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CHAPTER 6. MAGNETIC FIELDS IN MATTER 135

Problem 6.8

r⇥M = Jb =
1

s

@

@s
(s ks2)ẑ =

1

s
(3ks2)ẑ = 3ksẑ, Kb = M⇥n̂ = ks2(�̂⇥ŝ) = �kR2ẑ.

So the bound current flows up the cylinder, and returns down the surface. [Incidentally, the total current should

be zero. . . is it? Yes, for
R

Jb da =
R R

0
(3ks)(2⇡s ds) = 2⇡kR3, while

R
Kb dl = (�kR2)(2⇡R) = �2⇡kR3.] Since

these currents have cylindrical symmetry, we can get the field by Ampère’s law:

B · 2⇡s = µ0Ienc = µ0

Z s

0

Jb da = 2⇡kµ0s
3 ) B = µ0ks2�̂ = µ0M.

Outside the cylinder Ienc = 0, so B = 0.
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Kb = M×n̂ = M φ̂.

(Essentially a long solenoid)
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[The external fields are the same as in the electrical
case; the internal fields (inside the bar) are completely
di↵erent—in fact, opposite in direction.]

Problem 6.10
Kb = M , so the field inside a complete ring would be µ0M . The field of a square loop, at the center, is

given by Prob. 5.8: Bsq =
p

2 µ0I/⇡R. Here I = Mw, and R = a/2, so

Bsq =

p
2 µ0Mw

⇡(a/2)
=

2
p

2 µ0Mw

⇡a
; net field in gap : B = µ0M

 
1� 2

p
2 w

⇡a

!
.
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Problem I

(a) The retarded electrical potential is computed from

V (r, t) =
1

4πε0

∫
ρ(r′, tr)

|r − r′| d
3r′, (1)

where the retarded time is tr = t− |r− r′|/c. The charges of this electric dipole are located at
r± = ± s

2 ẑ, so the corresponding retarded times are t±r = t − |r − r±|/c. With the aid of the
three-dimensional Dirac delta function we can write the charge density as

ρ(r′, tr) = Re
{
Q(t+r )δ3(r′ − r+)−Q(t−r )δ3(r′ − r−)

}
, (2)

with Q(tr) = Qme
iωtr . Plugging this charge density in (1) we obtain

V (r, t) = Re

{
1

4πε0

[
Q(t+r )

|r − r+|
− Q(t−r )

|r − r−|

]}
. (3)

We now need to compute |r − r±| as these appear in the denominators and in the retarded
times in the expression for the potential. We then get

∣∣r ± s
2 ẑ
∣∣ =

[
(r ± s

2 ẑ) · (r ± s
2 ẑ)
]1/2

(4)

=
[
r2 ± srr̂ · ẑ + ( s2)2

]1/2 ∧ r̂ · ẑ = cos θ (5)

= r
[
1± s

r cos θ + ( s2r )2
]1/2 ∧ s� r ⇐⇒ s

r � 1 (6)

≈ r
[
1± s

2r cos θ
]
. (7)

Thus, the denominators can be approximated as

1

|r − r±|
=

1∣∣r ∓ s
2 ẑ
∣∣ ≈

1

r
[
1∓ s

2r cos θ
] ≈ 1

r

[
1± s

2r
cos θ

]
, (8)

while the exponents of the complex exponentials, using λ̄ ≡ c/ω, become

ωt±r = ωt− ω

c
|r − r±| ≈ ωt−

ω

c
r
[
1∓ s

2r
cos θ

]
= ω

(
t− r

c

)
± s

2λ̄
cos θ. (9)

With these results, the potential takes the form

V (r, t) ≈ Re

{
Qme

iω(t− r
c
)

4πε0r

[
(1 + s

2r cos θ)ei
s

2λ̄
cos θ − (1− s

2r cos θ)e−i
s

2λ̄
cos θ

]}
. (10)

Assuming s� λ̄ ⇐⇒ s
λ̄ � 1, then e±i

s
2λ̄

cos θ ≈ 1± i s2λ̄ cos θ. Using this approximation for the
complex exponentials, after some straightforward algebra we finally arrive at

V (r, t) ≈ Re

{
Qme

iω(t− r
c
)s cos θ

4πε0λ̄r

[
λ̄

r
+ i

]}
= Re

{
[p∗] cos θ

4πε0λ̄r

[
λ̄

r
+ i

]}
, (11)

where [p∗] ≡ sQmeiω(t− r
c
) is the magnitude of the complex electric dipole moment evaluated at

the retarded time t− r
c .
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(b) The expression for the retarded vector potential is

A(r, t) =
µ0

4π

∫
J(r′, tr)

|r − r′| d
3r′. (12)

One can write the current density as

J(r′, tr) =

{
ẑI(tr)δ(x

′)δ(y′) , z′ ∈ [− s
2 ,

s
2 ]

0 , z′ ∈ (−∞,− s
2) ∪ ( s2 ,∞)

, (13)

where I(t) = Re
{
d
dtQ(t)

}
= Re

{
d
dtQme

iωt
}

= Re
{
iωQme

iωt
}

. Substituting in (12) yields

A(r, t) = Re

{
ẑ
µ0

4π
iωQm

∫ s/2

−s/2

eiω(t−|r−z′ẑ|/c)

|r − z′ẑ| dz′

}
. (14)

Since z′ ∈ [− s
2 ,

s
2 ] =⇒ |z′| ≤ s

2 , and recalling that s� r we conclude |z
′|
r � 1. So we can repeat

the approximations presented in part (a) to obtain

|r − z′ẑ| ≈ r
[
1− z′

r cos θ
]
, (15)

1

|r − z′ẑ| ≈
1

r

[
1 + z′

r cos θ
]
, (16)

ω

(
t− |r − z

′ẑ|
c

)
≈ ω

(
t− r

c

)
+
z′

λ̄
cos θ. (17)

Using these approximations we get the following vector potential

A(r, t) ≈ Re

{
ẑ
µ0

4πr
iωQme

iω(t− r
c
)

∫ s/2

−s/2
ei
z′
λ̄

cos θ
[
1 + z′

r cos θ
]
dz′

}
. (18)

The already shown result |z′| ≤ s
2 together with s � λ̄ imply |z′|

λ̄ � 1, hence ei
z′
λ̄

cos θ ≈
1 + i z

′

λ̄ cos θ. Thus the integral to be computed simplifies to

∫ s/2

−s/2

[
1 + i

z′

λ̄
cos θ

] [
1 +

z′

r
cos θ

]
dz′ ≈

∫ s/2

−s/2

[
1 + z′

(
i

λ̄
+

1

r

)
cos θ

]
dz′. (19)

But
∫ s/2
−s/2 z

′dz′ = 0, so the integral can be simply approximated as s. Therefore, the retarded
vector potential is given by

A(r, t) ≈ Re

{
1

4πε0cλ̄r
isQme

iω(t− r
c
)(cos θr̂ − sin θθ̂)

}
= Re

{
i[p∗]

4πε0cλ̄r
(cos θr̂ − sin θθ̂)

}
,

(20)
where we used that µ0ω = 1

ε0cλ̄
and ẑ = cos θr̂ − sin θθ̂.

(c) By direct differentiation—using ∂
∂t [p

∗] = iω[p∗] and ∂
∂r [p∗] = − i

λ̄ [p∗]—one can readily
show

ε0µ0
∂V

∂t
= Re

{
iω[p∗] cos θ

4πε0c2λ̄r

[
λ̄

r
+ i

]}
= −∇ ·A, (21)

hence ε0µ0
∂V
∂t +∇·A = 0. Therefore, the potentials computed in (a) and (b) do indeed satisfy

the Lorentz condition.
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[The external fields are the same as in the electrical
case; the internal fields (inside the bar) are completely
di↵erent—in fact, opposite in direction.]

Problem 6.10
Kb = M , so the field inside a complete ring would be µ0M . The field of a square loop, at the center, is

given by Prob. 5.8: Bsq =
p

2 µ0I/⇡R. Here I = Mw, and R = a/2, so

Bsq =

p
2 µ0Mw

⇡(a/2)
=

2
p

2 µ0Mw

⇡a
; net field in gap : B = µ0M

 
1� 2

p
2 w

⇡a

!
.
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Problem II

(a) The retarded vector potential generated by a current I(t) = Re
{
Ime

iωt
}

flowing in a
circular loop of radius a in the xy plane reads

A(r, t) = Re

{
µ0

4π

∫ 2π

0

Ime
iω(t−r′/c)

r′
aφ̂dφ

}
, (22)

where φ is the angle used to parameterize the loop and r′ = |r′| = |r− aρ̂(φ)|. For those inter-
ested, the above expression results from the current density J(r, t) = I(t)δ(ρ− a)δ(z)φ̂.

In spherical coordinates (r, θ, ϕ), the point at which we are computing A(r, t) is

r = r[sin θ cosϕx̂+ sin θ sinϕŷ + cos θẑ] = r[sin θρ̂(ϕ) + cos θẑ], (23)

so we have r · ρ̂(φ) = r sin θ cos(φ− ϕ). Thus,

r′ = [(r − aρ̂(φ)) · (r − aρ̂(φ))]1/2 (24)

=
[
r2 − 2ar · ρ̂(φ) + a2

]1/2
(25)

=
[
r2 − 2ar sin θ cos(φ− ϕ) + a2

]1/2
(26)

= r
[
1− 2ar sin θ cos(φ− ϕ) +

(
a
r

)2]1/2
∧ a

r � 1 (27)

≈ r
[
1− a

r sin θ cos(φ− ϕ)
]
. (28)

Using this approximate expression for r′ we obtain

1

r′
≈ 1

r

[
1 +

a

r
sin θ cos(φ− ϕ)

]
and ω

(
t− r′

c

)
≈ ω

(
t− r

c

)
+
a

λ̄
sin θ cos(φ− ϕ). (29)

The exponential in the integrand then becomes

eiω(t−r′/c) ≈ eiω(t−r/c)ei
a
λ̄

sin θ cos(φ−ϕ) ≈ eiω(t−r/c)
(

1 + i
a

λ̄
sin θ cos(φ− ϕ)

)
(30)

where we used a
λ̄ � 1 to get the last expression. Plugging all these approximations in (22)

yields

A(r, t) ≈ Re

{
µ0Im
4πr

eiω(t−r/c)
∫ 2π

0

(
1 + a sin θ cos(φ− ϕ)

[
i

λ̄
+

1

r

])
aφ̂dφ

}
. (31)

Recalling that φ̂ = − sinφx̂ + cosφŷ and cos(φ − ϕ) = cosφ cosϕ + sinφ sinϕ, one can com-
pute

∫ 2π

0
φ̂dφ = 0, (32)

∫ 2π

0
cos(φ− ϕ)φ̂dφ = πϕ̂, (33)

where ϕ̂ = − sinϕx̂+ cosϕŷ. Therefore, we get

A(r, t) ≈ Re

{
µ0πa

2Im
4πλ̄r

eiω(t−r/c)
[
λ̄

r
+ i

]
sin θϕ̂

}
. (34)
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Introducingmm ≡ πa2Im, [t] ≡ t− r
c , [m∗] = mme

iω[t], and [m∗] = [m∗]ẑ we finally obtain

A(r, t) ≈ Re

{
µ0mm

4πλ̄r
eiω[t]

[
λ̄

r
+ i

]
sin θϕ̂

}
= Re

{
iµ0[m∗]× r̂

4πλ̄r

[
1− i λ̄

r

]}
. (35)

Note that to get the last expression we used ẑ×r̂ = sin θϕ̂. It’s worth mentioning the similarity
in the structure between the electrical potential we computed in Problem I (a) and the present
result for the vector potential. By introducing [p∗] ≡ [p∗]ẑ, we can rewrite V as

V (r, t) ≈ Re

{
i[p∗] · r̂
4πε0λ̄r

[
1− i λ̄

r

]}
. (36)

They both exhibit the same r dependence. Their angular dependence is determined by [p∗] · r̂
and [m∗]× r̂, respectively.

(b) The magnitude of the vector potential is |A(r, t)| = µ0mm
4πλ̄r2 |[λ̄ cos(ω[t])− r sin(ω[t])] sin θ|.

It vanishes at either θ = 0, π or tan(ω[t]) = λ̄/r. At fixed time t, |A(r, t)| is maximum at
θ = π

2 .
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Problem 10.14

In this approximation we’re dropping the higher derivatives of J, so J̇(tr) = J̇(t), and Eq. 10.38 )

B(r, t) =
µ0

4⇡

Z
1

r 2


J(r0, t) + (tr � t)J̇(r0, t) +

r
c

J̇(r0, t)

�
⇥ r̂ d⌧ 0, but tr � t = � r

c
(Eq. 10.25), so

=
µ0

4⇡

Z
J(r0, t)⇥ r̂

r 2
d⌧ 0. qed

Problem 10.15

At time t the charge is at r(t) = a[cos(!t) x̂ + sin(!t) ŷ], so v(t) = !a[� sin(!t) x̂ + cos(!t) ŷ]. Therefore

r = z ẑ� a[cos(!tr) x̂ + sin(!tr) ŷ], and hence r 2 = z2 + a2 (of course), and r =
p

z2 + a2.

r̂ · v =
1

r (r · v) =
1

r
�
�!a2[� sin(!tr) cos(!tr) + sin(!tr) cos(!tr)]

 
= 0, so

✓
1� r̂ · v

c

◆
= 1.

Therefore

V (z, t) =
1

4⇡✏0

qp
z2 + a2

; A(z, t) =
q!a

4⇡✏0c2
p

z2 + a2
[� sin(!tr) x̂ + cos(!tr) ŷ), where tr = t�

p
z2 + a2

c
.

Problem 10.16

Term under square root in (Eq. 10.49) is:

I = c4t2 � 2c2t(r · v) + (r · v)2 + c2r2 � c4t2 � v2r2 + v2c2t2

= (r · v)2 + (c2 � v2)r2 + c2(vt)2 � 2c2(r · vt). put in vt = r�R2.

= (r · v)2 + (c2 � v2)r2 + c2(r2 + R2 � 2r · R)� 2c2(r2 � r · R) = (r · v)2 � r2v2 + c2R2.

but

(r · v)2 � r2v2 = ((R + vt) · v)2 � (R + vt)2v2

= (R · v)2 + v4t2 + 2(R · v)v2t�R2v2 � 2(R · v)tv2 � v2t2v2

= (R · v)2 �R2v2 = R2v2 cos2 ✓ �R2v2 = �R2v2
�
1� cos2 ✓

�

= �R2v2 sin2 ✓.

Therefore

I = �R2v2 sin2 ✓ + c2R2 = c2R2

✓
1� v2

c2
sin2 ✓

◆
.

Hence

V (r, t) =
1

4⇡✏0

q

R
q

1� v2

c2 sin2 ✓
. qed

Problem 10.17

Once seen, from a given point x, the particle will forever remain in view—to disappear it would have to
travel faster than light.
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Problem 10.18

First calculate tr: tr = t� |r�w(tr)|/c)
�c(tr � t) = x�

p
b2 + c2t2r ) c(tr � t) + x =

p
b2 + c2t2r;

c2t2r � 2c2trt + c2t2 + 2xctr � 2xct + x2 = b2 + c2t2r;
2ctr(x� ct) + (x2 � 2xct + c2t2) = b2;

2ctr(x� ct) = b2 � (x� ct)2, or tr =
b2 � (x� ct)2

2c(x� ct)
.

Now V (x, t) =
1

4⇡✏0

qc

(r c� r · v)
, and r c� r · v = r (c� v); r = c(t� tr).

v =
1

2

1p
b2 + c2t2r

2c2tr =
c2tr

c(tr � t) + x
=

c2tr
ctr + (x� ct)

; (c� v) =
c2tr + c(x� ct)� c2tr

ctr + (x� ct)
=

c(x� ct)

ctr + (x� ct)
;

r c� r ·v =
c(t� tr)c(x� ct)

ctr + (x� ct)
=

c2(t� tr)(x� ct)

ctr + (x� ct)
; ctr +(x�ct) =

b2 � (x� ct)2

2(x� ct)
+(x�ct) =

b2 + (x� ct)2

2(x� ct)
;

t� tr =
2ct(x� ct)� b2 + (x� ct)2

2c(x� ct)
=

(x� ct)(x + ct)� b2

2c(x� ct)
=

(x2 � c2t2 � b2)

2c(x� ct)
. Therefore

1

r c� r · v =


b2 + (x� ct)2

2(x� ct)

�
1

c2(x� ct)

2c(x� ct)

[2ct(x� ct)� b2 + (x� ct)2]
=

b2 + (x� ct)2

c(x� ct) [2ct(x� ct)� b2 + (x� ct)2]
.

The term in square brackets simplifies to (2ct + x� ct)(x� ct)� b2 = (x + ct)(x� ct)� b2 = x2 � c2t2 � b2.

So V (x, t) =
q

4⇡✏0

b2 + (x� ct)2

(x� ct)(x2 � c2t2 � b2)
.

Meanwhile

A =
V

c2
v =

c2tr
ctr + (x� ct)

V

c2
x̂ =


b2 � (x� ct)2

2c(x� ct)

�
2(x� ct)

b2 + (x� ct)2
q

4⇡✏0

b2 + (x� ct)2

(x� ct)(x2 � c2t2 � b2)
x̂

=
q

4⇡✏0c

b2 � (x� ct)2

(x� ct)(x2 � c2t2 � b2)
x̂.
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Problem 6.8

r⇥M = Jb =
1
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@

@s
(s ks2)ẑ =

1

s
(3ks2)ẑ = 3ksẑ, Kb = M⇥n̂ = ks2(�̂⇥ŝ) = �kR2ẑ.

So the bound current flows up the cylinder, and returns down the surface. [Incidentally, the total current should

be zero. . . is it? Yes, for
R

Jb da =
R R

0
(3ks)(2⇡s ds) = 2⇡kR3, while

R
Kb dl = (�kR2)(2⇡R) = �2⇡kR3.] Since

these currents have cylindrical symmetry, we can get the field by Ampère’s law:

B · 2⇡s = µ0Ienc = µ0

Z s

0

Jb da = 2⇡kµ0s
3 ) B = µ0ks2�̂ = µ0M.

Outside the cylinder Ienc = 0, so B = 0.
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[The external fields are the same as in the electrical
case; the internal fields (inside the bar) are completely
di↵erent—in fact, opposite in direction.]

Problem 6.10
Kb = M , so the field inside a complete ring would be µ0M . The field of a square loop, at the center, is

given by Prob. 5.8: Bsq =
p

2 µ0I/⇡R. Here I = Mw, and R = a/2, so

Bsq =

p
2 µ0Mw

⇡(a/2)
=

2
p

2 µ0Mw

⇡a
; net field in gap : B = µ0M

 
1� 2

p
2 w

⇡a

!
.
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Problem 10.19
From Eq. 10.44, c(t� tr) = r ) c2(t� tr)

2 = r 2 = r · r . Di↵erentiate with respect to t:

2c2(t� tr)

✓
1� @tr

@t

◆
= 2r · @ r

@t
, or cr

✓
1� @tr

@t

◆
= r · @ r

@t
. Now r = r�w(tr), so

@ r
@t

= �@w
@t

= �@w
@tr

@tr
@t

= �v
@tr
@t

; cr
✓

1� @tr
@t

◆
= �r · v

@tr
@t

; cr =
@tr
@t

(cr � r · v) =

@tr
@t

(r · u) (Eq. 10.71), and hence
@tr
@t

=
cr
r · u . qed

Now Eq. 10.47 says A(r, t) =
v

c2
V (r, t), so

@A

@t
=

1

c2

✓
@v

@t
V + v

@V

@t

◆
=

1

c2

✓
@v

@tr

@tr
@t

V + v
@V

@t

◆

=
1

c2


a
@tr
@t

1

4⇡✏0

qc

r · u + v
1

4⇡✏0

�qc

(r · u)2
@

@t
(r c� r · v)

�

=
1

c2

qc

4⇡✏0


a

r · u
@tr
@t
� v

(r · u)2

✓
c
@ r
@t
� @ r

@t
· v � r · @v

@t

◆�
.

But r = c(t� tr))
@ r
@t

= c

✓
1� @tr

@t

◆
, r = r�w(tr))

@ r
@t

= �v
@tr
@t

(as above), and

@v

@t
=
@v

@tr

@tr
@t

= a
@tr
@t

.

=
q

4⇡✏0c(r · u)2

⇢
a(r · u)

@tr
@t
� v


c2

✓
1� @tr

@t

◆
+ v2 @tr

@t
� r · a@tr

@t

��

=
q

4⇡✏0c(r · u)2

⇢
�c2v +

⇥
(r · u)a + (c2 � v2 + r · a)v

⇤ @tr
@t

�

=
q

4⇡✏0c(r · u)2

⇢
�c2v +

⇥
(r · u)a + (c2 � v2 + r · a)v

⇤ cr
r · u

�

=
q

4⇡✏0c(r · u)3
⇥
�c2v(r · u) + cr (r · u)a + cr (c2 � v2 + r · a)v

⇤

=
qc

4⇡✏0

1

(r c� r · v)3


(r c� r · v)

✓
�v +

r
c

a

◆
+

r
c

(c2 � v2 + r · a)v

�
. qed

Problem 10.20

E =
q

4⇡✏0

r
(r · u)3

⇥
(c2 � v2)u + r ⇥ (u⇥ a)

⇤
. Here

v = v x̂, a = a x̂, and, for points to the right , r̂ = x̂.
So u = (c� v) x̂, u⇥ a = 0, and r · u = r (c� v).

E =
q

4⇡✏0

r
r 3(c� v)3

(c2 � v2)(c� v) x̂ =
q

4⇡✏0

1

r 2

(c + v)(c� v)2

(c� v)3
x̂ =

q

4⇡✏0

1

r 2

✓
c + v

c� v

◆
x̂;

B =
1

c
r̂ ⇥E = 0. qed

For field points to the left, r̂ = �x̂ and u = �(c + v) x̂, so r · u = r (c + v), and

E = � q

4⇡✏0

r
r 3(c + v)3

(c2 � v2)(c + v) x̂ =
�q

4⇡✏0

1

r 2

✓
c� v

c + v

◆
x̂; B = 0.
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Problem 6.8

r⇥M = Jb =
1

s

@

@s
(s ks2)ẑ =

1

s
(3ks2)ẑ = 3ksẑ, Kb = M⇥n̂ = ks2(�̂⇥ŝ) = �kR2ẑ.

So the bound current flows up the cylinder, and returns down the surface. [Incidentally, the total current should

be zero. . . is it? Yes, for
R

Jb da =
R R

0
(3ks)(2⇡s ds) = 2⇡kR3, while

R
Kb dl = (�kR2)(2⇡R) = �2⇡kR3.] Since

these currents have cylindrical symmetry, we can get the field by Ampère’s law:

B · 2⇡s = µ0Ienc = µ0

Z s

0

Jb da = 2⇡kµ0s
3 ) B = µ0ks2�̂ = µ0M.

Outside the cylinder Ienc = 0, so B = 0.

Problem 6.9
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[The external fields are the same as in the electrical
case; the internal fields (inside the bar) are completely
di↵erent—in fact, opposite in direction.]

Problem 6.10
Kb = M , so the field inside a complete ring would be µ0M . The field of a square loop, at the center, is

given by Prob. 5.8: Bsq =
p

2 µ0I/⇡R. Here I = Mw, and R = a/2, so

Bsq =

p
2 µ0Mw

⇡(a/2)
=

2
p

2 µ0Mw

⇡a
; net field in gap : B = µ0M
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[The external fields are the same as in the electrical
case; the internal fields (inside the bar) are completely
di↵erent—in fact, opposite in direction.]

Problem 6.10
Kb = M , so the field inside a complete ring would be µ0M . The field of a square loop, at the center, is

given by Prob. 5.8: Bsq =
p

2 µ0I/⇡R. Here I = Mw, and R = a/2, so

Bsq =

p
2 µ0Mw

⇡(a/2)
=

2
p

2 µ0Mw

⇡a
; net field in gap : B = µ0M
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Problem 10.24
�(�, t) = �0| sin(✓/2)|, where ✓ = �� !t. So the (retarded) scalar potential at the center is (Eq. 10.26)

V (t) =
1

4⇡✏0

Z
�

r dl0 =
1

4⇡✏0

Z 2⇡

0

�0 |sin[(�� !tr)/2]|
a

a d�

=
�0

4⇡✏0

Z 2⇡

0

sin(✓/2) d✓ =
�0

4⇡✏0
[�2 cos(✓/2)]

���
2⇡

0

=
�0

4⇡✏0
[2� (�2)] =

�0

⇡✏0
.

(Note: at fixed tr, d� = d✓, and it goes through one full cycle of � or ✓.)
Meanwhile I(�, t) = �v = �0!a |sin[(�� !t)/2]| �̂. From Eq. 10.26 (again)

A(t) =
µ0

4⇡

Z
I

r dl0 =
µ0

4⇡

Z 2⇡

0

�0!a |sin[(�� !tr)/2]| �̂
a

a d�.

But tr = t� a/c is again constant, for the � integration, and �̂ = � sin� x̂ + cos� ŷ.

=
µ0�0!a

4⇡

Z 2⇡

0

|sin[(�� !tr)/2]| (� sin� x̂ + cos� ŷ) d�. Again, switch variables to ✓ = �� !tr,

and integrate from ✓ = 0 to ✓ = 2⇡ (so we don0t have to worry about the absolute value).

=
µ0�0!a

4⇡

Z 2⇡

0

sin(✓/2) [� sin(✓ + !tr) x̂ + cos(✓ + !tr) ŷ] d✓. Now

Z 2⇡

0

sin (✓/2) sin(✓ + !tr) d✓ =
1

2

Z 2⇡

0

[cos (✓/2 + !tr)� cos (3✓/2 + !tr)] d✓

=
1

2


2 sin (✓/2 + !tr)�

2

3
sin (3✓/2 + !tr)

�����
2⇡

0

= sin(⇡ + !tr)� sin(!tr)�
1

3
sin(3⇡ + !tr) +

1

3
sin(!tr)

= �2 sin(!tr) +
2

3
sin(!tr) = �4

3
sin(!tr).

Z 2⇡

0

sin (✓/2) cos(✓ + !tr) d✓ =
1

2

Z 2⇡

0

[� sin (✓/2 + !tr) + sin (3✓/2 + !tr)] d✓

=
1

2


2 cos (✓/2 + !tr)�

2

3
cos (3✓/2 + !tr)

�����
2⇡

0

= cos(⇡ + !tr)� cos(!tr)�
1

3
cos(3⇡ + !tr) +

1

3
cos(!tr)

= �2 cos(!tr) +
2

3
cos(!tr) = �4

3
cos(!tr). So

A(t) =
µ0�0!a

4⇡

✓
4

3

◆
[sin(!tr) x̂� cos(!tr) ŷ] =

µ0�0!a

3⇡
{sin[!(t� a/c)] x̂� cos[!(t� a/c)] ŷ} .
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