Assignment II.

second problem set for probability concepts due: October 26, 2016

problem 1 PHYS 139/239

1. There are two caves, A and B. Cave A contains 7 red kangaroos and 2 blue kangaroos. Cave B contains 3 red kangaroos and 5 blue kangaroos. You pick a cave at random. One kangaroo, randomly selected, hops out of it.

1 (a). What is the probability that the kangaroo that hops out is blue?
1(b). If it is blue, what is the probability that it came from Cave B?

problem 2 PHYS 139/239

1. You throw a pair of fair dice 10 times and, each time, you record the total number of spots. When you are done, what is the probability that exactly 5 of the 10 recorded totals are prime?
2. If you flip a fair coin one billion times, what is the probability that the number of heads is between 500010000 and 500020000 , inclusive? (Give answer to 4 significant figures.)

problem 3 PHYS 139/239

(a) prove the additivity of the semi-invariant I_{4} analytically and in simulation
(b) PHYS 239 only show the additivity of I_{6} analytically and in simulation to reasonable accuracy for some distributions of your choosing

Mean and variance are additive over independent random variables:
definition of the $\mathrm{k}_{\text {th }}$ centered moment M_{k} of a distribution:
$M_{k} \equiv\left\langle\left(x_{i}-\bar{x}\right)^{k}\right\rangle$
following this definition M_{2} is the variance of the distribution

$$
\overline{(x+y)}=\bar{x}+\bar{y} \quad \begin{aligned}
& \operatorname{Var}(x+y)=\operatorname{Var}(x)+\operatorname{Var}(x) \\
& \text { note "bar" notation, equivalent to <> }
\end{aligned}
$$

Certain combinations of higher moments are also additive. These are called semi-invariants.

$$
\begin{array}{cc}
I_{2}=M_{2} & I_{3}=M_{3} \quad I_{4}=M_{4}-3 M_{2}^{2} \\
I_{5}=M_{5}-10 M_{2} M_{3} & I_{6}=M_{6}-15 M_{2} M_{4}-10 M_{3}^{2}+30 M_{2}^{3}
\end{array}
$$

Skew and kurtosis are dimensionless combinations of semi-invariants

$$
\operatorname{Skew}(x)=I_{3} / I_{2}^{3 / 2} \quad \operatorname{Kurt}(x)=I_{4} / I_{2}^{2}
$$

A Gaussian has all of its semi-invariants higher than I_{2} equal to zero. A Poisson distribution has all of its semi-invariants equal to its mean.

problem 4 PHYS 139/239

(a) show empirically the convergence to the central limit theorem in dice throwing simulations
(b) compare the result with your analytic expectation

problem 5 PHYS 139/239

calculate numerically the t-values and p-values in the table

Let's dispose of the silly (all p's $=0.25$):
The test statistic: the value of the observed count under the null hypothesis
that it is binomially (or equivalent normally) distributed with $p=0.25$.

$$
\begin{aligned}
\mu & =0.25 \mathrm{~N} \\
\sigma & =\sqrt{0.25 \times 0.75 \mathrm{~N}} \\
t & =\frac{n-\mu}{\sigma} \\
p & =2\left[1-P_{\text {Normal }}(|t|)\right]
\end{aligned} \quad \text { t-value }=\text { number of standard deviations }
$$

	t-value	p-value
A	174.965	≈ 0
C	-174.715	≈ 0
G	-170.963	≈ 0
T	170.713	≈ 0

The null hypothesis is (totally, infinitely, beyond any possibility of redemption!) ruled out.

problem 6 PHYS 239

explain and calculate numerically the two p-values of the hypothesis

The not-silly model: A and T occur with identical probabilities, as do C and G.
The test statistic: Difference between A and T (or C and G) counts under the null hypothesis that they have the same p, which we will estimate in the obvious way (which is actually an MLE).

$$
\begin{aligned}
& \hat{p}_{A T}=\frac{1}{2}\left(n_{A}+n_{T}\right) / N \\
& \hat{p}_{C G}=\frac{1}{2}\left(n_{C}+n_{G}\right) / N \\
& n_{A} \sim \operatorname{Normal}\left(N \hat{p}_{A T}, \sqrt{N \hat{p}_{A T}\left(1-\hat{p}_{A T}\right)}\right) \\
& n_{T} \sim \operatorname{Normal}\left(N \hat{p}_{A T}, \sqrt{N \hat{p}_{A T}\left(1-\hat{p}_{A T}\right)}\right) \\
& \Rightarrow n_{A}-n_{T} \sim \operatorname{Normal}\left(0, \sqrt{2 N \hat{p}_{A T}\left(1-\hat{p}_{A T}\right)}\right) \\
& \text { the difference of two Normals is } \\
& \text { itself Normal } \\
& \text { the variance of the sum (or } \\
& \text { difference) is the sum of the } \\
& \text { variances }
\end{aligned}
$$

problem 7 PHYS 139/239

With $p=0.3$, and various values of n, how big is the largest discrepancy between the Binomial probability pdf and the approximating Normal pdf? At what value of n does this value become smaller than 10-15 ?

