PHYS 201 Mathematical Physics, Fall 2016, Final
 Due date: Monday, December 12th, 2016

Rules: Open book and without help from another person.

1. If α and β are real and positive, show that (without necessarily computing the integrals)

$$
\int_{0}^{\infty} \frac{\cos \alpha x}{x+\beta} d x=\int_{0}^{\infty} \frac{x e^{-\alpha \beta x}}{1+x^{2}} d x
$$

2. The digamma function $\Psi(z)=\Gamma^{\prime}(z) / \Gamma(z)$ has the integral representation

$$
\Psi(z)=\ln z-1 / 2 z-\int_{0}^{\infty}\left[\left(e^{t}-1\right)^{-1}-t^{-1}+\frac{1}{2}\right] e^{-t z} d t
$$

Use this integral representation to generate the first two terms of the asymptotic expansion of $\Psi(z)-\ln z+1 / 2 z$ as $z \rightarrow \infty$.
3. Find the leading contribution as $x \rightarrow \infty$ to the integral $I(x)=\int_{a}^{b} f(t) e^{i x \psi(t)} d t$ from the neighborhood of the stationary point a under the following assumptions: $\psi^{\prime}(a)=$ $\cdots=\psi^{(p-1)}(a)=0 ; \psi^{(p)}(a)>0 ; f(t) \sim A(t-a)^{\alpha}(t \rightarrow a+)$ with $\alpha>-1$. For what values of α and p is the formula valid?
4. The function $D_{\nu}(x)=\frac{e^{x^{2} / 4}}{i \sqrt{2 \pi}} \int_{C} t^{\nu} e^{-x t+t^{2} / 2} d t$, where C is a contour connecting $-i \infty$ to $i \infty$ on which Re $t>0$, satisfies the parabolic cylinder equation.
a. Show that the function satisfies the initial conditions $D_{\nu}(0)=\pi^{1 / 2} 2^{\nu / 2} / \Gamma\left(\frac{1-\nu}{2}\right)$ and $D_{\nu}^{\prime}(0)=-\pi^{1 / 2} 2^{(v+1) / 2} / \Gamma(-\nu / 2)$. You will have to use a result derived in a previous HW that $\Gamma(a) \Gamma(1-a)=\frac{\pi}{\sin \pi a}$.
b. Use the method of steepest descents to show that $D_{\nu}(x) \sim x^{\nu} e^{-x^{2} / 4}$ as $x \rightarrow \infty$.

