Name \qquad Prof. S.K.Sinha \qquad
$\mathrm{g}=9.8 \mathrm{~m} / \mathrm{s} 21$ radian $=360^{\circ} / 2 \pi=57.3^{\circ}$
MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

1) A wheel rotates through 52 rad while accelerating from rest to its final speed. If its average angular acceleration is $7.7 \mathrm{rad} / \mathrm{s}^{2}$, how long does it take for the wheel to reach its final speed?
A) 3.7 s
B) 5.9 s
C) 4.4 s
D) 2.6 s
2) A $95-\mathrm{N}$ force exerted at the end of a $0.24-\mathrm{m}$-long torque wrench gives rise to a torque of $15 \mathrm{~N} \cdot \mathrm{~m}$. What is the angle (assumed to be less than 90°) between the wrench handle and the direction of the applied force?
A) 41°
B) 57°
C) 49°
D) 33°
3) A solid disk of radius 1.60 m and mass 2.30 kg rolls without slipping to the bottom of an inclined plane. If the angular velocity of the disk is $4.62 \mathrm{rad} / \mathrm{s}$ at the bottom, what is the height of the inclined plane?
A) 3.14 m
B) 4.18 m
C) 3.68 m
D) 5.02 m
4) While spinning down from 500.0 rpm to rest, a solid uniform flywheel does 3.5 kJ of work. If the radius of the disk is 1.2 m , what is its mass?
A) 4.0 kg
B) 3.0 kg
C) 4.6 kg
D) 3.5 kg
1.)

$$
\begin{aligned}
& \omega_{i}=0 ; \theta_{f}=52 \mathrm{rad} \\
& \alpha=7.7 \mathrm{rad} / \mathrm{s}^{2} \\
& \therefore \theta_{f}=\omega_{i} t+\frac{1}{2} \alpha t^{2} \\
& \Rightarrow t=\sqrt{\frac{2 \times 52}{7.7}} \\
& \Rightarrow t=3.7 \mathrm{~s}
\end{aligned}
$$

2.)

$$
\begin{aligned}
& |\vec{F}|=95 \mathrm{~N} ;|\vec{\tau}|=15 \mathrm{Nm} ;|\vec{r}|=0.24 \mathrm{~m} \\
& \therefore \quad \vec{\tau} \\
& =\vec{r} \times \vec{F} \\
& \Rightarrow|\vec{\tau}|=|\vec{r}||\vec{F}| \sin \theta \\
& \\
& \Rightarrow \sin \theta=\frac{15}{95 \times 0.24} \\
& \\
& \Rightarrow \theta \simeq 41 .
\end{aligned}
$$

3.)

$$
\begin{aligned}
& \Delta U+\Delta K=W_{n c}=0 . \\
& U_{i}=m g h \\
& v_{b}=0 \\
& K_{i}=0 \\
& k_{l}=\frac{1}{2} m v^{2}+\frac{1}{2} I \omega^{2} \\
& I=\frac{m R^{2}}{2} \Delta \quad V=\omega R \\
& \therefore \quad-m g h+\frac{1}{2} m(\omega R)^{2}+\frac{1}{2}\left(\frac{m R^{2}}{2}\right) \omega^{2}=0 \\
& \Rightarrow h=\frac{1}{2 g}\left[\omega^{2} R^{2}+\frac{\omega^{2} R^{2}}{2}\right] \\
& \Rightarrow h=\frac{3}{4 g} \omega^{2} R^{2} \\
& \Rightarrow h=4.18 \mathrm{~m}
\end{aligned}
$$

