PHYS 201 Mathematical Physics, Fall 2016, Homework 5

Due date: Tuesday, November 8th, 2016

1. Evaluate using rectangular contours (or otherwise):
i. $\int_{-\infty}^{\infty} e^{-\alpha x^{2}} e^{i k x} d x$ for real $\alpha>0, k$.
ii. $\int_{-\infty}^{\infty} \frac{e^{a x}}{1+e^{x}} d x$ for $0<a<1$. By making an appropriate substitution, show that this integral reduces to the beta integral $B(a, 1-a)$.
2. Show that $\pi \cot \pi z$ has simple poles at integer values of z. Consider the integral

$$
\frac{1}{2 \pi i} \oint_{C_{N}} f(z) \pi \cot (\pi z) d z
$$

with $f(z)=1 / z^{2}$ and C_{N} a square contour with diagonally opposite vertices $-(N+$ $1 / 2)(1+i)$ and $(N+1 / 2)(1+i)$. Argue why the integral goes to zero as $N \rightarrow \infty$ and consequently show that the sum $\sum_{n=1}^{\infty} \frac{1}{n^{2}}=\frac{\pi^{2}}{6}$ by computing the residue at 0 .
3. Evaluate the integral

$$
\int_{0}^{\pi} \frac{\cos n \theta}{1-2 a \cos \theta+a^{2}} d \theta
$$

for real $a>1$ and integer $n>0$. (Hint: Consider the real part of $\int \frac{-i z^{n-1} d z}{1-a\left(z+z^{-1}\right)+a^{2}}$ where $z=e^{i \theta}$. Many integrals involving trigonometric integrands can be solved this way.)
4. Show that for $\alpha>0$,

$$
\int_{0}^{\infty} \frac{t \sin \alpha t}{1+t^{2}} d t=\frac{\pi}{2} e^{-\alpha}
$$

5. The function $f(z)=\left(1-z^{2}\right)^{1 / 2}$ can be made single-valued using cuts running along the real axis for $|x|>1$. Using these cuts and a suitable contour, evaluate the integral

$$
\int_{1}^{\infty} \frac{d x}{x\left(x^{2}-1\right)^{1 / 2}}
$$

Verify your answer by substituting $x=\sec \theta$.
6. Use a semicircular contour in the upper half plane (with a bump at the origin) to compute the integral

$$
\int_{0}^{\infty} \frac{(\ln x)^{2}}{1+x^{2}} d x
$$

and deduce, as a byproduct of your calculation, that

$$
\int_{0}^{\infty} \frac{\ln x}{1+x^{2}} d x=0
$$

7. Use a keyhole contour to show that

$$
\int_{0}^{\infty} \frac{\ln x}{x^{3 / 4}(1+x)} d x=-\sqrt{2} \pi^{2}
$$

8. Evaluate the integral

$$
\int_{0}^{1} \frac{x^{1 / 2}(1-x)^{1 / 2}}{2-x} d x
$$

(Hint: Apply Cauchy's Integral Formula to the entire complex plane excluding the branch cut between 0 and 1 . Be careful about your choice of branch - verify that the branch you've chosen is continuous across the negative real line and the positive real line >1. To compute the residue at infinity, use the formula $\operatorname{Res}(f(z))$ at $z=\infty$ is equal to $\operatorname{Res}\left(-z^{-2} f(1 / z)\right)$ at $z=0$.)

