions which might concern us. In their 1982 
paper, which is widely viewed as having rekindled the tunneling-time fire, they 
proposed a Gedankenexperiment which would allow one to infer the duration 
of the tunneling process. Consider a particle tunneling through a rectangular 
barrier. Now modulate the height of the barrier by a small amount, at some 
relatively low frequency SZ. Clearly, the transmission is lowest when the barrier 
is highest, and vice versa. But now imagine that SZ becomes greater and greater, 
until SZ >> l / t t ,  that is, until the barrier goes through more than one oscillation 
during the “duration” tt of the tunneling event. Naturally, the modulation of the 
transmitted wave will be washed out. Biittiker and Landauer therefore solved the 
problem of the oscillating barrier, and looked for this critical frequency SZ,. They 
then postulated that the traversal time was t g ~  = I/&&. When the calculation 
was performed in the opaque limit (Kd >> l), they found the following result: 

This is a striking result. Recalling that the local wavevector inside the barrier is 
i K ,  we see that this is exactly the time we would expect from a semiclassical or 
WKB approach ( m d / m )  - aside from the fact that we find a real number 
here, despite the imaginary value of the wavevector. Due to the similarity of 
the formulas, the Biittiker-Landauer time is also frequently referred to as the 
“semiclassical time”. (Far above the barrier, both tg and t d  in fact approach the 
semiclassical time ts = md/filkl.) Since this time is proportional to d ,  it rarely 
becomes smaller than d/c; in fact, it would only do so for m/hK > c, which is the 
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relativistic limit, where the Schrodinger equation should not be expected to be 
valid. (In reality, for geometries more complicated than the rectangular barrier, 
it has been noted that this time may vanish identically, leading once more to 
causality problems (Biittiker and Landauer [ 19851, Stovneng and Hauge [ 19891, 
Martin and Landauer [1992], Steinberg, Kwiat and Chiao [1993]).) While above 
the barrier, the semiclassical time closely resembles the group delay (missing 
only the oscillations due to multiple reflections at the barrier edges, which 
become insignificant in the WKB limit), it looks nothing at all like zg below the 
barrier, diverging when E = VO (where VO = h2ki/2m is the height of the barrier) 
and falling in the opaque limit (Kd >> 1) to md/hko as opposed to diverging like 
zg --f 2m/hkko. The group delay diverges for k -+ 0, but is independent of d;  the 
Buttiker-Landauer time is well-behaved as k + 0, and is proportional to d. 

Biittiker went on to consider another “clock”, to see if different types of 
perturbations would bring to light the same timescale. Expanding on work due 
to Baz’ [ 19671 and Rybachenko [1967], he considered an electron tunneling 
through a barrier to which a small magnetic field B = Boi is confined. Suppose 
the electron’s spin is initially pointing along P. The magnetic field causes it to 
precess in the x-y plane at the Larmor frequency = 2p~Bo/h, where ,UB is 
the Bohr magneton. If one measures the polarization of the transmitted electron, 
one will find it to have precessed through some angle O,, and nothing could be 
more natural than to ascribe this to precession at @ for the duration z, of the 
tunneling event, leading to the “Larmor time” zy = O,/a+,. This time turned 
out to be equal to the dwell time Td, including the latter’s superluminal behavior 
at low energies. (For cases other than the simple rectangular barrier, these two 
times do not remain equal. Hence some workers (Hauge and Stovneng [1989]) 
have argued that they are conceptually quite distinct quantities.) 

Biittiker’s insight was that this early expression for the Larmor time made 
the implicit assumption that by taking the Bo --f 0 limit, one could neglect 
the tendency of the electron to align itself with respect to the magnetic field. 
In reality, due to the interaction Hamiltonian ‘Hint = +2pBB&, a spin-up 
electron sees an effective potential with a higher barrier than that seen by a 
spin-down electron, and therefore has a lower transmission probability. As the 
2-polarized electrons are equal superpositions of S, = & 1/2, this preferential 
transmission will tend to rotate the polarization out of the x-y plane towards the 
negative z-axis, so that the transmitted electron beam is slightly spin-polarized 
antiparallel to the applied B field. Biittiker showed that both this out-of-plane 
rotation and the in-plane precession were first-order in Bo, and furthermore, that 
the former dominated the latter in the opaque limit. Defining a second Larmor 
time related to the polar rotation according to tz = &/@, he found this timescale 
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to reproduce the m d h K  behavior he and Landauer had already calculated by 
considering the modulated barrier. Suggesting that the true interaction time 
should take into account the full three-dimensional rotation of the electron’s spin, 
he proposed that the interaction time was tx G t + tz. We refer to this time 
as “Buttiker’s Larmor time” TB. It agrees with the oscillating-barrier result t B L  

in both the low- and high-energy limits. 
A fair number of other approaches had been tried by 1990, mostly yielding 

combinations of the timescales already described: the group delay, the dwell 
time, the in-plane Larmor time, the Buttiker-Landauer (or semiclassical) time, 
or Buttiker’s Larmor time. For example, a Feynman-path approach in which 
the duration of all relevant paths was averaged with the weighting factor 
exp{iS[x(t)]/h} yielded the “complex time” Z, = ty - i t ,  (Sokolovski and Baskin 
[ 19871, Sokolovski and Connor [ 1990, 19931, Fertig [ 1990, 19931, Hanggi 
[ 19931, Sokolovski [ 19951). It is easy to observe that the magnitude of this time 
is Buttiker’s Larmor time, while its real and imaginary parts are (for rectangular 
barriers) the dwell time and minus the semiclassical time, respectively. (An 
earlier approach (Pollak and Miller [1984], Falck and Hauge [1988]) yielded a 
similar complex time, whose real part was the group delay, rather than the dwell 
time.) Despite this telling relationship, many found the concept of a complex 
time to be unphysical and rejected it out of hand. The similarity of such different 
approaches can be traced to a particularly convenient functional form (Buttiker 
[ 19831, Landauer and Martin [ 19941) in which they can be written: 

r 

a 
zg = h-arg(t), 

dE 
d 

a VO 
T, = -A-arg(t) = td i tg = cv in WKB limit, 

d 
avo 

t, = -h---Injtj --f t B L  in opaque limit, 

d 

avo z, = ih-lnt, 

The group delay is the derivative of the transmission phase with respect to the 
particle’s energy, while the in-plane Larmor time is the derivative with respect 
to the barrier height. Since the out-of-plane Larmor precession arises from 
preferential transmission of anti-aligned rather than aligned spin components, 
it can be expressed similarly as a frequency-derivative of the transmission 
probability. 
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This reflects the theoretical situation when optical experiments on tunneling 
began returning results around 1990. More recent work has begun to shed 
some light on why the different times are related in the way they are, and 
how one might physically interpret the real and imaginary parts of a complex 
time. This approach, and possible experiments, will be discussed in 9; 5 and 
9; 6. At least one other principal theoretical approach deserves mention, and 
this one is sufficiently distinct that we have saved it for the end. It is clear 
that in classical mechanics, a particle follows a well-defined trajectory, and that 
such a trajectory can be defined as a certain approximation to the motion of a 
quantum-mechanical wave packet in the classical limit. The breakdown of such 
a notion leads to the difficulties regarding the quantum-mechanical tunneling 
time, in particular to the fact that a time defined in terms of wave packet 
arrival no longer need coincide with a time defined in terms of a clock which 
evolves while the particle is within the barrier. The most familiar treatment of 
trajectories in quantum mechanics is the Feynman path integral discussed above, 
according to which a particle follows every possible trajectory with a given 
weighting ’. There is nevertheless a very different proposal for incorporating 
trajectories into quantum mechanics. This is the pilot wave model of Bohm and 
de Broglie (Bohm [1952], Holland [ 19931). This deterministic interpretation of 
quantum mechanics invokes a dual reality, consisting both of the wave function 
Y (determined in the usual manner) and of a particle with a perfectly well- 
determined position. An ensemble of particles with initial positions described 
by the probability distribution P(x ,  0) = 1 Y(x, 0)12 evolves deterministically 
according to the hydrodynamic equation of motion 

h 
m 

x(t) = -i--VY(x, t )  , (2.10) 

which is sufficient to ensure that at all later times, the Born interpretation of 
I Y l 2  will remain valid. Although the ensemble as a whole is described by a wave 
function, and does not possess a unique traversal time, each individual particle 
follows a classical trajectory whose duration may be calculated. This approach 
has been followed by various workers (Dewdney and Hiley [1982], Leavens 
[1990], Leavens and Aers [1993]), and has been shown to have interesting 

Note that this weighting affords a rigorous prescription for calculating transition amplitudes, but 
no established recipe existed for defining a “duration”, in the absence of a clear operational definition 
of the latter. It is a pleasant surprise then that the natural extension proposed by Sokolovski and 
Baskin [1987], Sokolovski and Connor [1990, 19931 and Hanggi [I9931 agrees at any rate with 
other more or less justifiable definitions. 
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relationships to the times already discussed. In general, however, the physical 
significance of these trajectories remains an issue of some contention (see, 
for example, Englert, Scully, Sussmann and Walther [ 19921, Durr, Fusseder, 
Goldstein and Zanghi [ 19931, Dewdney, Hardy and Squires [ 19931, Steinberg, 
Kwiat and Chiao [ 19941). The one feature of the Bohm approach which makes it 
somewhat haunting is that different Bohmian particles from the same ensemble 
may not cross each other’s trajectories, thanks to the single-valued velocity 
function given above. This implies that all transmitted particles originate earlier 
in the wave packet than all reflected particles. Given the superluminal behavior 
of tunneling peaks, it is striking that the particles which form the transmitted 
peak do not, under this interpretation, originate in the incident peak, but rather 
earlier in time. Later on, we shall see a similar feature in the classical-wave 
(pulse-reshaping) description of tunneling. 

Q 3. Tunneling and Its Optical Analogs 

We establish here on a more formal basis the analogy between electron 
and photon tunneling (Chiao, Kwiat and Steinberg [ 19911). From Maxwell’s 
equations for classical electromagnetic fields, one can derive the wave equation 
in an inhomogeneous but isotropic medium, which for a monochromatic wave 
in the scalar approximation reduces to the Helmholtz equation, 

(3.1) 
where & is the scalar amplitude of the electric field, n(x,y,z) is the index of 
refraction of the medium at w, the angular frequency of the wave, and c is the 
speed of light in the vacuum. The coefficient of & in the second term (the curly 
brackets) represents the square of the local wavevector. This equation is formally 
identical to the time-independent Schrodinger equation for the electron, 

(3.2) 

V2& + {n(x,y,z)2u2/C*}& = 0 , 

v2 Y + ( 2 m / f i 2 ) { ~  - ~ ( x , y ,  z)} Y = o , 
where Y is the wavefunction of the electron, m is its mass, V(x,y,z) is the 
potential energy, and E is the total energy. This identification is exact if we make 
the following identification6: 

n(x,y, z) H {2m[E - V ( x , y ,  z)]}”2c/ho . (3.3) 

Note, however, that the correspondence depends explicitly on w, and thus is only exact over 
restricted bandwidths. A dielectric interface may have a reflectivity which tends to a constant less 
than one as the photon energy vanishes, while a step potential will always have reflectivity tending 
to unity as the electron energy vanishes. It can therefore be subtle to connect Kramers-Kronig-style 
arguments for photons to those for electrons. 
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Fig. I .  Periodic stack of quarter-wave dielectric layers composed of alternating high- and low-index 
media, i.e., the ID photonic band-gap material. 

Tunneling barriers can arise in regions of space where E < V(x,y,z), which 
correspond to evanescent wave regions, where the effective index of refraction 
n(x,y,z) is imaginary. Several situations in optics give rise to such evanescent 
waves, and hence to photon tunneling. All involve propagation of waves beyond 
some sort of cutoff, such as the cutoff at a photonic band gap edge, the cutoff 
at the critical angle for total internal reflection, or the cutoff of a constricted 
waveguide. 

As our first example of an optical tunneling barrier, we consider the evanescent 
wave propagation of electromagnetic waves inside a ID photonic band gap, since 
there is an obvious analogy to the evanescent propagation of electrons inside the 
band gap of the Kronig-Penney model for periodic electronic structures. Let the 
photonic band-gap material be composed of two media with nl > n2, described 
by 

Al 
4 n  I 

n(x,y,z) = nl for all ma 5 x < ma + -, 

where m = 0, 1,2, .  . ., where A. is the vacuum wavelength, and where the lattice 
constant a of the unit cell is given by 

a = [n;' + ~ , ' I A ~ M .  (3.5) 

This periodic dielectric stack is illustrated by fig. 1, and is equivalent to a 
dielectric mirror consisting of a periodic stack of alternating high- and low-index 
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Fig. 2. Dispersion relation for the 1 D photonic band-gap material, where the midgap frequency is 
q = 2nc/4.  

quarter-wave layers. By eq. (3.3), we see that this is equivalent to the problem of 
an electron in a periodic potential, which can be approximated by the Kronig- 
Penney model (Ashcroft and Mermin [1976]). There results a band gap at the 
first Brillouin zone edge (see fig. 2) which arises from Bragg reflections off the 
periodic planes between the index strata. Hence the propagation of light inside 
the band gap becomes evanescent. 

As a second example, we consider the case of frustrated total internal reflection 
(FTIR). Consider two right-angle glass prisms, which are placed with their 
hypotenuses in close proximity, so that coupling through the exponential tail of 
the light wave (for incidence angles beyond the critical angle) allows the leakage 
of light from one glass prism into the other through an air gap (see fig. 3). This 
case is easier to connect with textbook descriptions of tunneling, and has also 
been used in a number of recent experiments on tunneling times. 

In the case of TE- or s-polarized light incident in the x-y plane on a glass-air 
interface at an angle H (see fig. 3), we can take out the dependence of the electric 
field &B on time and on y (the direction parallel to the interface) as follows: 

in all three regions, where k = nw/c is the wavevector in the glass. For 
s-polarization, where the electric field vector is perpendicular to the plane of 
incidence, & and thus Y are continuous across the boundaries. If we assume 
a magnetic permeability of p = 1 in all three regions, then the magnetic field 
B is continuous as well, and this leads to the continuity of Y ' ( x )  = dY/dx. 
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(n sin e = sin e’) - d 

Fig. 3. Glass-air-glass interface with light rays drawn for the case of (a) tunneling through the 
air gap in frustrated total internal reflection (FTIR) when 0 > H,, and (b) “classically allowed” 

transmission when 0 < 0,. 

These boundary conditions are the same as those for the one-dimensional 
Schrodinger wave function Y(x) at a step discontinuity in the potential V ( x ) .  
The electromagnetic wave equation reduces to 

Y” + ( c ~ / c ) ~ ( n ~  cos2 H }  Y = o in glass regions 
Y” + ( W / C ) ~  { 1 - n2 sin2 H }  Y = 0 in the air gap , (3.7) 

where the coefficients of Y in the second terms represent the squares of the 
x-components of the wavevectors in the glass and in the air gap, respectively. 
Equation (3.7) has exactly the form of the one-dimensional Schrodinger equation 
for an electron in a rectangular barrier of height Vo and a width equal to the width 
of the air gap (see fig. 3), when we draw the equivalences 

2mE/h2 @ (u/c)2 { n2 cos2 0) 

2m(E - V,)/h2 w ( w / c ) ~ (  1 - n2 sin2 0) (3.8) 

It is clear from this correspondence that the critical behavior at E = Vo is 
analogous to that at the critical angle H = 0, = sin-’(l/n), and that for given 
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Fig. 4. Microwave tunnel barrier consisting of an air gap section between between two dielectric- 
filled sections of a rectangular wave guide. 

electron mass and photon frequency, a precise one-to-one mapping can be made 
between the parameters E and VO of the electron experiment and the parameters 
0 and n of the photon experiment. In addition, in the classically allowed regime 
E > VO, the velocity of the electron inside the barrier is proportional to 
( E  - Vo)1’2 in the classical (i.e., WKB) limit. When eq. (3.8) is used to transform 
this into the analogous photon variables, this electron velocity is seen to be 
proportional to cos #‘, where #’ is the angle of the refracted beam of light inside 
the air gap in the “classical” (ie.,  geometrical optics) limit for the photon (see 
fig. 3b). Thus the electron traversal time mimics exactly this “ray optics” behavior 
of the corresponding photon traversal time (Steinberg and Chiao [I  994a1). This 
is true in spite of the fact that their dispersion relations E ( p )  are quite different. 

As a third example, we consider a wave guide beyond cutoff. In order to avoid 
the complications of the fringing fields associated with a sudden decrease and 
increase in wave guide width, which is usually utilized in microwave experiments 
on the tunneling time, we analyze here instead the simpler case introduced 
by Martin and Landauer [1992], who considered a dielectric-filled wave guide 
interrupted by a rectangular air gap which serves as the barrier (see fig. 4). For 
simplicity, consider the TElo mode of this wave guide. The dispersion relations 
come from the relationships 

k,’ + k,’ = n2w2/c2 for the dielectric-filled sections, 

k,’ + k,“ = w2/c2 for the air gap, (3.9) 

where n is the index of refraction associated with the dielectric, and where the 
conducting boundary conditions impose the condition k, = n/u (a  being the 
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Fig. 5. Dispersion relation for the TElo mode of the rectangular wave guide. 

width of the wave guide) for the TEio mode. Therefore the dispersion relation 
of the wave guide in the air gap is of the form (see fig. 5 )  

(3.10) 

where o, = n d a .  If the frequency of the wave is chosen to be below this cutoff, 
but above the cutoff frequency of the dielectric-filled section, then ki will be 
imaginary, while k, is real, and this wave guide configuration becomes a good 
analog for the tunneling of an electron through a one-dimensional rectangular 
barrier. The group delay for this wave guide geometry has been calculated by 
Martin and Landauer [ 19921. 

5 4. Optical Experiments on Tunneling Times 

4. I .  CARNIGLIA AND MANDEL'S FTIR EXPERIMENT 

An early optical experiment measuring the phase shifts which occur in frustrated 
total internal reflection (FTIR) was performed for both the TM and TE 
polarizations of the incident light (Carniglia and Mandel [1971a,b]). In a 
theoretical analysis of their experiment, Carniglia and Mandel calculated the 
time of arrival of the phase front of the evanescent wave at a point straight 
across the gap at a minimum distance from the point of incidence. Although 
their work did not directly address the problem of tunneling times, their results 
did bear indirectly on the question of whether or not the group delay saturates 
with increasing barrier thickness. 
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Using a modified Rayleigh interferometer, they measured the phase shift 
accumulated by an evanescent electromagnetic wave after it crosses the air gap 
between the two glass prisms. Because the evanescent wave propagates parallel 
to the glass-to-air interface, this wave can penetrate into a direction normal to the 
interface without much change of phase, since the dominant exponential decay 
of the evanescent wave amplitude is a real function. This was confirmed in their 
first experiment, in which they showed that for TM polarization the phase shift 
saturated at the theoretically predicted (asymptotic) value of 

cos2 B - n2(n2 sin2 B - I )  
2n cos H(n2 sin2 o - 1)1’2 

= tan-’ (4.1) 

which is independent of the width of the gap (i.e., the barrier thickness), in the 
opaque or thick-barrier limit. 

Since the derivative of the phase with respect to the frequency is the group 
delay, their observation implied that the group delay should also saturate, and 
thus become independent of the barrier width. Thus their experimental result was 
consistent with the theoretical conclusion reached earlier by Hartman [ 19621. 
Since there should be a crossover point beyond which the saturated group 
delay becomes less than the light-transit time across the barrier, these early 
experimental and theoretical papers already implied that the tunneling group 
delay should become superluminal for sufficiently thick barriers. In fact, since 
eq. (4.1) is independent of frequency, the saturated group delay is approximately 
zero. This implied that superluminal group delays should be easily achievable. 

There is an additional contribution to the group delay arising from a lateral 
shift of the beam due to the Goos-Hanchen shift (Steinberg and Chiao [1994a]). 
This shift has been observed recently in the transmitted beam in FTIR by 
Balcou and Dutriaux (see 9 4.1 l), and used by them to measure one of their 
two tunneling times. However, in Carniglia and Mandel’s original experiment, 
the beam width was 6cm, which was so large that they could not observe this 
shift. 

4.2. ABSORPTIVE MEDIA WITH ANOMALOUS DISPERSION 

In another optical context, superluminal group delays were also predicted 
theoretically and observed experimentally, namely in the region of anomalous 
dispersion near the center of an absorption line. Although this is not related 
directly to the question of tunneling times, many aspects of this earlier 
controversy concerning superluminal group velocities reappear in the tunneling- 
time controversies. In 1970, Garrett and McCumber returned to an old problem 
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first considered by Sommerfeld [ 19071. They showed theoretically that for short 
lengths, absorbing media could transmit undistorted (but attenuated) Gaussian 
pulses at superluminal, infinite, or even negative group velocities (Garrett and 
McCumber [1970]). This arose from the fact that the group velocity, which is 
given by the expression 

can have a vanishing denominator in regions of anomalous dispersion, where 
d Re n/dw is large and negative, i.e., near the center of a strong absorption line. 

The stationary phase approximation does not automatically break down for 
smooth Gaussian pulses, in contrast to the case of signals with a discontinuous 
front considered by Sommerfeld and Brillouin (Brillouin [ 19601). Garrett and 
McCumber showed that an incident Gaussian wave packet can be reshaped by 
the absorption process (in which the later parts of the wave packet would be 
absorbed to a greater extent than the earlier parts) in just such a way as to 
produce a smaller, but undistorted Gaussian wave packet at the exit face of the 
medium. (In tunneling, a similar pulse-reshaping occurs, except that the process 
of absorption is replaced by the process of attenuation due to reflection from the 
barrier.) The peak of the pulse thus appears to have moved at a superluminal 
group velocity inside the medium (or a barrier). Tanaka [1989] later extended 
their work using the saddle point method. He showed that the propagation of 
a wave packet into an anomalous dispersion medium is characterized by three 
successive spatial regions with negative, superluminal, and subluminal group 
velocities, respectively. 

Chu and Wong [ 19821 verified experimentally that the superluminal behavior 
of the group velocity as predicted by these theories actually occurred for weak 
picosecond laser pulses propagating near the center of the bound A-exciton line 
of a GaP:N sample. Segard and Macke [ 19851 also confirmed these predictions 
in the propagation of millimeter wave pulses through a gas cell of OCS near 
the 97GHz J = 7 + 8 transition. Furthermore, both groups observed negative 
group velocities. The meaning of a negative group velocity is that the peak of the 
transmitted wave packet leaves the exit face of the gas cell before the peak of the 
incident wave packet enters the entrance face of this cell, in seeming defiance 
of our usual notions of causality. However, this effect can again be understood 
in terms of a pulse reshaping of the Gaussian wave packets due to absorption, 
and is perfectly causal (see Q 8). These experiments demonstrated that the group 
velocity, even when it exceeds c, approaches infinity, or becomes negative, 
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possesses a definite physical meaning, since there exist definite operational 
procedures, which have in fact been carried out in practice, to measure these 
counterintuitive group velocities. These facts fly in the face of conventional 
wisdom7, which tells us that when the group velocity becomes superluminal, 
it has no longer any appreciable physical significance, or that somehow it is just 
not a useful concept. 

4.3. THE MILWAUKEE GROUP 

Starting in 1989, a group at Marquette University in Milwaukee began to 
generate a fair amount of controversy by publishing papers with titles as 
provocative as “Transmit radio messages faster than light”. Needless to say, 
these articles were greeted with a great deal of skepticism, not mitigated by the 
fact that they seemed to harbor a confusion between phase and group velocities 
(Giakos and Ishii [1991a-c], Ishii and Giakos [1991], Stephan [1993]). Most 
physicists remained blissfully unaware of the argument, which nevertheless 
raged for a time in Microwave and Guided Wave Letters. The claims were 
twofold. The authors pointed out that for an electromagnetic wave propagating 
in free space, the phase velocity measured at an angle 0 to the propagation 
direction is C / C O S ~  > c. They then claimed to have measured the arrival 
time for a microwave pulse in this geometry, and found it to be described by 
this superluminal phase velocity. They also did an experiment in a waveguide, 
presenting similar conclusions. Although they made no attempt to connect these 
findings to the phenomenon of tunneling, and their claims were not widely 
accepted, it is interesting to note that under certain conditions, such setups can 
indeed be shown to be analogous to tunneling, and to be described by time delays 
which in the appropriate limits become superluminal. 

4.4. THE FLORENCE GROUP, PART I 

Similar experiments were being carried out in a different spirit at the Istituto di 
Ricerca sulle Onde Elettromagnetiche del Consiglio Nazionale delle Ricerche in 
Florence at about the same time (Ranfagni, Mugnai, Fabeni and Pazzi [ 19911). 
Ranfagni and co-workers were looking specifically at microwave transmission 
in waveguides beyond cutoff, whose mathematical equivalence to quantum- 
mechanical tunneling has already been noted. Aware of the controversy over 

’ See for example p. 23 of Born and Wolf [1975], or p. 302 of Jackson [I9751 
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tunneling, they hoped to resolve the issue by measuring the transmission delay 
time and comparing it to the group delay, the semiclassical or Biittiker-Landauer 
time, and Buttiker’s Larmor time. Their initial results were for an abrupt step 
being transmitted through a 10-cm-long waveguide with a cutoff of 9.494GHz, 
as much as 43MHz above the incident frequency. Complicated by the abrupt 
(roughly 5 ns) turn-on of their step and by the dissipation in the waveguide, their 
results were inconclusive, but showed rough agreement with the semiclassical 
time. Theoretical work taking dissipation into account (Ranfagni, Mugnai, Fabeni 
and Pazzi [ 19901, Mugnai, Ranfagni, Ruggeri and Agresti [ 19921) yielded 
reasonable agreement with the experimental data. 

Refinements of this experiment (Ranfagni, Mugnai, Fabeni, Pazzi, Naletto 
and Sozzi [ 19911) improved the signal-to-noise ratio, allowing good data 
to be obtained as far as l00MHz below the cutoff of a 15-cm narrowed 
waveguide segment. These data clearly contradicted the divergent behavior of 
the semiclassical time at cutoff, and seemed to agree better with the group 
delay than with the other candidate times. The barrier was not thick enough, 
however, for the contradiction between the group delay theory and the naive 
application of the causality principle to be checked directly. The Florence group 
also indirectly studied z,, the out-of-plane portion of the Larmor time (equivalent 
to the imaginary part of the complex times discussed earlier), and were able to 
confirm that it behaved as predicted as well. Their conclusions were therefore 
appropriately cautious: “. . . there is agreement between the experiments and 
the appropriate theoretical models. This fact . . . leaves the identification of the 
tunneling time ambiguous”. Furthermore, in this series of experiments, it was 
impossible to directly test the question of superluminality. 

4.5. THE COLOGNE GROUP, PART I 

While Ranfagni’s group was working to extend their step-function transmission- 
time measurements further below cutoff to adjudicate between the semiclassical 
and group-delay theories, a group in Cologne was also using microwaves to study 
tunneling, aiming in particular to test the prediction of superluminal traversal. 
In their initial experiments (Enders and Nimtz [1992]), they used a network 
analyzer to measure the transmission phase shift through a narrowed waveguide 
at different frequencies. They inferred a group delay by fitting their phase data to 
a smooth curve, and subsequently performing a Fourier transform to predict the 
delay for a hypothetical pulse. For the longest barrier they used, lOcm, they 
calculated a group delay of 130 ps, which would correspond to transmission 
at about 2.5 times the speed of light. They also observed, in agreement 
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with the saturation effect predicted by Hartman, that barriers of different 
lengths yielded essentially the same phase shifts. In their early work, technical 
considerations made direct time-measurements less reliable than the phase 
measurements. In 1993, however, they reported time-domain measurements 
confirming the frequency-domain results, under the slightly misleading title 
“Zero-time tunneling of evanescent mode packets” (Enders and Nimtz [ 19931). 
In this experiment, they used a Hewlett-Packard synthesizer to produce sharp- 
onset pulses (rise times of a few nanoseconds) with carrier frequencies near 
8.65GHz, allowed the waves to tunnel through a 6-cm barrier formed by 
a waveguide section with a 9.49GHz cutoff frequency (with an attenuation 
of 40dB), and then used a Hewlett-Packard transition analyzer to detect the 
transmitted envelope and compare it with that of a wave which traversed a 40 dB 
attenuator (whose effect on the group delay was verified independently to be 
negligible), but no barrier region. Due to the large bandwidth of their pulses, 
they saw a fair amount of distortion, and complicated features, but over much 
of the step, they found a propagation delay which appeared to be small relative 
to the 0.2-11s free-space propagation delay. They took this as final confirmation 
that the microwaves traversed the narrowed waveguide superluminally (indeed, 
with zero delay, since in a sense all the residual group delay may be attributed 
to edge effects, i.e., impedance mismatch between the waveguide segments). 

4.6. THE BERKELEY GROUP 

While most work on optical tunneling was going on with classical electromag- 
netic waves, typically in the 10GHz range, at Berkeley we had proposed to 
perform a test of optical tunneling that would stress the single-particle aspects 
of the effect. Quantum electrodynamics predicts that for purely linear optical 
effects, such as those considered in this chapter, single photons exhibit the 
same behavior as classical pulses (Glauber [1965]). In fact, one may consider 
the (properly normalized) pulse profile as the single-photon wave packet8. It 
is possible to construct creation and annihilation operators for any pulse mode 
which is a solution of Maxwell’s equations, simply by superposing operators 

Although the existence of “wave packets” for photons is controversial, it is possible by limiting 
oneself to cases where photon number is conserved and to the paraxial limit to consider the positive- 
frequency part of the electric field E+(r ,  f )  analogous to a quantum wave function, bearing in mind 
that the detection probability is proportional to E ( r ,  t )  E+(r, t )  = ( E + ( r ,  t ) l 2 ,  in analogy with the 
standard Born interpretation of the electron wave function (Deutsch [1991], Deutsch and Garrison 
[ 199 I]). 
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for the plane-wave modes (Deutsch [ 19911, Deutsch and Garrison [1991]). 
Propagation effects are then governed by the classical wave equations, and 
quantization merely affects detection statistics and higher-order effects. Having 
already shown (Steinberg, Kwiat and Chiao [ 1992a1) that single-photon wave 
packets travelled at the group velocity in media with normal dispersion, we 
decided to extend this work to the case of tunneling. 

Our original proposal (Chiao, Kwiat and Steinberg [1991]) discussed the 
analogy between frustrated total internal reflection and one-dimensional electron 
tunneling, but we eventually settled on a 1D photonic band gap as a more appro- 
priate medium for tunneling. A dielectric mirror consists of alternating quarter- 
wave layers of high and low-index glasses, leading to constructive interference 
for reflection and destructive interference for transmission. Such a structure can 
be thought of as an analog of the Kronig-Penney model for a band gap in 
condensed-matter physics, and in fact there has been much work, both theoretical 
and experimental, on photonic band gaps (Yablonovitch [1993], John [1991]). 
The effective wave vector, or “quasimomentum”, of light inside the band gap is 
imaginary, and we confirmed by direct numerical calculation that this qualitative 
similarity was sufficient to create the same saturating effect and superluminal 
transmission as tunneling through a rectangular barrier. It is important to note 
that there is no direct analog to the tunnel regime (E  < VO) for light; as shown 
in tj 3, the analogy between the Schrodinger and Helmholtz equations leads 
to an effective index n(x,y ,z)  = {2m[E - V ( ~ , y , z ) ] ) ” ~ c / h o ,  which would be 
imaginary in any regions where E < V .  Each microscopic (quarter-wave) region 
of the dielectric mirror is a region of allowed propagation, and it is only the Bragg 
reflection arising from the periodic spacing which makes the mirror as a whole 
a “forbidden region”. The wave function can be written according to Bloch’s 
theorem as a periodic Bloch function uk(r) times a plane wave exp{ik . Y}; inside 
the band gap, k becomes imaginary, leading to an exponentially decaying field 
envelope, but uk(r) is still a sinusoidally oscillating function. 

For our barrier, we chose an 1 1-layer mirror, with alternating indices of 
refraction of 1.41 and 2.22. At the design wavelength of 702nm, this mirror 
had a transmission that dropped to about 1%; the band gap extended from 
600 nm to 800 nm, over most of which range the group delay was smaller than 
d/c = 3.6 fs. The stationary phase approximation predicted that the group delay 
near midgap would saturate at approximately 1.7 fs. This structure had several 
other advantageous features. Unlike the microwave experiments, it involved 
negligible dissipation, and no dispersion outside the tunnel barrier. Furthermore, 
both the transmission probability and phase are very flat functions of frequency 
near midgap, so there is essentially no wave-packet distortion. Finally, the 
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symmetry of the problem makes the semiclassical time vanish identically 
at midgap, which emphasizes that even that time cannot solve all causality 
problems, and allowed us to distinguish it quite easily from the group delay time. 

Of course, direct electronic measurement of femtosecond-scale delays is not 
possible. We therefore used a nonlinear optical effect discovered by Hong, 
Ou and Mandel [1987], which can be thought of roughly as a time-reversed 
variant of the nonlinear autocorrelation technique for femtosecond laser pulses 
(which has also been applied to the tunneling problem by the Vienna group; 
see below). This effect relies on spontaneous parametric down-conversion, a 
process in which a crystal with a ~ ( ~ 1  nonlinearity absorbs a pump photon at 
~0 and emits in its place a pair of photons (conventionally termed “signal” and 
“idler” despite the fact that in these experiments they are indistinguishable) at 
frequencies spread symmetrically about a / 2 ,  energy conservation being assured 
by the anticorrelation of the two photons’ frequencies. The photons are emitted 
simultaneously to within their coherence lengths, and as the latter are only 
constrained by the phase-matching bandwidth and subsequent filters, one finds 
correlation times as short as 15 fs. 

If the two photon wave packets meet simultaneously at opposite sides of 
a 50/50 beam splitter, a quantum interference effect related to Bose statistics 
causes them to exit the beam splitter along the same (randomly chosen) direction; 
detectors placed at the two exit ports of the beam splitter will never register 
photons simultaneously. On the other hand, if the two photons arrive at different 
times, each will make an independent choice at the beam splitter, leading to 
coincidence counts in half of the cases. Thus by changing the path length of one 
photon’s trip until the coincidence rate is minimized, one can ensure that the 
photons are meeting simultaneously at the beam splitter (Hong, Ou and Mandel 
[ 19871, Steinberg, Kwiat and Chiao [1992b], Jeffers and Barnett [1993], Shapiro 
and Sun [ 19941). If an obstruction such as a tunnel barrier is placed in one arm 
of the two-photon interferometer, the coincidence dip recorded as a function of 
external path length will shift, and this shift is a measure of the delay time for 
traversing the barrier. It is interesting to note that these experiments are typically 
performed with a continuous-wave argon laser as the pump, so the state of the 
light is in fact stationary in time. It is only the correlations between the photons 
which have the very fast ( I5  fs) time-dependence. Once a photon is detected, it 
is possible to say that its twin has “collapsed” into a 15-fs wave packet, but prior 
to that time, the system is better seen as a superposition of 15-fs wavepackets 
with centers at every possible position. 

Other than the single-photon aspects, which were predicted theoretically not 
to modify the propagation times, this technique has some interesting advantages 
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Fig. 6. Experimental setup for determining single-photon propagation times through a multilayer 
dielectric mirror. 

relative to such approaches as classical white-light interferometry or nonlinear 
cross-correlation. Since the nonlinear effect is used only before the tunnel barrier, 
extremely low intensities may be used at the level of the sample; we typically 
counted on the order of lo5 photons per second, by using tens of milliwatts 
of 351 nm light from an argon laser as a pump. As discussed by Steinberg, 
Kwiat and Chiao [1992a,b], Jeffers and Barnett [I9931 and Shapiro and Sun 
[ 19941, first-order effects of group-velocity dispersion cancel out, allowing high 
resolution to be retained even in the presence of material dispersion. Finally, in 
contrast to standard interference techniques, this method relies only on detection 
of photon pairs, so the fringe visibility is not reduced by the low transmission 
through the tunnel barrier; interference occurs between two balanced Feynman 
processes, each of which involves only one tunneling event. Only the total count 
rate drops, leading to a f i  dependence for the uncertainty, which we countered 
by averaging a large number of I-hour data runs. 

By scanning across the coincidence dip while periodically inserting and 
removing the band gap coating (see fig. 6), we were able to measure the shift due 
to the propagation delay to better than 1 fs (Steinberg, Kwiat and Chiao [ 19931). 
We also noted that as predicted, the shape of the coincidence dip (a direct 
measure of the overlap of the two wave packets) did not change significantly due 
to the presence of the barrier. In the first iteration of our experiment, we found 
the arrival time for propagation of a single photon through the 1.1 pm coating to 
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Fig. 7 .  Left axis: measured delay for mirrors I (squares) and 2 (circles) as a function of angle 
of incidence, to be compared with the group delay and with Biittiker’s Larmor time. Right axis: 

transmission versus angle of incidence. All curves for p-polarization. 

be earlier by 1.47 * 0.21 fs than the arrival time for propagation through 1 . I  pm 
of air. This 7-standard-deviation result confirmed the superluminality of single- 
photon tunneling. It would correspond to an effective tunneling velocity of 1 . 7 ~ .  
It differs from the stationary-phase prediction of 1.9fs by about two standard 
deviations, and demonstrated immediately that the semiclassical time (which 
vanishes at midgap) was inadequate for describing wave packet propagation. 

In a later extension of this experiment, we studied the frequency-dependence 
of the tunneling time (Steinberg and Chiao [1995]). Since it was not feasible to 
change the frequency of the photons in our interferometer, we changed the angle 
of incidence on the multilayer dielectric, thus altering the Bragg condition. In this 
way, we were able to scan from midgap nearly to the band-edge. We confirmed 
the qualitative behavior of the group delay, with absolute agreement generally 
better than 0.5 fs (see fig. 7) .  We were able to show that not only the semiclassical 
time but also Buttiker’s Larmor time failed to describe the propagation effects9. 

It is important to realize that these theories are not intended to describe propagation, but rather 
other aspects of tunneling. However, many researchers, made uncomfortable by the superluminal 
predictions of stationary phase, have expressed the expectation that these “interaction” times would 
in fact give the correct, subluminal time of arrival of a wave packet peak. Thus we did not disprove 
Buttiker’s and Landauer’s theories, but only demonstrated that their validity could not be extended 
to describe pulse propagation. 
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This refined data set showed a clearly visible change of sign of the pulse shift as 
the barrier was tuned from a regime of superluminal transmission to a subluminal 
one. 

4.7. THE FLORENCE GROUP, PART I1 

In 1993, Ranfagni and co-workers, having become aware of the work of Ishii 
and Giakos, performed a new set of intriguing experiments (Ranfagni, Fabeni, 
Pazzi and Mugnai [1993]). They first repeated the latter’s experiments on signal 
propagation in waveguides above cutoff, and found no evidence for any causality 
violation; while the phase velocity was indeed superluminal, the “signal” (their 
relatively abrupt step-modulated wave) travelled at the group velocity. They 
subsequently studied the claim of superluminal propagation in free-space. They 
measured a propagation speed of c for microwaves travelling between two horns 
which faced one another. When the receiver was translated perpendicularly to 
the propagation direction, however, they confirmed the surprising result that 
although the distance between the horns was increasing, the delay time displayed 
an initial decrease. In a mathematical analysis, they argued that this effect could 
be understood by analyzing the diffraction of the microwave out of the square 
aperture of the transmitter. The receiver was observing ‘‘leaky’’ evanescent waves 
in the shadow region of the near-field diffraction pattern. It is fascinating to note 
that the exponential decay of the field amplitude into this shadow region provides 
a qualitative analogy to tunneling. It begins to seem that exponential decay - 
whether due to absorption, tunneling, band gaps, or diffraction - leads in general 
to anomalous delay times. In the simplest cases, the imaginary wave vector is 
understood to lead to superluminal delays because no phase is accumulated along 
the propagation direction; in the newer examples where it is only an envelope 
which decays exponentially, the superluminality was not anticipated originally. 

More recently, the Florentines have continued studying diffraction effects, 
this time using evanescent waves produced by a grating formed of metal strips 
(Mugnai, Ranfagni and Schulman [1997]). One of the evanescent modes was 
coupled through a paraffin prism onto a receiver (in analogy with the use 
of a second prism in frustrated total internal reflection). They have predicted 
that the group velocity will be superluminal in this case, as in the other 
examples of evanescent waves we have discussed. Experimentally, however, they 
were limited to measuring the phase shift at various frequencies, rather than 
performing a direct time measurement. They inferred the group velocity by 
numerically differentiating the resulting shift with respect to frequency (thus 
assuming the validity of the stationary-phase approximation), and the result 
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they obtained suggested a time advance on the order of 50ps over a distance 
of 3 cm, i.e., an effective velocity of about 2c. These results, aside from 
being indirect, suffer from an amplification of the technical noise in the phase 
measurement. Ranfagni and co-workers are currently working on performing true 
time-dependent versions of this study. 

4.8. THE COLOGNE GROUP, PART I1 

In 1994, the Cologne group extended their experiments to several new and 
interesting cases. Unfortunately, at the same time they extended their interpre- 
tational comments (which had been somewhat vague up to that point) to what 
could be interpreted as a nearly direct contradiction of Einstein causality, stating 
for example that “the superluminal propagation of frequency-limited signals 
by tunneling modes is possible”. In order to sharpen up the debate over the 
meaning of signal propagation (somewhat clouded in much of the literature 
by the consideration of admittedly idealized situations involving infinitely 
high-frequency components and analytic wave forms), they encoded Mozart’s 
40th Symphony on a microwave signal which they claimed subsequently to have 
transmitted at 4 . 7 ~ .  

Since many of these disputes frequently boil down to semantics, and since the 
workers involved have nonetheless found it impossible to find working definitions 
which removed all disagreement, it is perhaps best to quote the Cologne group 
directly (Heitmann and Nimtz [1994]): “The signals considered in the microwave 
experiments were unlimited in time and not Gaussian. Therefore Enders and 
Nimtz have never claimed that the front of a signal has travelled at superluminal 
speed. However, they have stated that the peak and the rising edge of a frequency 
band limited wave packet propagate faster than c through a barrier. This result 
corresponds to a superluminal group and signal velocity and it was recently used 
to transmit Mozart’s Symphony No. 40 through a tunnel of 114 mm length at a 
speed of 4 . 7 ~ ” .  

In fact, as will be seen below in our discussion of causality and superluminality 
(see $8), this appearance of a wave form faster than c is in itself nothing 
surprising. This becomes particularly clear when one considers the timescales 
involved. The time advance being discussed is well under 1 ns in Nimtz’s 
experiments. An acoustic wave form, on the other hand, has a useful bandwidth 
on the order of 20 kHz, which is to say that no significant deviation from a low- 
order Taylor expansion occurs in less than about 50ps. To predict where the 
wave form would be 50ps in advance requires little more than a good eye; to 
predict it 1 ns in advance hardly even requires a steady hand. As was already 
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suggested by Chiao, Kwiat and Steinberg [I9931 and Steinberg [1994, 1995~1, 
and recently made more explicit by Kurizki and Japha [ 19931 and Diener [ 19961, 
the interference at work in tunneling has the effect of advancing the incident 
wave form due to the first derivative term of Taylor’s theorem l o .  Hence even 
though the transmitted wave mimics the future behavior of the incident wave 
impressively well, it does so without any need for information about the later 
behavior of the incident field. The already existing information at any given 
time is more than sufficient to make an educated guess about what is to come 
a short time later, and a tunnel barrier does no more than act as an analog 
computer for this purpose. All the same, this ability (particularly when coupled 
with amplification, as will be discussed below) does provide an interesting way 
to advance the triggering of a fixed-discriminator-level detection system, and 
may not be without technological application. Of course, it becomes even more 
surprising when we are not merely arguing about the shape of a classical wave 
form, but the unique time of arrival (i.e., the “click”) of an individual quantum 
particle. Since this latter quantity is tied inextricably to interpretational issues 
(such as the frequently invoked “instantaneous” collapse), no solution is likely 
to be forthcoming soon. 

Leaving aside these interpretational issues for the moment, the recent series of 
experiments in Cologne extend the microwave work to new barriers, including 
an analog of the periodic-dielectric structure first studied at Berkeley. Although 
some of them rely again on phase measurements, and the signal-to-noise ratio 
remains dubious, they provide an elegant confirmation, and reach effective 
speeds of several times that of light. Furthermore, Nimtz and co-workers have 
been able to verify again the thickness-independence of the tunneling time in 
the opaque limit. Finally, since microwave experiments are plagued by effects 
of dissipation in the waveguides, they have performed interesting studies on 
tunneling in the presence of dissipation, which has also been analyzed in 
various other frameworks (Nimtz, Spieker and Brodowsky [ 19941, Mugnai, 
Ranfagni, Ruggeri and Agresti [ 19941, Raciti and Salesi [1994], Steinberg 
[ 1995b], Brodowsky, Heitmann and Nimtz [ 19961). 

’” I F  destructive interference is set up between part of the wave travelling unimpeded and part which 
has suffered a small delay Af due to multiple reflections, one has Yout(t) = Y,”(t) - EYln(f - At)  RZ 

( I  - E)Y , , , ( t )  + EAt d Yln(t)/dt N ( I  - E )  lyn(t + EAf/( I - E ) ) ,  which is already a linear extrapolation 
into the future. In cases where the dispersion is sufficiently flat, as in a bandgap medium, the 
extrapolation is in fact surprisingly better than this first-order approximation. As was suggested in 
Steinberg [ 1995~1 and recently discussed more rigorously by Lee and Lee [ 19951 and Lee [ 19961, 
this implies that even a simple Fabry-Perot interferometer exhibits superluminality when excited off 
resonance 



VL S: 41 OPTICAL EXPERIMENTS ON TUNNELING TIMES 377 

4.9. THE VIENNA GROUP 

The Berkeley work, in which multilayer dielectric mirrors functioned as photonic 
band gap media and hence as effective tunnel barriers, was extended by the 
ultrafast laser group at the Vienna Technical University in 1994. By using 
12-fs laser pulses and standard nonlinear-optical autocorrelation techniques, they 
benefitted from a better signal-to-noise ratio than the single-photon counting 
experiments, and were therefore able to study barriers of lower transmission. 
Of course, in so doing, they were only able to study classical electromagnetic 
pulses, disregarding the single-particle features, but as we have discussed, the 
single-photon arrival times had been seen to be quite well described by Maxwell’s 
equations. Since such group-delay measurements are incapable of addressing 
deeper issues of particle-wave duality (for these, “clocks” such as the Larmor 
clock to be discussed further below are essential), the sacrifice is not a great 
one. 

Spielmann, Szipocs, Stingl and Krausz [I9941 used 12-fs FWHM sech- 
squared optical pulses with energies of about 1 nJ at a repetition rate near 
100 MHz to measure transmission times through quarter-wave stacks of 6, 10, 
14, 18, and 22 layers, with transmissions ranging from 30% to 2 .  (compare 
the 1 1-layer Berkeley structure with its 1% transmission, near the noise limit 
for that experiment). A freely-propagating pulse was compared with one which 
had to traverse the coating being studied, and the two pulses were subsequently 
superposed in a non-collinear geometry in a BBO crystal to generate second- 
harmonic light and thus a background-free cross-correlation signal. 

Since the required time resolution was of the order of 1 fs, while the 
bandwidth-limited pulses were 10 to 15 times longer, a multishot averaging 
technique was used. This requires extremely high stability of the pulse 
parameters, which the Vienna group achieved thanks to a mirror-dispersion- 
controlled Tixapphire laser (Stingl, Spielmann, Krausz and Szipocs [ 19941). This 
laser generated bandwidth-limited pulses at 800nm, with close to 1% stability 
in the frequency-doubled output. 

They split each pulse in two parts, which were superposed in the nonlinear 
crystal after one part traversed the dielectric coating while the other propagated 
in air. The cross-correlation signal varied as a function of the degree of overlap 
of the two pulses in the crystal. By adjusting the path-length difference to put 
themselves on the edge of the output signal, and then switching the coating 
between the two arms of the correlator, the researchers were able to measure 
small shifts in the pulse position caused by the coating (Spielmann, Szipocs, 
Stingl and Krausz [1994]). Great care was taken to eliminate systematic errors 
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due to the change in the shape of the cross-correlation signal occasioned by 
the insertion and displacement of the sample, due to drifts and fluctuations of 
pulse parameters, etc. The experimenters thus obtained results with statistical 
uncertainties of f 0 . 3  fs, and by studying progressively thicker samples, they 
were able to confirm the prediction that the time delay should saturate at a finite 
value even as the thickness of the sample continued to grow. For the thickest 
sample studied, they found an advance of about 6 fs over free propagation in air. 
However, their results showed a systematic deviation from the stationary-phase 
prediction of about one and a half femtoseconds; this discrepancy is not yet 
understood. They did observe that the 28-THz bandwidth pulses from their laser 
were somewhat distorted, at least by the 22-layer barrier, based on interferometric 
autocorrelation traces. The pulse width decreased from 12 fs to 6.5 fs, consistent 
with the effectively increased bandwidth due to the lower transmission at the 
center of the pulse spectrum than in the wings. Since the wings also have a 
longer group delay than the center frequency, it is possible that the observation 
of slower-than-predicted traversal is in part due to the preferential transmission 
of these slower components, but a full explanation has not yet been given. 

4.10. DEUTSCH AND GOLUB’S LARMOR-CLOCK EXPERIMENT 

Deutsch and Golub [I9961 performed an experiment to measure the Larmor 
tunneling time for photons. Their experiment utilizes an analogy between the 
spin of an electron and the spin of a photon, whose polarization state can be 
described by a point on the Poincari sphere given by the Stokes parameters S. 
The equation of motion for the Stokes parameters for a beam of light propagating 
along the x-axis through a medium with an anisotropic refractive index is given 
by 

dS/dx = QxS, (4.3) 

where D is the precession rate of the tip of the S vector on the Poincare 
sphere arising from the anisotropic index of refraction. This equation is formally 
identical to the one describing the precession of the tip of the electron spin vector 
u on the Bloch sphere arising from an applied magnetic field 

when the optical precession rate D is identified (apart from a proportionality 
constant) with the rate of Larmor precession D,. 
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This analogy between electron and photon spin precession led Deutsch and 
Golub to suggest an optical implemention of the Larmor-clock measurement of 
the tunneling time of Baz’ and Rybachenko (latter corrected and generalized by 
Biittiker). The basic idea is to replace electrons with photons, and to replace 
a uniform magnetic field confined to the electron tunnel barrier region with 
a uniform birefringent medium confined to the corresponding optical tunnel 
barrier. Thus, instead of utilizing the precession of the electron spin as an internal 
clock to measure the Larmor tunneling time, they utilized the precession of 
the S vector of the photon as an internal clock. In their experiment, they used 
frustrated total internal reflection between two glass prisms as the tunnel barrier. 
The gap between the prisms, which served as the tunnel barrier, was filled with 
a birefringent fluid (a liquid crystal). 

There are a number of advantages in performing an experiment using photons 
to measure the Larmor tunneling time. In contrast to the case of electrons, it is 
easy to confine the region for photon spin precession to the region of the barrier, 
by simply restricting the birefringent fluid to the region of the gap, whereas it 
is hard to confine the magnetic field to the region of the tunneling barrier for 
electrons. Also, since the photon is neutral, complications inherent in electron 
tunneling-time measurements associated with image charges induced in the faces 
of the tunnel barrier could be avoided. Moreover, the interaction between the 
photons is negligibly weak, in contrast to the strong Coulomb repulsion between 
the electrons inside the barrier. Exploiting these advantages, Deutsch and Golub 
successfully completed their experiment to measure the Larmor tunneling time, 
with the result that the theoretical predictions of Buttiker for the Larmor time 
were qualitatively confirmed. 

However, in a critical examination of their own experiment, Deutsch and 
Golub pointed out a weakness: the Larmor tunneling time is based ultimately 
on an arbitrary definition that is, in their words, “not a physical scale that 
emerges naturally, or that is needed to calculate the results of measurements”. 
They pointed out another possible weakness: the process as measured by the 
Larmor clock is a stationary one involving only a single energy or frequency 
of the photon. It has been argued that the tunneling time cannot have any 
meaning for stationary processes, which have no beginning or ending (Falck and 
Hauge [ 19881, Gasparian and Pollak [1993], Gasparian, Ortuiio, Ruiz, Cuevas 
and Pollak [ 19951, Krenzlin, Budezies and Kehr [ 19961). However, we shall see 
that stationary processes can in fact give indirect information on tunneling times 
in 2D situations, as has been demonstrated by the continuous-wave experiments 
of Balcou and Dutriaux (see the next section). 

In her PhD thesis, Deutsch gave a theoretical treatment of the nonstationary 
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problem of an interacting photon system inside the tunneling barrier, interacting 
via a third-order nonlinear optical susceptibility confined to the region of the 
barrier. The basic idea is that when one photon is inside the barrier region, 
it causes a refractive-index change through the nonlinear susceptibility, which 
tends to exclude (for the repulsive sign of the nonlinearity) the presence of a 
second incident photon which is about to enter the barrier. The tunneling time 
was defined as the duration over which the second photon tends to be excluded by 
the first photon. Thus one could determine the tunneling time through Glauber’s 
two-photon correlation function, as applied to a nonlinear beam splitter used as 
a model for the tunneling barrier. The result of the calculation was a certain 
correction term in the two-photon correlation function which arose from the 
nonlinearity. She made an identification of the resulting tunneling time with the 
dwell time. However, as many workers have pointed out (Hauge and Stervneng 
[ 1989]), the dwell time cannot distinguish between reflected and transmitted 
particles, and hence cannot be regarded as a genuine tunneling time; we will 
see in $ 5 how one might hope to get around such objections. 

4. I 1 .  BALCOU AND DUTRIAUX’S FTIR EXPERIMENT 

Tunneling times have been measured recently in frustrated total internal 
reflection (FTIR) by Balcou and Dutriaux [1997]. The idea of this beautifully 
simple experiment is to utilize both the lateral displacement and the angular 
deflection of the transmitted light beam (which is composed of the tunneling 
photons), as a simultaneous measurement of two different kinds of tunneling 
times, which turned out to be the group delay and the semiclassical time. These 
two tunneling times correspond to the real and imaginary parts of a complex 
time related closely to that of the Larmor times of eq. (2.9). In $ 5 ,  we shall 
see that it is possible to delineate clearly the physical significances for these two 
different times. 

Let us define the x-axis as the direction normal to the interface between 
the prisms and y-axis as the direction parallel to the interface in the plane of 
incidence (see fig. 8). This 2D FTIR tunneling geometry has been analyzed 
previously by Steinberg and Chiao [1994a] and by Lee and Lee [1997]. 
During the tunneling process which occurs in the x-direction, the wave packet 
continues to propagate in the y-direction, since its y-component of momentum 
is conserved. Balcou and Dutriaux argue heuristically that one expects the 
propagation velocity along the y-axis to be uniform during tunneling, and that, 
therefore, this would result in a lateral displacement D along the y-direction 
which would be proportional to some unknown temporal delay due to tunneling. 
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Fig. 8. Schematic of Balcou and Dutriaux’s frustrated total internal reflection experiment to measure 
two tunneling times. These two times are inferred from the Goos-Hanchen shift D, and from the 

angular deflection of the transmitted beam 60, respectively. 

Calculations (Ghatak, Shenoy, Goyal and Thyagarajan [ 19861, Ghatak and 
Banerjee [ 19891) show that after the wave packet has finished tunneling through 
the interface in the opaque limit, it is the group delay zg which causes the lateral 
displacement of the transmitted wave packet along the y-direction by an amount 
D = u y t g ,  where uv = c/n sin 0 is the y-component of the velocity of the wave 
packet (0 being the angle of incidence). This lateral shift of the transmitted light 
beam turns out to be identical to the well-studied Goos-Hanchen shift. Therefore, 
Balcou and Dutriaux infer that a measurement of the displacement D will lead 
to the tunneling time 

T~ = D[c/n sin el-’. (4.5) 

In addition to this lateral displacement, there is also an angular deflection of 
the transmitted beam, which arises from its finite beam size. Due to diffraction, 
the finite width of the incident beam of light leads to some finite spread in the 
angles of its wave vectors. Larger angles are transmitted less than smaller angles, 
since they are farther away from the critical angle. This causes a preferential 
transmission of the smaller angle components of the incident beam, which 
leads to a deflection of the transmitted beam slightly towards the normal. This 
is analogous to the effect associated with Biittiker’s Larmor time in which 
there is a preferential transmission of electron spins aligned antiparallel to the 
magnetic field, which leads to a slight spin polarization of the transmitted beam. 
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Calculations similar to those above show that this preferential transmission leads 
to an effective angular frequency of rotation of the beam at the rate 

where WR is the beam Rayleigh length. Balcou and Dutriaux therefore infer that 
a measurement of the angular deflection 66’ will yield the tunneling time 

where TL, the so-called “loss time”, approaches the semiclassical time of Buttiker 
and Landauer for opaque barriers. The two tunneling times zg and zL turn out 
to be identical to the real and imaginary parts of the complex tunneling time 
introduced by Pollak and Miller [ 19841, 

. a I n t  
z, = zs + 1ZL = -1- a w  (4.8) 

where t is the complex transmission coefficient of the tunnel barrier. 
Balcou and Dutriaux obtained experimental data which agree well with the 

above theory for the two tunneling times. In particular, they have demonstrated 
not only that the group delay saturates with increasing barrier thickness (the 
Hartman effect), but also that the semiclassical time increases linearly with this 
thickness. However, they interpreted the semiclassical time as the one “most 
relevant to describe the physics of tunneling”, in contrast to the group delay. 
They do so for two reasons. First, the semiclassical time “yields only subluminal 
velocities so that the causality principle is explicitly obeyed”, in contrast to the 
group delay, which yields superluminal velocities. Second, the group delay is 
dependent on the boundary conditions, and differs considerably for TM and TE 
polarized light, whereas the semiclassical time is independent of these boundary 
conditions. They argue that since a tunneling time should be independent of 
boundary conditions (it should depend only on what happens in the interior of 
the barrier), this singles out the semiclassical time as the true tunneling time. 

In answer to their first point, in point of fact the semiclassical time under 
certain circumstances can also be superluminal, a point which they failed to 
recognize. In the case of the 1D photonic band gap discussed earlier, the 
semiclassical time is zero at midgap (Martin and Landauer [ 19921, Steinberg, 
Kwiat and Chiao [ 1993]), which is a behavior even more superluminal than that 
predicted by the group delay for this kind of barrier. 

In answer to their second point, boundary conditions are in fact very important 
for tunneling. Again, in the example of evanescent waves in the 1D photonic 
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band gap, it is the Bragg reflections from the periodic dielectric boundaries 
which give rise to the band gap, and hence tunneling. These reflections would 
of course vanish if there were no boundary conditions necessary for the partial 
reflections at the interfaces between the successive dielectrics, and tunneling 
would disappear. More generally, tunneling is a wave-interference phenomenon. 
Since boundary conditions are important for determining this interference, it is 
unreasonable to demand that the tunneling time be independent of boundary 
conditions. Hence, as should become clear in the following section, we disagree 
with their conclusion that it is the semiclassical time, not the group delay, that 
is the one “related solely to tunneling”. Rather, we believe that their results 
constitute experimental evidence for the simultaneous existence of these two 
tunneling times in the same barrier. 

5 5. New Theoretical Progress 

One commonly cited reason for the difficulty of defining a tunneling time 
unambiguously is the fact that time in quantum mechanics does not have the 
status of a Hermitian operator, and can thus not be measured directly. This is 
not an airtight objection, since most physical measurements are in fact indirect: 
we say we have measured the position of a particle when what we may in fact 
have observed is which element of a CCD array absorbed photons scattered by 
the particle and then focused. Even in classical mechanics, one never measures 
“the time of a particle”, or even “the time of an event”, but a quantity such 
as the angle through which a stopwatch hand rotates if it is started by the 
particle’s entry into a region and stopped by its exit from that region. When 
many different operational definitions of this sort yield the same result, we feel 
justified in calling the quantity we have found “the time”; if, as in the tunneling 
case, different measurements yield different results, we must be more cautious. 

In quantum mechanics, it is straightforward to define an operator 0, which is 1 
if the particle is in the barrier region and 0 otherwise. Such a projection operator 
is Hermitian, and may correspond to a physical observable. Its expectation 
value simply measures the integrated probability density over the region of 
interest- it is this expectation value divided by the incident flux which is 
referred to as the dwell time. Thus the central problem is not the absence 
of an appropriate Hermitian operator, but rather the absence of well-defined 
histories (or trajectories) in standard quantum theory. For example, the dwell 
time measures a property of a wave function with both transmitted and 
reflected portions, and does not display a unique decomposition into portions 
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corresponding to these individual scattering channels. Some workers calculate 
the expectation value not for the initial state but rather for the final state 
(van Tiggelen, Tip and Lagendijk [1993]). This answers the question no better 
than does the usual dwell time; instead of discarding information about late 
times, it discards information about early times. Approaches relying on projector 
algebra in general have been analyzed by Muga, Brouard and Sala [ 1992bI and 
Leavens [ 19951. Other related approaches follow phase space trajectories (Muga, 
Brouard and Sala [ 1992a]), Bohm trajectories (Dewdney and Hiley [ 19821, 
Leavens [ 1990, 19931, Leavens and Aers [ 199 I ,  19931, Leavens, lannaccone 
and McKinnon [1995], Leavens and McKinnon [1995]), or Feynman paths 
(Sokolovski and Baskin [ 19871, Sokolovski and Connor [ 1990, 1993, 19941, 
Hanggi [ 19931, Fertig [ 1990, 19931). No consensus has been reached as to the 
validity and the relationship of these various approaches. ideally, transmission 
and reflection times t T  and TR would, when weighted by the transmission and 
reflection probabilities Ill2 and l yI2 ,  yield the dwell time Td: 

this relation has served as one of the main criteria in a broad review of tunneling 
times (Hauge and Stsvneng [1989]), but has also been criticized (see, for 
example, Landauer and Martin [ 19941). 

However, a formalism due to Aharonov, Albert and Vaidman [1988] and 
Aharonov and Vaidman [ 19901 shows how to analyze “conditional measure- 
ments” in quantum mechanics; that is, how to predict outcomes of measurements 
not for entire ensembles, but for subensembles determined both by state 
preparation and by a subsequent postselection. In the case which concerns us, 
the state is prepared with a particle incident from the left, and selected to have 
a particle emerging on the right at late times. Due to the time-reversibility 
of the wave equation, results of intervening measurements depend both on 
the initial and the final state. This formalism relies only on standard quantum 
theory, and yields a result that is completely general for any measurement 
arising from a von Neumann-style measurement interaction, in the limit where 
the interaction strength is kept low enough to avoid irreversibly disturbing the 
quantum evolution. This low strength implies great measurement uncertainty on 
any individual shot, but an average may be calculated for a large number of data 
runs. We have recently shown (Steinberg [1995a,b]) how to apply this formalism 
to tunneling, and the time we find is identical to the complex time of Sokolovski, 
Baskin, and Connor, rc. But thanks to the “weak measurement” formalism, 
it becomes clear what the physical significance of the real and imaginary 
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parts is: the real part (the in-plane Larmor time) quantifies how strongly the 
tunneling particle will affect a clock with which it interacts; this is the portion 
which corresponds to a classical measurement outcome. The imaginary part, on 
the other hand, describes the amount of back-action the measuring apparatus 
will exert on the particle (the sensitivity of the tunneling probability to small 
perturbations, in other words, as in Biittiker’s out-of-plane Larmor rotation). 
While the former effect remains constant as the measurement is made weaker and 
weaker, the back-action may be made arbitrarily small by resorting to extremely 
“gentle” (and consequently uncertain) measurements. Among other attractive 
properties, these conditional times automatically satisfy eq. (5.1). 

The generality of the times obtained in this way suggests that it may be 
possible to apply them to a broad variety of problems, at least approximately, 
even in cases where exact solution would be intractable. It has already been 
shown that not only are the Larmor times a clear subset of these “conditional 
times”, but that the counter-intuitive effects of absorption on light propagating 
through layered media can be understood qualitatively by application of these 
complex times (Steinberg [1995b]). The equivalence of ZBL and -1m tc makes 
sense given that the oscillating-barrier approach in fact studies the sensitivity 
to perturbations in the barrier height. The direct connection to measurement 
outcomes lifts the ambiguity present in other “projector approaches” and the 
Feynman-path formalism. Finally, it is possible using these methods to calculate 
conditional probability distributions for transmitted or reflected particle positions 
as a function of time, and to directly investigate questions about whether 
tunneling particles spend significant lengths of time in the center of the barrier, 
whether only the leading edge of the wave is transmitted, etc. Since these 
probability distributions may have large values on both sides of the barrier 
simultaneously, and independent “weak measurements” can be shown to add 
linearly (unlike “strong” measurements of non-commuting observables), it is 
interesting to speculate about whether a statistical demonstration that during 
tunneling, a particle is “in two places at once” might be possible. Work continues 
on all of these issues. Extensions are also underway to analyze whether one 
can go a step beyond these expectation-value-like tunneling times and calculate 
higher moments, or entire distributions (Iannaccone [ 19961). 

9 6. Tunneling in de Broglie Optics 

Tunneling was, of course, discussed per se for electrons before the analogy to 
optical effects was drawn. However, it is an effect that is quite general to wave 
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propagation. Future promising directions for studying tunneling rely on a variety 
of particles and barriers with their own particular advantages and difficulties. 
Recently, workers at Kyushu University and the Research Reactor Institute in 
Osaka have used a neutron spin echo instrument to measure Larmor precession 
(and thus Larmor times) for neutrons traversing a magnetic layer (Hino, Achiwa, 
Tasaki, Ebisawa, Akiyoshi and Kawai [ 19961). Preliminary results appear to 
agree well with theory, even near the critical angle for total reflection of the 
neutrons, and there is every reason to expect more interesting data to come from 
studies of neutron tunneling. 

Ballistic transport and even refraction of electrons in heterostructures has been 
described theoretically (Gaylord, Henderson and Glytsis [ 19931) and observed 
experimentally (Spector, Stormer, Baldwin, Pfeiffer and West [ 19901). It is 
clearly feasible to extend these geometries and observe frustrated total internal 
reflection of electrons. As discussed by Steinberg and Chiao [ 1994a1, there is a 
number of interesting similarities and differences between tunneling of massive 
and massless particles and between one- and two-dimensional tunneling. Future 
studies with ballistic electrons ought to be able to shed new light on aspects of the 
tunneling problem (Lee and Lee [ 19951). They will also be closer to areas which 
are likely to be of technological impact (Spector, Stormer, Baldwin, Pfeiffer and 
West [ 19901, for example, have demonstrated a new kind of electronic switch 
relying on electron refraction). 

Atoms also display wave properties. For a number of years now, atom interfer- 
ometers have been in operation, and recently both Bose-Einstein condensation 
and a coherent pulsed output coupler for such matter waves have been observed 
(Anderson, Ensher, Matthews, Wieman and Cornell [ 19951, Mewes, Andrews, 
Kurn, Durfee, Townsend and Ketterle [ 19971, Andrews, Townsend, Miesner, 
Durfee, Kurn and Ketterle [1997]). The tunneling of such composite particles 
is in a sense even more striking than that of photons, neutrons, or electrons. The 
wealth of internal degrees of freedom of an atom also makes it an attractive 
candidate for studying a variety of “interaction times”. With the latest laser- 
cooling and -trapping techniques, atoms may now be produced with de Broglie 
wavelengths significantly larger than an optical wavelength, meaning that tunnel 
barriers can be constructed from tightly focussed light beams, making use of the 
repulsive dipole force (Steinberg, Thompson, Bagnoud, Helmerson and Phillips 
[1996]). Auxiliary probe beams interacting with the atoms while in or near the 
tunnel region could be used to make the atoms fluoresce (Japha and Kurizki 
[1996a]), or to optically pump them, or (in order to avoid any dissipation) 
to induce Raman transitions. By looking at atoms transmitted through such 
beams, at Toronto we plan to study a number of interaction times, as well 



VL I 71 SUPERLUMINALITY AND INVERTED ATOMS 387 

as their position- and spatial-dependence, as discussed by Steinberg [ 1995a,b]. 
Multiple simultaneous probe beams would allow one to investigate further issues 
of locality and the “reality of the wave function”. We are also studying the 
conjecture that position-dependent magnetic fields, which can rapidly tune atoms 
through either Raman or RF resonances (which can be extremely narrow on 
the scale of feasible Zeeman shifts even over length scales much smaller than 
an optical wavelength (Thomas [1994])), can be used to create extremely thin 
interaction regions which will lead to quantum reflection and tunneling once the 
de Broglie wavelength is longer than the interaction length (cf. Kurizki [ 19971). 
Such mechanisms would allow even more sensitive studies, as well as extensions 
to more complicated geometries, such as thin Fabry-Perot cavities for atoms. 

Tunneling of atoms has already been observed in a very different context. 
Investigating the behavior of ultracold atoms in a standing wave, Raizen’s group 
at the University of Texas has observed a number of fascinating effects related 
to the band structure of the atoms’ center-of-mass motion in a periodical optical 
potential, including the analog of Landau-Zener tunneling when the optical 
potential is accelerated fast enough that the atoms begin to tunnel to a higher 
band (Niu, Zhao, Georgakis and Raizen [ 19961). 

8 7. Superluminality and Inverted Atoms 

The fact that superluminal wave packet propagation through tunneling barriers 
has been observed experimentally leads naturally to the following question: Are 
there any other situations in physics where such superluminal behavior can arise? 
Of course it would be nonsensical to ask: Can light go faster than light? But it 
does make sense to ask the question: Can light in a medium go faster than light 
in the vacuum? Surprisingly, the answer to this question is “yes” in at least one 
instance other than in tunneling, namely, when off-resonance pulses propagate 
through a medium with inverted atomic populations; that is, when wave packets 
are tuned to a transparent spectral region outside of the gain line (Chiao [ 19961). 

There are two situations in which closely related superluminal propagation 
effects appear in media with atomic population inversion. In the first situation, a 
steady-state one, an index of refraction model of the medium leads to an accurate 
description of the behavior of the system. When a two-level system is pumped 
steadily so that it becomes inverted, the real part of the linear susceptibility of the 
inverted two-level medium suffers a sign change relative to that of an uninverted 
medium, leading to superluminal group velocities in transparent spectral win- 
dows far away from resonance (Chiao [ 19931). In the second situation, a transient 
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one, the sudden inversion of the two-level system by a pulsed pump gives 
insight into the collective behavior of the system. Undamped atomic polarization 
waves are coupled strongly to electromagnetic waves, and this coupling leads 
to tachyon-like collective excitations, i.e., normal modes of the coupled atom- 
radiation system which exhibit a tachyon-like dispersion relation near resonance 
(Chiao, Kozhekin and Kurizki [1996]). It should be noted at the outset that 
these situations will lead to superluminal propagation phenomena which are 
much more dramatic than those which occur in tunneling, since no appreciable 
attenuation or reflection of the wave packets will occur in these dilute, transpar- 
ent media, and consequently the distances over which superluminal propagation 
occurs can be much larger than those that occur in tunneling barriers. 

As an example of the first, steady-state situation, we shall focus on the 
special case of superluminal propagation of finite-bandwidth pulses through a 
population-inverted medium, whose carrier frequencies are much lower than 
resonance. Although superluminal propagation also occurs near the resonance 
line”, it is much simpler to understand the very-low-frequency case first. The 
refractive index of a two-level medium can be obtained from the usual Lorentz 
model, which yields (Jackson [1975], Kittel [1986]) 

where y is a (small) phenomenological linewidth, ~0 is the resonance frequency 
of the medium, and up is “the effective plasma frequency”, a measure of the 
strength of the coupling between the atoms and the radiation field, which is given 
bY 

q, = (-4nwf N e2/ml‘/2 . (7.2) 
The Lorentz model has been generalized to include the possibility of population 
inversion, based on the density-matrix equations of motion for the two-level atom 
(Boyd [ 1992]), by introducing into eq. (7.2) the fractional atomic population 
inversion w, which is given by 

Nu being the number density of atoms in the upper level, N, being the number 
density of atoms in the lower level, and N = Nu + N, being the total number 

” An experiment is presently being performed at Berkeley using the stimulated Raman effect 
in rubidium vapor to demonstrate these resonantly enhanced superluminal group velocities (Chiao 
[1994], Chiao, Bolda, Bowie, Boyce, Garrison and Mitchell [ 19951). 
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Fig. 9. Real part of the refractive index versus frequency for a completely inverted two-level atomic 
medium (solid line for w = + I ) ,  compared with that for the same medium with completely uninverted 

populations (dashed line for w = - I ) .  

density of atoms in the two-level system. As usual, e is the electron charge, 
and m is the electron mass. The single-atom oscillator strength of the transition 
between these two levels is given by 

where E, and El are the energies of the upper and lower states of the atom, 
respectively, and (u(xjl)  is the transition matrix element between these two 
states. In the special case when all the atoms are in the lower level (w = -I), 
the effective plasma frequency is real, but when there is complete population 
inversion and all the atoms are in the upper level (w = +I) ,  the effective plasma 
frequency becomes imaginary. When one completely inverts the system, the 
inversion process can be thought of as an interchange of the two energy levels 
of the atom E, and El, thus leading effectively to a sign change in the oscillator 
strength given by eq. (7.4). Thus for each atom, f --f -f upon a complete 
inversion of the system. 

Now let us consider the typical situation in which the inequalities y << up << wo 
are obeyed. A plot of the real part of eq. (7.1) is shown in fig. 9. The extreme 
case of w = -1, with all the atoms in the lower level, where there is maximum 
absorption, is represented by the dashed line, and the opposite extreme case of 
w = + I ,  with all the atoms in the upper level, where there is maximum gain, 
is represented by the solid line. Note that the nature of the dispersion has been 
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reversed for these two cases - regions of normal dispersion are interchanged 
with regions of anomalous dispersion upon the inversion of atomic populations, 
and vice versa. Also note that the sign in front of the second term under the 
square root in eq. (7.1) reverses upon population inversion - it is positive for 
the uninverted medium, but it becomes negative for the inverted medium. The 
physical meaning of this second term is that it represents the complex, frequency- 
dependent susceptibility of the medium (apart from a constant of 4 ~ ) .  This 
complex susceptibility reverses sign upon an inversion of population. Hence the 
imaginary part of the susceptibility reverses sign, which indicates the passage of 
the system from absorption into amplification. The real part of the susceptibility 
also reverses sign (Chiao and Boyce [ 1994]), which indicates the passage of the 
system from subluminality into superluminality in transparent spectral regions 
far away from resonance. In particular, as a result of this sign change, the index 
of refraction near zero frequency passes from a value greater than unity, over to 
a value less than unity given by 

n(0) = ( 1  - lup12/u~2)”* < 1 (7.5) 

This result is valid whenever a strong, low-frequency resonance dominates the 
zero-frequency sum rule, e.g., when there exists an inverted population in the 
24 GHz ammonia resonance used in the first maser (Chiao [ 19961). 

From eq. (7.1) it also follows that the slope d[Ren(w)]/dw approaches zero 
as (LI + 0. Since the resulting group velocity dispersion vanishes near zero 
frequency, the medium is essentially dispersionless near DC (see fig. 9), a fact 
which is true for both the inverted and the uninverted media. 

Now consider the propagation of a classical, finite-bandwidth pulse, for 
example, a Gaussian wave packet, whose carrier frequency and spectrum lie far 
below the resonance frequency of the two-level atom. Let this wave packet be 
incident upon a population-inverted medium. The amplitude of this wave packet 
will be chosen sufficiently small so that only the linear response of the medium 
to this weak perturbation need be considered. 

The fact that the index n(0) < 1 is less than unity means that the phase 
velocity 

up(0) = c/n(0) > c (7.6) 

is greater than the vacuum speed of light c. I t  is well known that the phase 
velocity can exceed c without any violation of special relativity. (The phase 
velocity, which is the velocity of the zero-crossings of the carrier wave, 
characterizes the motion of a pattern which carries no information with it.) 
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More surprisingly, here as zero frequency is approached, the group veloc- 
ity 

d R e k ( o )  -' 
0 - 0  

'g(O) = ( do ) 
- I  

is equal to the phase velocity, and is therefore also superluminal: The group 
oelocity also exceeds the oacuum speed of light. Furthermore, there is 
negligible distortion of the pulse during its propagation, as the group velocity 
dispersion vanishes at low frequencies. Conventional wisdom tells us that the 
group velocity, which is the velocity of the peak of the pulse, is the true 
signal velocity, in contradistinction to the phase velocity, since normally energy 
transport is characterized by the group and not the phase velocity. If we were to 
cling to this definition of signal velocity, then we would be forced to accept 
signal velocities faster than light. However, special relativity is in fact not 
violated by these superluminal group velocities, as we shall see in the next 
section. 

Unlike a medium in its ground state, the inverted medium can temporarily 
loan part of its stored energy to the forward tail of the wave packet, in a pulse- 
reshaping process which moves the peak of the wave packet forward in time. 
One can think of this pulse-reshaping process as the virtual amplification of 
the forward tail of the wave packet, followed by the virtual absorption of the 
peak, resulting in an adoancement of the wave packet. This is a reversal of 
the pulse-reshaping process produced by the uninverted medium, in which the 
peak of a wave packet first undergoes virtual absorption, followed by the virtual 
amplification of its trailing tail, resulting in a retardation of the wave packet. 
Energy is loaned by the medium to the wave, or vice versa, in the inverted and the 
uninverted cases, respectively, so that the energy in the pulse remains unchanged 
in both kinds of pulse-reshaping processes in these transparent media. Thus the 
energy velocity, as defined by Sommerfeld and Brillouin (Brillouin [1960]), is 
also superluminal for the inverted medium near zero frequency 

where ( S )  is the time-averaged Poynting vector, (u )  is the time-averaged energy 
density, and ~ ( 0 )  is the zero-frequency dielectric constant. This is a reversal 
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of the case of the uninverted medium, where the energy velocity is of course 
subluminal. The Sommerfeld and Brillouin energy velocity is usually interpreted 
as the velocity of energy transport by the propagating wave packet. However, 
there is controversy concerning the proper definition of the energy velocity 
(Schulz-DuBois [1969], Loudon [1970], Oughstun and Shen [ 19881, Diener 
[ 19971); after all, in addition to the purely electromagnetic energy density, there 
is energy stored in the inverted medium itself. 

Still more surprisingly, the “signal” velocity of Sommerfeld and Brillouin, 
which they defined arbitrarily as the propagation velocity of the first point of 
half-maximum wave amplitude, is the same here as the group velocity, since 
there is little distortion of the shape of the wave packet during its propagation. 
However, we shall see that it is highly misleading to call this the “signal” 
velocity. Since dispersion is negligible in this large, transparent spectral window 
stretching from DC to the low-frequency side of resonance, all of the above wave 
velocities, including the so-called “signal” velocity, are faster than c. It should be 
emphasized that any arbitrary, low-frequency finite-bandwidth wave form, e.g., 
Rachmaninov’s 3rd Piano Concerto, and not merely Gaussian wave packets, will 
propagate faster than c with negligible distortion, so that a complicated wave 
form can also be advanced to earlier times at the output face of the inverted 
medium. 

Recently, some of these counterintuitive effects have been observed in an 
experiment with very low frequency bandpass electronic amplifiers (Mitchell and 
Chiao [ 19971). Negative group delays were observed, in which pulses transmitted 
through a chain of amplifiers were aduunced with little distortion by several 
milliseconds, i.e., the transmitted peak left the output port of the amplifier chain 
before the incident peak arrived at the input port. Howcver, the behavior of abrupt 
“fronts” and “backs” showed that causality was in fact not violated. 

The nervous reader may ask at this point how it is possible to avoid a violation 
of special relativity. A brief answer is that the front velocity of Sommerfeld and 
Brillouin in the case of a medium with inverted populations is still exactly c, as 
it is also in the case of tunneling. This will be shown in detail in the next section. 
We shall further see that the front velocity, and not the so-called “signal” velocity 
of Sommerfeld and Brillouin, should be identified as the true signal velocity, 
and this fact will prohibit any genuine information from being communicated 
faster than c. The reader may also object to our use of the Lorentz model, which 
after all is merely a model. However, the above results can also be shown to 
follow very generally from the Kramers-Kronig relations, which are themselves 
consequences of causality and linearity. These results must therefore transcend 
all models (Chiao [1993]. In general, the Kramers-Kronig relations (i.e., the very 
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. . . . . . . .  
Fig. 10. A linear array of undamped Lorentz oscillators l o r  calculating the polanton-like (for 
uninverted atoms) and the tachyon-like dispersion relations (for invertcd atoms), for a strongly 

coupled atom-radiation system. 

requirement of causality itself) demand that superluminal group velocities arise 
in any dispersive medium (Bolda, Chiao and Garrison [1993]); in particular, they 
must arise in any medium with gain. 

As an example of thc second, transient situation, we shall focus on the special 
case of tachyon-like propagation of wave packets through a population-inverted 
medium at frequencies close to resonance. Although the theory for the tachyon- 
like excitations of this medium was originally worked out starting from the sine- 
Gordon equation for the fully nonlinear problem of the coupling between the 
two-level atoms and the radiation field (Chiao, Kozhekin and Kurizki [ 1996]), we 
present here a simplified, linearized version of this theory, which brings out more 
directly the essential features. Our goal is to calculate the dispersion relations 
for small-amplitude excitations of the strongly coupled atom-field medium, and 
show that tachyon-like excitations emerge naturally as the normal modes of an 
undamped medium composed of atoms with suddenly inverted populations. 

Consider a long collection of Lorentz oscillators with a uniform density along 
the z-axis (see fig. 10). (There are no mirrors at the ends of this medium.) We 
shall focus on the special case of undamped motions of these oscillators. Such a 
system is a good model for two-level atoms in their ground states (Burnham and 
Chiao [1969]), but can be generalized easily to the case of atoms with inverted 
populations (see eq. 7.2). The two equations which describe the coupled atom- 
radiation system are (i) Maxwell’s equations in the form of the wave equation 

and (ii) the undamped simple harmonic equation of motion for the Lorentz 
oscillators, 

d2X eE 
d t2 m 

~ + w;x = - . (7.10) 
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Here P = Nex is the polarization of the medium ( N  being the number density 
of Lorentz oscillators and x being the displacement from equilibrium of a given 
oscillator), and m is the natural resonance frequency of the oscillators. 

In order to calculate how a wave packet will propagate through this system, 
we shall use the slowly-varying envelope ansatz (SVEA) 

E = €(z, t )  exp[i(koz - m t ) ] ,  

P = P(z,  t )  exp[i(koz - coot)], 

x = x(z, t )  exp[i(koz - coot)], (7.1 1 )  

where &(z, t ) ,  P(z,  t ) ,  x(z, t )  are all slowly varying envelopes which modulate 
the common, fast plane-wave factor, exp[i(koz - (%t)],  and where by definition, 
ko = m/c is the vacuum wave number of the uncoupled waves. Neglecting the 
second derivatives of the slowly-varying amplitudes, we obtain two first-order 
partial differential equations (PDE’s): 

a& oo a& 4 n m 2 N e  
2iko- +2i-- = - X 

d Z  c2 a t  C2 

e& 

m 
- 

(7.12) 

(7.13) 

which are the linearized Maxwell-Bloch equations. Taking the partial derivative 
with respect to time of the first of these equations, and eliminating dx /d t  by 
means of the second equation, we obtain a PDE for the electric field envelope: 

d2& 1 d2& 1 w2 
-+ - -++ -  p &  = 0 .  
a z a t  c a t 2  4 c 

(7.14) 

To include the possibility of population inversion, we use the effective plasma 
frequency up given by eq. (7.2) 1 2 .  In order to find the dispersion relations, we 
substitute into this PDE the plane-wave ansatz 

(7.15) 

and 52 = o - w; this converts eq. (7.14) into the algebraic 

(7.16) 

€ = A exp[i(Kz - a t ) ]  , 

where K = k - 
(quadratic) equation 

Q2 -KcQ-  fa+,’ = 0 .  

The solution of this quadratic equation yields the dispersion relations 
I /2 

52 = ~ K C  f ( K 2 c 2  + wp2) , (7.17) 
which are plotted in fig. 1 1 .  In the case of uninverted atoms (w = - I ) ,  a+, is real, 
and we recover polariton-like dispersion relations, whereas in the case of inverted 

’* The definition of the effective plasma frequency used here differs from that used in Chiao, 
Kozhekin and Kurizki [I9961 in that the factor of (-w) there has been absorbed into fop2 here. 
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Fig. I I .  Dispersion relations for the coupled atom-radiation system as calculated from the undamped 
Lorentz model for uninverted atoms (dashed curve), corresponding to polaritonic branches with 

w = -1, and for inverted atoms (solid curve), corresponding to tachyonic branches with w = +I. 

atoms (w = + I ) ,  cup is imaginary, and we find tachyon-like dispersion relations. 
The tachyonic branches have group velocities which are always faster than c 
(but which approach c far from resonance), infinite at the turning points A+ 
and A _ ,  or negative as resonance is approached. Computer simulations indicate 
that negative group velocities in gain media also have a well-defined physical 
meaning (Bolda, Garrison and Chiao [ 19941). However, under no circumstances 
can these tachyonic excitations outrace the front (Aharonov, Komar and Susskind 
[ 19691, Chiao, Kozhekin and Kurizki [1996]). 

The wave-number gap between A ,  and A -  is a gap of instability arising from 
population inversion. Vacuum fluctuations with frequency components inside this 
gap can trigger spontaneous emission, and hence superfluorescence. However, 
spontaneous emission does not prevent superluminality. It has been shown that 
the typical delay time for the onset of superfluorescence in realistic media (Bolda 
[ 19961) is much longer than the passage time for a typical tachyonic excitation, 
so that the population inversion does not disappear due to the emission of a 
superfluorescent pulse before the tachyonic excitation has had a chance to finish 
propagating through the medium. This should make experiments to observe 
tachyon-like excitations possible, and an experiment has been commenced at 
Berkeley to demonstrate the existence of these excitations in ammonia gas 
pumped by a carbon dioxide laser, on the same transition used in the first maser 
by Gordon, Zeiger and Townes [ 19541. 

It has also been shown that the effective plasma frequency is directly 
proportional to the effective mass of the corresponding collective excitation; 
hence a polariton-like excitation possesses a real effective mass, but a tachyon- 
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like excitation possesses an effective mass which is imaginary, which is the basis 
for calling them “tachyonic” (Chiao, Kozhekin and Kurizki [ 19961). However, it 
should be emphasized that these tachyonic excitations should be viewed as quasi- 
particles in a medium, like phonons, and not as true particles in the vacuum, like 
photons. 

8 8. Why Is Einstein Causality Not Violated? 

The question naturally arises whether Einstein causality is or is not violated by 
the superluminal behavior exhibited in tunneling or in population-inverted media. 
In the case of tunneling, numerous theoretical analyses have shown that there is 
in fact no contradiction with causality (see, for example, Deutch and Low [ 19931, 
Hass and Busch [1994], Azbel [1994], Wang and Zhang [I9951 and Japha and 
Kurizki [1996b]). Let us first make some qualitative remarks concerning this 
question, and then return to some more rigorous, quantitative considerations. 
We shall restrict our attention here to classical electromagnetic signals, for 
example, voltage wave forms displayed on an oscilloscope. Also, we shall assume 
the total absence of noise in the following section. However, the fundamental 
considerations of causality given below for classical electromagnetism should 
be generalizable to quantum field theories (Eberhard and Ross [ 19881). 

The qualitative discussion starts with the observation that there is no 
information contained in the peak of an analytic wave packet which is not 
already present in its forward tail. For example, the behavior near a peak of an 
analytic wave form, e.g., of a Gaussian wave packet, could have been predicted 
by Taylor’s theorem from the earlier behavior of its forward exponential tail 
(i.e., using the knowledge of all the derivatives of the earlicr portions of the 
wave form, we could extrapolate to all later portions; in particular, we could 
in principle predict the exact moment of arrival for the peak of the wave 
form 1 3 ) .  Therefore there is no real surprise when the peak eventually arrives. 
New information is communicated only when there is an unexpected change, 
such as a discontinuity, whose arrival time cannot be inferred from the past 
behavior of the wave. 

l 3  Pulse reshaping mechanisms, such as the virtual amplification of the forward tail followed by 
the virtual absorption of the peak of the Gaussian wave packet which reproduces the shape of this 
wave packet, can therefore advance the peak forward in time in a completely predictable and causal 
manner. 
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A simple example of such a discontinuity is that of a step-modulated sine 
wave, i.e., a jump discontinuity or “front”, which Sommerfeld and Brillouin used 
in their study of precursors. Their wave form thus has a sharp jump from zero 
to finite intensity at the front. They found that no features of their solution, 
including their precursors, could ever overtake this front. In contrast to the 
peak of the Gaussian wave packet, the arrival of the front could never have 
been predicted from any prior information, and hence the front in this example 
constitutes a genuine signal, i.e., new information. 

However, any point of nonanalyticity in a wave form, such as a jump 
discontinuity in some higher derivative, and not just a jump discontinuity in 
the wave amplitude such as the front of Sommerfeld and Brillouin, can serve 
as a carrier of genuinely new information. Any such point of nonanalyticity 
is always preserved upon transmission by any linear, causal system, as we 
shall demonstrate below. Nonunabtic wave forms, for example, piecewise 
analytic functions joined smoothly at given points of nonanalyticity, have Fourier 
components which fall off algebraically in the high-frequency limit (the higher 
the order of the derivative jump, the larger the negative exponent of the 
frequency in this fall-off). It is the response in the infnite-frequency limit of 
the system that ultimately determines the propagation speed of the points of 
nonanalyticity, and hence of truly new information. Since the propagation of 
infinite-frequency components of a disturbance occurs at the vacuum speed of 
light, i.e., at Sommerfeld and Brillouin’s front velocity, this is also the velocity 
of propagation of the points of nonanalyticity, and hence of genuine information. 
It is fundamentally for this reason that Einstein causality cannot be violated 
under any circumstances, either in the tunneling barrier or in population-inverted 
media. 

The rigorous, quantitative considerations start with a “black box” which 
locally relates an input to an output wave form by means of a linear transfer 
function T(t), via the equation 

where t is a delay time, &(t)  is an arbitrary input function, and fout(t) is the 
resulting output function. For example, the inputf;,(t) could represent an electric 
field applied to an atom, whose polarizability would be represented by T ( z ) ,  
and the outputh,,(t) would represent the dipole moment response of the atom 
produced by the electric field. It should be stressed that &(t )  and fout(t) can 
represent any of the higher derivatives of the wave form, as well as the wave 
form itself. This follows directly from the linearity of eq. (8.1). 
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The principle of causality demands that the integrand must vanish for z < 0 
in eq. (8. I), since any effect (e.g., the atomic dipole moment) must not precede 
its cause (e.g., the applied electric field). This necessitates that 

T ( t )  = 0 for all t < 0 .  (8.2) 

When eq. (8.1) is Fourier tranformed into the frequency domain, i t  becomes 
- 

fo”t(W) = mJ%4 7 (8.3) 

where the tildes denote Fourier transforms. The complex frequency transfer 
function T(w), as a consequence of eq. (8.2), must satisfy the condition that 

- 
T ( w )  is analytic for all Im w > 0 ,  (8.4) 

i .e., the complex frequency transfer function must be analytic in the upper 
half frequency plane (UHP), which is an expression of causality equivalent to 
eq. (8.2). This leads to the Kramers-Kronig relations for T ( w )  (Landau and 
Lifshitz [1960]). 

Now suppose that the functionf;,(t) has a front in it at the time to, so that 

Jn(t) = 0 for all t < to . ( 8 . 5 )  

Then the Fourier transform of this function must satisfy the condition that 

f;n(w) is analytic for all Im o > o , (8.6) 

i.e., the Fourier transform of the input function must be analytic in the UHP. 
Since each of its factors are analytic in the UHP, it follows that the product 

- 
hut(w)  = ;ir(w)f;n(w) is analytic for all Im w > o , (8.7) 

i.e., the Fourier transform of the output function must also be analytic in the 
UHP. Therefore using the inverse Fourier transform, we obtain the result 

where i t  can be shown that tE, = to for any “black box” that has a negligible 
spatial extent. This proves that fronts in the input survive the transfer through 
any “black box” which is linear and causal: Fronts are preserued in the output. 
Therefore, although there is no physical law which guarantees that an incoming 
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peak turns into an outgoing peak, there is a physical law namely causality, that 
guarantees that an incoming front turns into an outgoing front, even when the 
front carries little energy or probability. 

Using linearity, we can generalize this result to any point of nonanalyticity, for 
example, a jump discontinuity in some higher derivative of the wave form. Using 
the superposition principle, which also follows from the linearity of the system, 
we can further generalize this to all the points of nonanalyticity to, t l ,  t 2 , .  . . 
in the wave form. Motivated by these considerations, we shall define a signal 
as the complete set of all the points of nonanalyticity {to, t l ,  t 2 , .  . .}, together 
with the values of the input functionJn(t) in a small but finite interval of time 
inside the domain of analyticity immediately following these points. It should 
be emphasized that this definition leads to a signal velocity that differs from 
the conventional one given by the group velocity. The principle of causality 
makes this new definition necessary. However, we are making idealizations, in 
particular, in assuming the highest possible detector sensitivity and the perfect 
noiselessness of the system, in formulating this fundamental definition, but this 
may not be a practical definition under all circumstances. 

The generalization of this argument to propagation through any spatially 
extended “black box” that is linear and causal, is straightforward (Jackson 
[1975]). For an input with a single point of nonanalyticity at to given by 

&(t )  = 0 for all t < to , (8.9) 

the output must satisfy the condition that 

fout(t) = 0 for all t - d/c < to , (8.10) 

where d is the distance from the input face to the output face of the “black 
box”. Using the definition given above, we conclude that genuine signals cannot 
propagate faster than c. In fact they propagate exactly at c,  i.e., at the front 
velocity. Thus Einstein causality, i.e., special relativity, is not violated. 

Although at a fundamental level no genuine signal can be transmitted faster 
than light, at a practical level there are situations in which useful temporal 
advances of a wave form are possible. For example, unwanted positive group 
delays arising from normal dielectric media in the system may be compensated 
by negative group delays, but only up to the limit permitted by Einstein 
causality (Chiao, Boyce and Garrison [ 19951, Steinberg and Chiao [ 1994b1). In 
another example, a detector followed by a discriminator with a fixed trigger level 
can register the arrival of a pulse earlier with the aid of an amplifier than without 
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it, but again only up to the Einsteinian limit (Chiao [1996], Mitchell and Chiao 

The meaning of superluminal group velocities was also considered recently by 
Diener [ 19961. He also concluded that superluminal group velocities cannot be 
interpreted as a velocity of information transfer. The method he used to reach this 
conclusion was different, being based on the Green’s function and its application 
to the analytic continuation of the pulse shape using information only within 
the past light cone. However, Diener continued to interpret subluminal group 
velocities as signal velocities, whereas we believe that the same definition for 
“signal” should in principle be consistently applied to both superluminal and 
subluminal cases. 

[ 19971). 

9 9. Conclusion 

We thus see that a relatively old debate over how long the tunneling process takes 
has begun to shed new light on a variety of issues, in no small part thanks to 
the realization that the analogy between electromagnetic and Schrodinger wave 
equations permits the same phenomenon to be studied in optics rather than in 
the solid state. We are developing a new understanding of the limits imposed by 
causality on various propagation speeds, and have relearned that a group velocity, 
and even the motion of a real, well-behaved wave packet peak, can in fact be 
greater than c. We see also that time in quantum mechanics is not a simple 
issue: a given process may have not a single duration, but a set of different 
timescales describing its various aspects. When the problem is studied in the light 
of particle-wave duality, where the actual time of arrival of individual quanta 
is on average earlier than what would be expected from a nai’ve application of 
causality principles, we come up against one of the central problems of quantum 
mechanics -the extent to which one can discuss quantities which have not been 
measured directly, such as the past history of a particle we observe at the present 
time. This applies to single-photon wave packet propagation both in tunneling 
and in gain media. In the case of tunneling, there is no clear way to separate 
“to-be-transmitted” and “to-be-reflected” portions, nor to answer the question of 
where a particle is save in a probabilistic manner. Yet a quantum particle may 
be forced eventually into a purely transmitted or reflected state, and the question 
of how much effect it has had on devices placed in its path (or how much effect 
thcy have had on it) is certainly a reasonable, and an important, one to ask. 

The superluminality of the tunneling process should also be a relevant 
consideration in fundamental questions concerning the nature of Hawking 
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radiation from an evaporated black hole, and of similar radiative processes which 
involve the tunneling of particles through an event horizon (Massar and Parentani 
[ 19971). Closely related are the questions raised here: what constitutes a signal, 
i.e., what is information at the quantum level? Aside from their fundamental 
interest, the answers to such questions are crucial for responding to questions 
such as what the maximum speed of a tunneling device might be. Work continues 
on these issues at both the experimental and the theoretical level, and in both 
arenas, optical versions of tunneling and other superluminal phenomena have 
been and will continue to be of great value to the debate. Not only should we 
expect this work to teach us more about the fundamental nature of the tunneling 
process, but about some of the deepest mysteries of quantum mechanics. 
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Note added in proof 

After this review was written, another review on a similar subject was published 
by Nimtz and Heitmann [1997] (Prog. Quantum Electron. 21, 81). These authors 
deny the central significance of the front velocity for signals. For the reasons 
given in 5 8, we believe that their point of view is fundamentally incorrect. 
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