PHYSICS 100C: ELECTROMAGNETISM SOLUTIONS HOMEWORK \#5

Prof. Julio Barreiro
TA: Sebastian Diaz

Problem I

(a) The retarded electrical potential is computed from

$$
\begin{equation*}
V(\boldsymbol{r}, t)=\frac{1}{4 \pi \epsilon_{0}} \int \frac{\rho\left(\boldsymbol{r}^{\prime}, t_{r}\right)}{\left|\boldsymbol{r}-\boldsymbol{r}^{\prime}\right|} d^{3} \boldsymbol{r}^{\prime}, \tag{1}
\end{equation*}
$$

where the retarded time is $t_{r}=t-\left|\boldsymbol{r}-\boldsymbol{r}^{\prime}\right| / c$. The charges of this electric dipole are located at $\boldsymbol{r}_{ \pm}= \pm \frac{s}{2} \hat{\boldsymbol{z}}$, so the corresponding retarded times are $t_{r}^{ \pm}=t-\left|\boldsymbol{r}-\boldsymbol{r}_{ \pm}\right| / c$. With the aid of the three-dimensional Dirac delta function we can write the charge density as

$$
\begin{equation*}
\rho\left(\boldsymbol{r}^{\prime}, t_{r}\right)=\operatorname{Re}\left\{Q\left(t_{r}^{+}\right) \delta^{3}\left(\boldsymbol{r}^{\prime}-\boldsymbol{r}_{+}\right)-Q\left(t_{r}^{-}\right) \delta^{3}\left(\boldsymbol{r}^{\prime}-\boldsymbol{r}_{-}\right)\right\}, \tag{2}
\end{equation*}
$$

with $Q\left(t_{r}\right)=Q_{m} e^{i \omega t_{r}}$. Plugging this charge density in (1) we obtain

$$
\begin{equation*}
V(\boldsymbol{r}, t)=\operatorname{Re}\left\{\frac{1}{4 \pi \epsilon_{0}}\left[\frac{Q\left(t_{r}^{+}\right)}{\left|\boldsymbol{r}-\boldsymbol{r}_{+}\right|}-\frac{Q\left(t_{r}^{-}\right)}{\left|\boldsymbol{r}-\boldsymbol{r}_{-}\right|}\right]\right\} . \tag{3}
\end{equation*}
$$

We now need to compute $\left|\boldsymbol{r}-\boldsymbol{r}_{ \pm}\right|$as these appear in the denominators and in the retarded times in the expression for the potential. We then get

$$
\begin{align*}
\left|\boldsymbol{r} \pm \frac{s}{2} \hat{\boldsymbol{z}}\right| & =\left[\left(\boldsymbol{r} \pm \frac{s}{2} \hat{\boldsymbol{z}}\right) \cdot\left(\boldsymbol{r} \pm \frac{s}{2} \hat{\boldsymbol{z}}\right)\right]^{1 / 2} \tag{4}\\
& =\left[r^{2} \pm s r \hat{\boldsymbol{r}} \cdot \hat{\boldsymbol{z}}+\left(\frac{s}{2}\right)^{2}\right]^{1 / 2} \wedge \hat{\boldsymbol{r}} \cdot \hat{\boldsymbol{z}}=\cos \theta \tag{5}\\
& =r\left[1 \pm \frac{s}{r} \cos \theta+\left(\frac{s}{2 r}\right)^{2}\right]^{1 / 2} \wedge s \ll r \Longleftrightarrow \frac{s}{r} \ll 1 \tag{6}\\
& \approx r\left[1 \pm \frac{s}{2 r} \cos \theta\right] . \tag{7}
\end{align*}
$$

Thus, the denominators can be approximated as

$$
\begin{equation*}
\frac{1}{\left|\boldsymbol{r}-\boldsymbol{r}_{ \pm}\right|}=\frac{1}{\left|\boldsymbol{r} \mp \frac{s}{2} \hat{\boldsymbol{z}}\right|} \approx \frac{1}{r\left[1 \mp \frac{s}{2 r} \cos \theta\right]} \approx \frac{1}{r}\left[1 \pm \frac{s}{2 r} \cos \theta\right], \tag{8}
\end{equation*}
$$

while the exponents of the complex exponentials, using $\lambda \equiv c / \omega$, become

$$
\begin{equation*}
\omega t_{r}^{ \pm}=\omega t-\frac{\omega}{c}\left|\boldsymbol{r}-\boldsymbol{r}_{ \pm}\right| \approx \omega t-\frac{\omega}{c} r\left[1 \mp \frac{s}{2 r} \cos \theta\right]=\omega\left(t-\frac{r}{c}\right) \pm \frac{s}{2 \lambda} \cos \theta . \tag{9}
\end{equation*}
$$

With these results, the potential takes the form

$$
\begin{equation*}
V(\boldsymbol{r}, t) \approx \operatorname{Re}\left\{\frac{Q_{m} e^{i \omega\left(t-\frac{r}{c}\right)}}{4 \pi \epsilon_{0} r}\left[\left(1+\frac{s}{2 r} \cos \theta\right) e^{i \frac{s}{2 \lambda} \cos \theta}-\left(1-\frac{s}{2 r} \cos \theta\right) e^{-i \frac{s}{2 \lambda} \cos \theta}\right]\right\} . \tag{10}
\end{equation*}
$$

Assuming $s \ll \lambda \Longleftrightarrow \frac{s}{\lambda} \ll 1$, then $e^{ \pm i \frac{s}{2 \lambda} \cos \theta} \approx 1 \pm i \frac{s}{2 \lambda} \cos \theta$. Using this approximation for the complex exponentials, after some straightforward algebra we finally arrive at

$$
\begin{equation*}
V(\boldsymbol{r}, t) \approx \operatorname{Re}\left\{\frac{Q_{m} e^{i \omega\left(t-\frac{r}{c}\right)} s \cos \theta}{4 \pi \epsilon_{0} \star r}\left[\frac{\lambda}{r}+i\right]\right\}=\operatorname{Re}\left\{\frac{\left[p^{*}\right] \cos \theta}{4 \pi \epsilon_{0} \lambda r}\left[\frac{\lambda}{r}+i\right]\right\}, \tag{11}
\end{equation*}
$$

where $\left[p^{*}\right] \equiv s Q_{m} e^{i \omega\left(t-\frac{r}{c}\right)}$ is the magnitude of the complex electric dipole moment evaluated at the retarded time $t-\frac{r}{c}$.
(b) The expression for the retarded vector potential is

$$
\begin{equation*}
\boldsymbol{A}(\boldsymbol{r}, t)=\frac{\mu_{0}}{4 \pi} \int \frac{\boldsymbol{J}\left(\boldsymbol{r}^{\prime}, t_{r}\right)}{\left|\boldsymbol{r}-\boldsymbol{r}^{\prime}\right|} d^{3} \boldsymbol{r}^{\prime} \tag{12}
\end{equation*}
$$

One can write the current density as

$$
\boldsymbol{J}\left(\boldsymbol{r}^{\prime}, t_{r}\right)=\left\{\begin{array}{cll}
\hat{\boldsymbol{z}} I\left(t_{r}\right) \delta\left(x^{\prime}\right) \delta\left(y^{\prime}\right) & , & z^{\prime} \in\left[-\frac{s}{2}, \frac{s}{2}\right] \tag{13}\\
\mathbf{0} & , & z^{\prime} \in\left(-\infty,-\frac{s}{2}\right) \cup\left(\frac{s}{2}, \infty\right)
\end{array}\right.
$$

where $I(t)=\operatorname{Re}\left\{\frac{d}{d t} Q(t)\right\}=\operatorname{Re}\left\{\frac{d}{d t} Q_{m} e^{i \omega t}\right\}=\operatorname{Re}\left\{i \omega Q_{m} e^{i \omega t}\right\}$. Substituting in (12) yields

$$
\begin{equation*}
\boldsymbol{A}(\boldsymbol{r}, t)=\operatorname{Re}\left\{\hat{z} \frac{\mu_{0}}{4 \pi} i \omega Q_{m} \int_{-s / 2}^{s / 2} \frac{e^{i \omega\left(t-\left|\boldsymbol{r}-z^{\prime} \hat{\boldsymbol{z}}\right| / c\right)}}{\left|\boldsymbol{r}-z^{\prime} \hat{\boldsymbol{z}}\right|} d z^{\prime}\right\} \tag{14}
\end{equation*}
$$

Since $z^{\prime} \in\left[-\frac{s}{2}, \frac{s}{2}\right] \Longrightarrow\left|z^{\prime}\right| \leq \frac{s}{2}$, and recalling that $s \ll r$ we conclude $\frac{\left|z^{\prime}\right|}{r} \ll 1$. So we can repeat the approximations presented in part (a) to obtain

$$
\begin{align*}
\left|\boldsymbol{r}-z^{\prime} \hat{\boldsymbol{z}}\right| & \approx r\left[1-\frac{z^{\prime}}{r} \cos \theta\right] \tag{15}\\
\frac{1}{\left|\boldsymbol{r}-z^{\prime} \hat{\boldsymbol{z}}\right|} & \approx \frac{1}{r}\left[1+\frac{z^{\prime}}{r} \cos \theta\right] \tag{16}\\
\omega\left(t-\frac{\left|\boldsymbol{r}-z^{\prime} \hat{\boldsymbol{z}}\right|}{c}\right) & \approx \omega\left(t-\frac{r}{c}\right)+\frac{z^{\prime}}{\lambda} \cos \theta . \tag{17}
\end{align*}
$$

Using these approximations we get the following vector potential

$$
\begin{equation*}
\boldsymbol{A}(\boldsymbol{r}, t) \approx \operatorname{Re}\left\{\hat{\boldsymbol{z}} \frac{\mu_{0}}{4 \pi r} i \omega Q_{m} e^{i \omega\left(t-\frac{r}{c}\right)} \int_{-s / 2}^{s / 2} e^{i \frac{z^{\prime}}{\lambda} \cos \theta}\left[1+\frac{z^{\prime}}{r} \cos \theta\right] d z^{\prime}\right\} \tag{18}
\end{equation*}
$$

The already shown result $\left|z^{\prime}\right| \leq \frac{s}{2}$ together with $s \ll \lambda$ imply $\frac{\left|z^{\prime}\right|}{\star} \ll 1$, hence $e^{i \frac{z^{\prime}}{\lambda} \cos \theta} \approx$ $1+i \frac{z^{\prime}}{\lambda} \cos \theta$. Thus the integral to be computed simplifies to

$$
\begin{equation*}
\int_{-s / 2}^{s / 2}\left[1+i \frac{z^{\prime}}{\lambda} \cos \theta\right]\left[1+\frac{z^{\prime}}{r} \cos \theta\right] d z^{\prime} \approx \int_{-s / 2}^{s / 2}\left[1+z^{\prime}\left(\frac{i}{\lambda}+\frac{1}{r}\right) \cos \theta\right] d z^{\prime} \tag{19}
\end{equation*}
$$

But $\int_{-s / 2}^{s / 2} z^{\prime} d z^{\prime}=0$, so the integral can be simply approximated as s. Therefore, the retarded vector potential is given by

$$
\begin{equation*}
\boldsymbol{A}(\boldsymbol{r}, t) \approx \operatorname{Re}\left\{\frac{1}{4 \pi \epsilon_{0} c \lambda r} i s Q_{m} e^{i \omega\left(t-\frac{r}{c}\right)}(\cos \theta \hat{\boldsymbol{r}}-\sin \theta \hat{\boldsymbol{\theta}})\right\}=\operatorname{Re}\left\{\frac{i\left[p^{*}\right]}{4 \pi \epsilon_{0} c \lambda r}(\cos \theta \hat{\boldsymbol{r}}-\sin \theta \hat{\boldsymbol{\theta}})\right\}, \tag{20}
\end{equation*}
$$

where we used that $\mu_{0} \omega=\frac{1}{\epsilon_{0} c t}$ and $\hat{\boldsymbol{z}}=\cos \theta \hat{\boldsymbol{r}}-\sin \theta \hat{\boldsymbol{\theta}}$.
(c) By direct differentiation-using $\frac{\partial}{\partial t}\left[p^{*}\right]=i \omega\left[p^{*}\right]$ and $\frac{\partial}{\partial r}\left[p^{*}\right]=-\frac{i}{\partial}\left[p^{*}\right]$-one can readily show

$$
\begin{equation*}
\epsilon_{0} \mu_{0} \frac{\partial V}{\partial t}=\operatorname{Re}\left\{\frac{i \omega\left[p^{*}\right] \cos \theta}{4 \pi \epsilon_{0} c^{2} \lambda r}\left[\frac{\lambda}{r}+i\right]\right\}=-\nabla \cdot \boldsymbol{A} \tag{21}
\end{equation*}
$$

hence $\epsilon_{0} \mu_{0} \frac{\partial V}{\partial t}+\nabla \cdot \boldsymbol{A}=0$. Therefore, the potentials computed in (a) and (b) do indeed satisfy the Lorentz condition.

Problem II

(a) The retarded vector potential generated by a current $I(t)=\operatorname{Re}\left\{I_{m} e^{i \omega t}\right\}$ flowing in a circular loop of radius a in the $x y$ plane reads

$$
\begin{equation*}
\boldsymbol{A}(\boldsymbol{r}, t)=\operatorname{Re}\left\{\frac{\mu_{0}}{4 \pi} \int_{0}^{2 \pi} \frac{I_{m} e^{i \omega\left(t-r^{\prime} / c\right)}}{r^{\prime}} a \hat{\boldsymbol{\phi}} d \phi\right\} \tag{22}
\end{equation*}
$$

where ϕ is the angle used to parameterize the loop and $r^{\prime}=\left|\boldsymbol{r}^{\prime}\right|=|\boldsymbol{r}-a \hat{\boldsymbol{\rho}}(\phi)|$. For those interested, the above expression results from the current density $\boldsymbol{J}(\boldsymbol{r}, t)=I(t) \delta(\rho-a) \delta(z) \hat{\boldsymbol{\phi}}$.

In spherical coordinates (r, θ, φ), the point at which we are computing $\boldsymbol{A}(\boldsymbol{r}, t)$ is

$$
\begin{equation*}
\boldsymbol{r}=r[\sin \theta \cos \varphi \hat{\boldsymbol{x}}+\sin \theta \sin \varphi \hat{\boldsymbol{y}}+\cos \theta \hat{\boldsymbol{z}}]=r[\sin \theta \hat{\boldsymbol{\rho}}(\varphi)+\cos \theta \hat{\boldsymbol{z}}], \tag{23}
\end{equation*}
$$

so we have $\boldsymbol{r} \cdot \hat{\boldsymbol{\rho}}(\phi)=r \sin \theta \cos (\phi-\varphi)$. Thus,

$$
\begin{align*}
r^{\prime} & =[(\boldsymbol{r}-a \hat{\boldsymbol{\rho}}(\phi)) \cdot(\boldsymbol{r}-a \hat{\boldsymbol{\rho}}(\phi))]^{1 / 2} \tag{24}\\
& =\left[r^{2}-2 a \boldsymbol{r} \cdot \hat{\boldsymbol{\rho}}(\phi)+a^{2}\right]^{1 / 2} \tag{25}\\
& =\left[r^{2}-2 a r \sin \theta \cos (\phi-\varphi)+a^{2}\right]^{1 / 2} \tag{26}\\
& =r\left[1-2 \frac{a}{r} \sin \theta \cos (\phi-\varphi)+\left(\frac{a}{r}\right)^{2}\right]^{1 / 2} \wedge \quad \frac{a}{r} \ll 1 \tag{27}\\
& \approx r\left[1-\frac{a}{r} \sin \theta \cos (\phi-\varphi)\right] \tag{28}
\end{align*}
$$

Using this approximate expression for r^{\prime} we obtain

$$
\begin{equation*}
\frac{1}{r^{\prime}} \approx \frac{1}{r}\left[1+\frac{a}{r} \sin \theta \cos (\phi-\varphi)\right] \quad \text { and } \quad \omega\left(t-\frac{r^{\prime}}{c}\right) \approx \omega\left(t-\frac{r}{c}\right)+\frac{a}{\lambda} \sin \theta \cos (\phi-\varphi) . \tag{29}
\end{equation*}
$$

The exponential in the integrand then becomes

$$
\begin{equation*}
e^{i \omega\left(t-r^{\prime} / c\right)} \approx e^{i \omega(t-r / c)} e^{i \frac{a}{\nmid} \sin \theta \cos (\phi-\varphi)} \approx e^{i \omega(t-r / c)}\left(1+i \frac{a}{\lambda} \sin \theta \cos (\phi-\varphi)\right) \tag{30}
\end{equation*}
$$

where we used $\frac{a}{\chi} \ll 1$ to get the last expression. Plugging all these approximations in (22) yields

$$
\begin{equation*}
\boldsymbol{A}(\boldsymbol{r}, t) \approx \operatorname{Re}\left\{\frac{\mu_{0} I_{m}}{4 \pi r} e^{i \omega(t-r / c)} \int_{0}^{2 \pi}\left(1+a \sin \theta \cos (\phi-\varphi)\left[\frac{i}{\lambda}+\frac{1}{r}\right]\right) a \hat{\boldsymbol{\phi}} d \phi\right\} . \tag{31}
\end{equation*}
$$

Recalling that $\hat{\boldsymbol{\phi}}=-\sin \phi \hat{\boldsymbol{x}}+\cos \phi \hat{\boldsymbol{y}}$ and $\cos (\phi-\varphi)=\cos \phi \cos \varphi+\sin \phi \sin \varphi$, one can compute

$$
\begin{align*}
\int_{0}^{2 \pi} \hat{\boldsymbol{\phi}} d \phi & =\mathbf{0} \tag{32}\\
\int_{0}^{2 \pi} \cos (\phi-\varphi) \hat{\boldsymbol{\phi}} d \phi & =\pi \hat{\boldsymbol{\varphi}} \tag{33}
\end{align*}
$$

where $\hat{\boldsymbol{\varphi}}=-\sin \varphi \hat{\boldsymbol{x}}+\cos \varphi \hat{\boldsymbol{y}}$. Therefore, we get

$$
\begin{equation*}
\boldsymbol{A}(\boldsymbol{r}, t) \approx \operatorname{Re}\left\{\frac{\mu_{0} \pi a^{2} I_{m}}{4 \pi \lambda r} e^{i \omega(t-r / c)}\left[\frac{\lambda}{r}+i\right] \sin \theta \hat{\boldsymbol{\varphi}}\right\} . \tag{34}
\end{equation*}
$$

Introducing $m_{m} \equiv \pi a^{2} I_{m},[t] \equiv t-\frac{r}{c},\left[m^{*}\right]=m_{m} e^{i \omega[t]}$, and $\left[\boldsymbol{m}^{*}\right]=\left[m^{*}\right] \hat{\boldsymbol{z}}$ we finally obtain

$$
\begin{equation*}
\boldsymbol{A}(\boldsymbol{r}, t) \approx \operatorname{Re}\left\{\frac{\mu_{0} m_{m}}{4 \pi \lambda r} e^{i \omega[t]}\left[\frac{\lambda}{r}+i\right] \sin \theta \hat{\boldsymbol{\varphi}}\right\}=\operatorname{Re}\left\{\frac{i \mu_{0}\left[\boldsymbol{m}^{*}\right] \times \hat{\boldsymbol{r}}}{4 \pi \lambda r}\left[1-i \frac{\lambda}{r}\right]\right\} . \tag{35}
\end{equation*}
$$

Note that to get the last expression we used $\hat{\boldsymbol{z}} \times \hat{\boldsymbol{r}}=\sin \theta \hat{\boldsymbol{\varphi}}$. It's worth mentioning the similarity in the structure between the electrical potential we computed in Problem I (a) and the present result for the vector potential. By introducing $\left[\boldsymbol{p}^{*}\right] \equiv\left[p^{*}\right] \hat{\boldsymbol{z}}$, we can rewrite V as

$$
\begin{equation*}
V(\boldsymbol{r}, t) \approx \operatorname{Re}\left\{\frac{i\left[\boldsymbol{p}^{*}\right] \cdot \hat{\boldsymbol{r}}}{4 \pi \epsilon_{0} 才 r}\left[1-i \frac{\lambda}{r}\right]\right\} . \tag{36}
\end{equation*}
$$

They both exhibit the same r dependence. Their angular dependence is determined by $\left[\boldsymbol{p}^{*}\right] \cdot \hat{\boldsymbol{r}}$ and $\left[\boldsymbol{m}^{*}\right] \times \hat{\boldsymbol{r}}$, respectively.
(b) The magnitude of the vector potential is $|\boldsymbol{A}(\boldsymbol{r}, t)|=\frac{\mu_{0} m_{m}}{4 \pi \lambda r^{2}}|[\lambda \cos (\omega[t])-r \sin (\omega[t])] \sin \theta|$. It vanishes at either $\theta=0, \pi$ or $\tan (\omega[t])=\lambda / r$. At fixed time $t,|\boldsymbol{A}(\boldsymbol{r}, t)|$ is maximum at $\theta=\frac{\pi}{2}$.

Problem 10.17

Once seen, from a given point x, the particle will forever remain in view-to disappear it would have to travel faster than light.

Problem 10.19

From Eq. 10.44, $c\left(t-t_{r}\right)=\boldsymbol{r} \Rightarrow c^{2}\left(t-t_{r}\right)^{2}=r^{2}=\boldsymbol{r} \cdot \boldsymbol{r}$. Differentiate with respect to t :
$2 c^{2}\left(t-t_{r}\right)\left(1-\frac{\partial t_{r}}{\partial t}\right)=2 \boldsymbol{r} \cdot \frac{\partial \boldsymbol{r}}{\partial t}$, or $c \boldsymbol{r}\left(1-\frac{\partial t_{r}}{\partial t}\right)=\boldsymbol{r} \cdot \frac{\partial \boldsymbol{r}}{\partial t}$. Now $\boldsymbol{r}=\mathbf{r}-\mathbf{w}\left(t_{r}\right)$, so $\frac{\partial \boldsymbol{r}}{\partial t}=-\frac{\partial \mathbf{w}}{\partial t}=-\frac{\partial \mathbf{w}}{\partial t_{r}} \frac{\partial t_{r}}{\partial t}=-\mathbf{v} \frac{\partial t_{r}}{\partial t} ; \quad c r\left(1-\frac{\partial t_{r}}{\partial t}\right)=-\boldsymbol{r} \cdot \mathbf{v} \frac{\partial t_{r}}{\partial t} ; \quad c r=\frac{\partial t_{r}}{\partial t}(c r-\boldsymbol{r} \cdot \mathbf{v})=$ $\frac{\partial t_{r}}{\partial t}(\boldsymbol{r} \cdot \mathbf{u})\left(\right.$ Eq. 10.71), and hence $\frac{\partial t_{r}}{\partial t}=\frac{c \boldsymbol{r}}{\boldsymbol{r} \cdot \mathbf{u}}$. qed

Now Eq. 10.47 says $\mathbf{A}(\mathbf{r}, t)=\frac{\mathbf{v}}{c^{2}} V(\mathbf{r}, t)$, so

$$
\begin{aligned}
& \frac{\partial \mathbf{A}}{\partial t}=\frac{1}{c^{2}}\left(\frac{\partial \mathbf{v}}{\partial t} V+\mathbf{v} \frac{\partial V}{\partial t}\right)=\frac{1}{c^{2}}\left(\frac{\partial \mathbf{v}}{\partial t_{r}} \frac{\partial t_{r}}{\partial t} V+\mathbf{v} \frac{\partial V}{\partial t}\right) \\
& =\frac{1}{c^{2}}\left[\mathbf{a} \frac{\partial t_{r}}{\partial t} \frac{1}{4 \pi \epsilon_{0}} \frac{q c}{\boldsymbol{r} \cdot \mathbf{u}}+\mathbf{v} \frac{1}{4 \pi \epsilon_{0}} \frac{-q c}{(\boldsymbol{r} \cdot \mathbf{u})^{2}} \frac{\partial}{\partial t}(\mathbf{r} c-\boldsymbol{r} \cdot \mathbf{v})\right] \\
& =\frac{1}{c^{2}} \frac{q c}{4 \pi \epsilon_{0}}\left[\frac{\mathbf{a}}{\boldsymbol{r} \cdot \mathbf{u}} \frac{\partial t_{r}}{\partial t}-\frac{\mathbf{v}}{(\boldsymbol{r} \cdot \mathbf{u})^{2}}\left(c \frac{\partial \boldsymbol{r}}{\partial t}-\frac{\partial \boldsymbol{r}}{\partial t} \cdot \mathbf{v}-\boldsymbol{r} \cdot \frac{\partial \mathbf{v}}{\partial t}\right)\right] . \\
& \text { But } \boldsymbol{r}=c\left(t-t_{r}\right) \Rightarrow \frac{\partial r}{\partial t}=c\left(1-\frac{\partial t_{r}}{\partial t}\right), \boldsymbol{r}=\mathbf{r}-\mathbf{w}\left(t_{r}\right) \Rightarrow \frac{\partial \boldsymbol{r}}{\partial t}=-\mathbf{v} \frac{\partial t_{r}}{\partial t} \text { (as above), and } \\
& \frac{\partial \mathbf{v}}{\partial t}=\frac{\partial \mathbf{v}}{\partial t_{r}} \frac{\partial t_{r}}{\partial t}=\mathbf{a} \frac{\partial t_{r}}{\partial t} . \\
& =\frac{q}{4 \pi \epsilon_{0} c(\boldsymbol{n} \cdot \mathbf{u})^{2}}\left\{\mathbf{a}(\boldsymbol{\eta} \cdot \mathbf{u}) \frac{\partial t_{r}}{\partial t}-\mathbf{v}\left[c^{2}\left(1-\frac{\partial t_{r}}{\partial t}\right)+v^{2} \frac{\partial t_{r}}{\partial t}-\boldsymbol{n} \cdot \mathbf{a} \frac{\partial t_{r}}{\partial t}\right]\right\} \\
& =\frac{q}{4 \pi \epsilon_{0} c(\boldsymbol{r} \cdot \mathbf{u})^{2}}\left\{-c^{2} \mathbf{v}+\left[(\boldsymbol{r} \cdot \mathbf{u}) \mathbf{a}+\left(c^{2}-v^{2}+\boldsymbol{\imath} \cdot \mathbf{a}\right) \mathbf{v}\right] \frac{\partial t_{r}}{\partial t}\right\} \\
& =\frac{q}{4 \pi \epsilon_{0} c(\boldsymbol{r} \cdot \mathbf{u})^{2}}\left\{-c^{2} \mathbf{v}+\left[(\boldsymbol{r} \cdot \mathbf{u}) \mathbf{a}+\left(c^{2}-v^{2}+\boldsymbol{r} \cdot \mathbf{a}\right) \mathbf{v}\right] \frac{c \boldsymbol{r}}{\boldsymbol{r} \cdot \mathbf{u}}\right\} \\
& =\frac{q}{4 \pi \epsilon_{0} c(\boldsymbol{r} \cdot \mathbf{u})^{3}}\left[-c^{2} \mathbf{v}(\boldsymbol{r} \cdot \mathbf{u})+c \boldsymbol{r}(\boldsymbol{r} \cdot \mathbf{u}) \mathbf{a}+c \boldsymbol{r}\left(c^{2}-v^{2}+\boldsymbol{r} \cdot \mathbf{a}\right) \mathbf{v}\right] \\
& =\frac{q c}{4 \pi \epsilon_{0}} \frac{1}{(r c-\mathbf{r} \cdot \mathbf{v})^{3}}\left[(\boldsymbol{r} c-\boldsymbol{r} \cdot \mathbf{v})\left(-\mathbf{v}+\frac{r}{c} \mathbf{a}\right)+\frac{r}{c}\left(c^{2}-v^{2}+\boldsymbol{r} \cdot \mathbf{a}\right) \mathbf{v}\right] . \operatorname{qed}
\end{aligned}
$$

Problem 10.20

$$
\mathbf{E}=\frac{q}{4 \pi \epsilon_{0}} \frac{\boldsymbol{r}}{(\boldsymbol{r} \cdot \mathbf{u})^{3}}\left[\left(c^{2}-v^{2}\right) \mathbf{u}+\boldsymbol{r} \times(\mathbf{u} \times \mathbf{a})\right] . \text { Here }
$$

$\mathbf{v}=v \hat{\mathbf{x}}, \mathbf{a}=a \hat{\mathbf{x}}$, and, for points to the right, $\hat{\boldsymbol{z}}=\hat{\mathbf{x}}$.

So $\mathbf{u}=(c-v) \hat{\mathbf{x}}, \mathbf{u} \times \mathbf{a}=\mathbf{0}$, and $\boldsymbol{\imath} \cdot \mathbf{u}=r(c-v)$.
$\mathbf{E}=\frac{q}{4 \pi \epsilon_{0}} \frac{r}{r^{3}(c-v)^{3}}\left(c^{2}-v^{2}\right)(c-v) \hat{\mathbf{x}}=\frac{q}{4 \pi \epsilon_{0}} \frac{1}{r^{2}} \frac{(c+v)(c-v)^{2}}{(c-v)^{3}} \hat{\mathbf{x}}=\frac{q}{4 \pi \epsilon_{0}} \frac{1}{r^{2}}\left(\frac{c+v}{c-v}\right) \hat{\mathbf{x}} ;$
$\mathbf{B}=\frac{1}{c} \hat{\boldsymbol{n}} \times \mathbf{E}=\mathbf{0} . \quad$ qed
For field points to the left, $\hat{\boldsymbol{\imath}}=-\hat{\mathbf{x}}$ and $\mathbf{u}=-(c+v) \hat{\mathbf{x}}$, so $\boldsymbol{\imath} \cdot \mathbf{u}=\boldsymbol{r}(c+v)$, and

$$
\mathbf{E}=-\frac{q}{4 \pi \epsilon_{0}} \frac{r}{r^{3}(c+v)^{3}}\left(c^{2}-v^{2}\right)(c+v) \hat{\mathbf{x}}=\frac{-q}{4 \pi \epsilon_{0}} \frac{1}{r^{2}}\left(\frac{c-v}{c+v}\right) \hat{\mathbf{x}} ; \mathbf{B}=\mathbf{0} .
$$

Problem 10.24
$\lambda(\phi, t)=\lambda_{0}|\sin (\theta / 2)|$, where $\theta=\phi-\omega t$. So the (retarded) scalar potential at the center is (Eq. 10.26)

$$
\begin{aligned}
V(t) & =\frac{1}{4 \pi \epsilon_{0}} \int \frac{\lambda}{r} d l^{\prime}=\frac{1}{4 \pi \epsilon_{0}} \int_{0}^{2 \pi} \frac{\lambda_{0}\left|\sin \left[\left(\phi-\omega t_{r}\right) / 2\right]\right|}{a} a d \phi \\
& =\frac{\lambda_{0}}{4 \pi \epsilon_{0}} \int_{0}^{2 \pi} \sin (\theta / 2) d \theta=\left.\frac{\lambda_{0}}{4 \pi \epsilon_{0}}[-2 \cos (\theta / 2)]\right|_{0} ^{2 \pi} \\
& =\frac{\lambda_{0}}{4 \pi \epsilon_{0}}[2-(-2)]=\frac{\lambda_{0}}{\pi \epsilon_{0}} .
\end{aligned}
$$

(Note: at fixed $t_{r}, d \phi=d \theta$, and it goes through one full cycle of ϕ or θ.)
Meanwhile $\mathbf{I}(\phi, t)=\lambda \mathbf{v}=\lambda_{0} \omega a|\sin [(\phi-\omega t) / 2]| \hat{\boldsymbol{\phi}}$. From Eq. 10.26 (again)

$$
\mathbf{A}(t)=\frac{\mu_{0}}{4 \pi} \int \frac{\mathbf{I}}{r} d l^{\prime}=\frac{\mu_{0}}{4 \pi} \int_{0}^{2 \pi} \frac{\lambda_{0} \omega a\left|\sin \left[\left(\phi-\omega t_{r}\right) / 2\right]\right| \hat{\phi}}{a} a d \phi
$$

But $t_{r}=t-a / c$ is again constant, for the ϕ integration, and $\hat{\boldsymbol{\phi}}=-\sin \phi \hat{\mathbf{x}}+\cos \phi \hat{\mathbf{y}}$.
$=\frac{\mu_{0} \lambda_{0} \omega a}{4 \pi} \int_{0}^{2 \pi}\left|\sin \left[\left(\phi-\omega t_{r}\right) / 2\right]\right|(-\sin \phi \hat{\mathbf{x}}+\cos \phi \hat{\mathbf{y}}) d \phi$. Again, switch variables to $\theta=\phi-\omega t_{r}$,
and integrate from $\theta=0$ to $\theta=2 \pi$ (so we don't have to worry about the absolute value).
$=\frac{\mu_{0} \lambda_{0} \omega a}{4 \pi} \int_{0}^{2 \pi} \sin (\theta / 2)\left[-\sin \left(\theta+\omega t_{r}\right) \hat{\mathbf{x}}+\cos \left(\theta+\omega t_{r}\right) \hat{\mathbf{y}}\right] d \theta$. Now

$$
\begin{aligned}
\int_{0}^{2 \pi} \sin (\theta / 2) \sin \left(\theta+\omega t_{r}\right) d \theta & =\frac{1}{2} \int_{0}^{2 \pi}\left[\cos \left(\theta / 2+\omega t_{r}\right)-\cos \left(3 \theta / 2+\omega t_{r}\right)\right] d \theta \\
& =\left.\frac{1}{2}\left[2 \sin \left(\theta / 2+\omega t_{r}\right)-\frac{2}{3} \sin \left(3 \theta / 2+\omega t_{r}\right)\right]\right|_{0} ^{2 \pi} \\
& =\sin \left(\pi+\omega t_{r}\right)-\sin \left(\omega t_{r}\right)-\frac{1}{3} \sin \left(3 \pi+\omega t_{r}\right)+\frac{1}{3} \sin \left(\omega t_{r}\right) \\
& =-2 \sin \left(\omega t_{r}\right)+\frac{2}{3} \sin \left(\omega t_{r}\right)=-\frac{4}{3} \sin \left(\omega t_{r}\right) \\
& =\left.\frac{1}{2}\left[2 \cos \left(\theta / 2+\omega t_{r}\right)-\frac{2}{3} \cos \left(3 \theta / 2+\omega t_{r}\right)\right]\right|_{0} ^{2 \pi} \\
\int_{0}^{2 \pi} \sin (\theta / 2) \cos \left(\theta+\omega t_{r}\right) d \theta & =\frac{1}{2} \int_{0}^{2 \pi}\left[-\sin \left(\theta / 2+\omega t_{r}\right)+\sin \left(3 \theta / 2+\omega t_{r}\right)\right] d \theta \\
& =\cos \left(\pi+\omega t_{r}\right)-\cos \left(\omega t_{r}\right)-\frac{1}{3} \cos \left(3 \pi+\omega t_{r}\right)+\frac{1}{3} \cos \left(\omega t_{r}\right) \\
& =-2 \cos \left(\omega t_{r}\right)+\frac{2}{3} \cos \left(\omega t_{r}\right)=-\frac{4}{3} \cos \left(\omega t_{r}\right) . \quad \text { So }
\end{aligned}
$$

$\mathbf{A}(t)=\frac{\mu_{0} \lambda_{0} \omega a}{4 \pi}\left(\frac{4}{3}\right)\left[\sin \left(\omega t_{r}\right) \hat{\mathbf{x}}-\cos \left(\omega t_{r}\right) \hat{\mathbf{y}}\right]=\frac{\mu_{0} \lambda_{0} \omega a}{3 \pi}\{\sin [\omega(t-a / c)] \hat{\mathbf{x}}-\cos [\omega(t-a / c)] \hat{\mathbf{y}}\}$.

