Physics 4A Lecture 6: Jan. 29, 2015

Sunil Sinha
UCSD Physics

WORK and ENERGY

Work is done when a force is applied on a body

Work Done By a Constant Force

When a constant force \vec{F} acts in same direction as

displacement \vec{s} , work done by force W=Fs

SI Unit of Work: 1 Joule = (1N) (1m) = 1N.m

When a constant force \vec{F} acts at angle φ to the displacement \vec{s}

work done W=F.s

Work Done is a Scalar Quantity

Three Shades of Work

 $W = \vec{F} \cdot \vec{s} = |F| |s| \cos \phi \Rightarrow \text{Relative direction between } \vec{F} \& \vec{s} \text{ Important}$

Force has component in direction of displacement: Work done is positive

Force is perpendicular to displacement: Work done is zero

Force has component opposite to displacement: Work done is negative

Quick Question

- A man is twirling a stone tied to a string in a circle around his head of radius R. The tension in the string is 80 N. The work done by the man in one revolution is:
- (A) 2πR . 80
- (B) R.80
- (C) Zero
- (D) mv^2/R where v is the stone's speed

Does Larin Do Work On The

Moon 2

Moon revolves around earth in nearly circular orbit, kept there by the attractive force exerted by earth. Does Earth do +,0,- work?

Gravitational force \vec{F} on moon acts towards earth (centripetal force) inward along radius of moon's orbit Moon's displacement \vec{s} always along a circle & $\bot \vec{F}$ $W = \vec{F} \cdot \vec{s}$

 \Rightarrow W_{earth} =0. This is why moon and artificial satellites can stay in orbit without expenditure of fuel, since no work is done against gravity

Doing Work (or Not)

No work is done on Groceries since $\vec{F}_P \perp \vec{d}$

¹180°−*θ*

Work done by hiker & earth on a 15.0 kg backpack carried up a height of 10.0m?

Draw freebody diag for Backpack & use 2nd law ⇒

$$\sum \vec{F}_y = 0 = F_H - m_B g \implies F_H = 147 N$$

Work done by hiker on backpack:

$$W_H = \vec{F}.\vec{d} = Fd\cos \hat{e} = Fh = mgh = 1470J$$

Earth pulls on backpack: $\vec{F}_E = -mg$

Object displaced at angle $\alpha = 180^{\circ} - e$

Work done by Earth on backpack:

$$W_H = \vec{F} \cdot \vec{d} = Fd\cos\alpha = Fd\cos(180 - \theta) = -1470J$$

Understanding Negative Work

Artifact of 3rd law: e.g. when hand catches ball, H & B have same displacement s Ball exerts force \vec{F}_{BonH} in direction of \vec{s} . Ball does positive work on hand.

Hand exerts equal & opposite force $\vec{F}_{HonB} = -\vec{F}_{BonH}$ in direction oppo. to \vec{s} .

Hand does negative work on ball.

Total work done on a body is ALGABRAIC sum of work done by

individual forces in displacing it. Alternately $W_{tot} = \sum W = (\sum \vec{F}) \cdot \vec{s}$

$$W_{tot} = \sum W = (\sum \vec{F}) \cdot \vec{s}$$

Kinetic Energy & Work Energy Theorem

Energy is the ability of a body to do work ← Working definition Body in motion has ability to do work and thus has Energy.

Energy of motion is called Kinetic Energy (from *Kinetikos=motion*)

Bus of mass m moving in straight line with speed = v_1 . Its accelerated to speed = v_2 by applying force \vec{F}_{net} over distance d

Work done on bus $W_{net} = \vec{F}_{net} \cdot \vec{d}$. Using $F_{net} = ma \& v_2^2 = v_1^2 + 2ad$

$$\Rightarrow W_{\text{net}} = \text{Fd} = \text{mad} = \text{m} \left(\frac{\mathbf{v}_2^2 - \mathbf{v}_1^2}{2d} \right) d \Rightarrow W_{\text{net}} = \frac{1}{2} m \mathbf{v}_2^2 - \frac{1}{2} m \mathbf{v}_1^2$$

Define Translational kinetic energy
$$K = \frac{1}{2}mv^2 \Rightarrow W_{net} = K_2 - K_1 = \Delta K$$

work-energy theorem

net work done on an object = change in its kinetic energy

Work Done By a *Variable* Force Along x

$$W = \int_{x_1}^{x_2} dW = \int_{x_1}^{x_2} F_x dx$$

general expression

On F vs x graph, total work done by variable force is represented by area under curve between $x = x_1 & x = x_2$.

Example of Variable Force → On a Spring

Force F_x stretches spring by small distance x.

Hooke's "Law"
$$\Rightarrow F_x = kx$$
; k=spring constant

To stretch a spring work must be done on it

$$W = \int_{0}^{X} F_{x} dx = \int_{0}^{X} kx dx = \frac{1}{2} kX^{2}$$

In general:
$$W = \int_{x_1}^{x_2} F_x dx = \int_{x_1}^{x_2} kx dx = \frac{1}{2} k(x_2^2 - x_1^2)$$

Work-Energy Theorem: General Derivation

If Force F varies along x. What is the Work-Kinetic Energy relation?

$$W = \int F_x dx = \int ma_x dx$$

rewrite:
$$a_x = \frac{dv_x}{dt} = \frac{dv_x}{dx} \cdot \frac{dx}{dt} = v_x \frac{dv_x}{dx}$$

$$W_{\text{net}} = \int_{x_1}^{x_2} m a_x dx = m \int_{x_1}^{x_2} v_x \frac{dv_x}{dx} dx = m \int_{v_1}^{v_2} v_x dv_x$$

$$\Rightarrow W_{\text{net}} = \frac{1}{2} m v_2^2 - \frac{1}{2} m v_1^2$$

Pop Quiz

- When I catch a ball falling from above in my hand
- (A) I do work on the ball
- (B) the ball does work on me
- (C) the ball does work on gravity

Motion Along Curve & W-E Theorem

Particle moves from P₁ to P₂ under a variable force in a curved path

Force \vec{F} is constant over infinitismal displacement $d\vec{l}$

Work done by \vec{F} during displacement $d\vec{l}$: $dw = F_{\parallel}dl = \vec{F}.d\vec{l}$

Net Work done
$$W = \int_{P_1}^{P_2} F \cos \varphi \ dl = \int_{P_1}^{P_2} F_{\parallel} dl = \int_{P_1}^{P_2} \vec{F} . d\vec{l}$$

Work Done in Displacement Along Curved Path

Throckmorton (!) of weight w sits on swing, with chain of radius R Man pushes *Throcky* by exerting horizontal force F that starts at 0 and gradually increases such that swing moves very slowly and always remains in equilibrium. In the end swing makes angle θ_0 w.r.t vertical. (a) work done by ALL forces on Throcky? (b) work done by tension T of swing on the kid (c) work done by man?

Motion is along a curve \Rightarrow W= $\int \vec{F} \cdot d\vec{l}$

Total work done=work done by \vec{F}_{net}

Since (Throcky+swing) in equilibrium

 \Rightarrow Net force on him: $\vec{F}_{net} = 0$

$$\Rightarrow$$
 W_{net} = $\int \vec{F}_{net} . d\vec{l} = 0$

Chain tension $\vec{T} \perp d\vec{l}$ always!

$$\Rightarrow W_T = \int \vec{T} \cdot d\vec{l} = \int T dl \cos 90^0 = 0$$

Work Done by Man on Throcky+Swing

Man applies force varying force \vec{F} at any instant during displacement:

System in equilibrium: Apply 1st law

$$\sum F_x = 0 = F - T \sin \dot{e}$$
, $\sum F_y = 0 = T \cos \dot{e} - w$

Eliminate T from above \Rightarrow F = w tanè

Points where \vec{F} applied=arc $s = R\hat{e}$

 \Rightarrow Infinitismal displacement $dl = Rd\theta$

$$W_{man} = \int \vec{F} \cdot d\vec{l} = \int F \cos \theta \cdot ds = \int_{\theta=0}^{\theta_0} (w \tan \theta)(\cos \theta) R d\theta$$

$$\Rightarrow W_{man} = wR \int_{\theta=0}^{\theta_0} \sin\theta d\theta \Rightarrow wR(1 - \cos\theta_0)$$

Force & Power

Work done is force applied over a distance. No mention of time in def.

Power is time rate at which work is done. When a work ΔW is done over time Δt

define average Power
$$P_{ave} = \frac{\Delta W}{\Delta t}$$
 and Instantaneous power $P = \lim_{\Delta t \to 0}$

$$P = \lim_{\Delta t \to 0} \frac{\Delta W}{\Delta t} = \frac{dW}{dt}$$

SI Unit of power: 1W = 1 J/s

More useful unit is KW=10³ W or MW=10⁶ W

$$1 \text{ hp} = 550 \text{ft.lb/s} = 746 \text{W}$$

Unit of power can be used to define new unit of Work or Energy

Kilowatt-hour (kWh)

And finally,
$$P_{ave} = \frac{\Delta W}{\Delta t} = \frac{F_{\parallel} \Delta s}{\Delta t} = F_{\parallel} . V_{ave}$$

$$\boxed{P = \vec{F}.\vec{v}}$$

(Girl) Power!

Woman, m=50kg, climbs up cliff h=400m in 15 minutes! What's her power output in Watts & hp?

$$P_{ave} = \frac{Work\ Done}{Time\ Taken} = \frac{\ddot{A}W}{\ddot{A}t}$$

 $\ddot{A}W = \vec{F}.\vec{d} = (mg)h = (50.0kg)(9.8m/s^2)(400m)$

$$\Rightarrow \ddot{A}W=1.96?10^{5}J \& P_{ave} = \frac{\ddot{A}W}{\ddot{A}t} = 0.218kW$$

Since $1hp = 0.746kW \Rightarrow Girl power=0.29hp$

Conservative Force

Work done by a conservative force on an object moving from one point to another depends **only** on the initial and final positions and is independent of path taken. e.g. Gravity

$$W_G = \int_1^2 \vec{F}_g . d\vec{l} = \int_1^2 mg \cos e^{it} dt$$

Use $dy = dl \cos \phi = -dl \cos \theta$

$$\Rightarrow W_G = -\int_{y_1}^{y_2} mgdy = -mg(y_2 - y_1) = -mgh$$

Conservative Force: Alternate Def.

A force is a conservative force IF the net work done by the force on the object moving around any *closed* path is zero

Work Done By Conservative Forces

Work done by conservative force:

- 1. Can be expressed as difference between initial and final values of the potential energy functions
- 2. It is reversible
- 3. Independent of path of body, depends on start/end point only
- 4. When start/end point are same, work done is zero

Non-Conservative Force

Example: Force of Friction

work done in moving a crate across a level floor depends on the total distance travelled, since friction force is directed opposite to direction of motion $\Rightarrow W_F \infty$ path length.

Since friction is oppo. to motion dir., $W_F < 0$ always, indep. of path

Work done by non-conservative forces not recoverable

Pop quiz

- The figure on the board shows a frictionless slide. The two ends A and B are at the same height. The speed of an object at the bottom C of the slide is
- (A) greater when it is released at A
- (B) greater when it is released from B
- (C) the same in either case.

Potential Energy: U

- Potential Energy: Energy U associated with the position or configuration (arrangement) of objects that exert forces on each other
- Various kinds of Potential energy can be defined and each type is associated with a particular *conservative force*
- Most common example of Potential energy
 - gravitational potential energy
 - associated with body's weight and height above ground level or another reference point

Work Done By Gravity in Vertical Motion

Gravitation Potential Energy

Define: Gravitational Pot. Energy U = mgy

Unit of Pot. energy U = Joule(J)

Can express work done in terms of change in U

If body moves up (y increases),

$$\Rightarrow$$
 W_{grav} < 0, & $\Delta U > 0$

If body moves down (y decreases),

$$\Rightarrow$$
 W_{grav} > 0, & $\Delta U < 0$

Conservation of Mechanical Energy

Body continues to fall under gravitational force only

Work-Energy theorem \Rightarrow

relation between total work done & kinetic energy

$$\Rightarrow \mathbf{W}_{\text{tot}} = \ddot{\mathbf{A}}\mathbf{K} = \mathbf{K}_2 - \mathbf{K}_1$$
also $\mathbf{W}_{\text{tot}} = \mathbf{W}_{\text{grav}} = -\ddot{\mathbf{A}}\mathbf{U} = \mathbf{U}_1 - \mathbf{U}_2$

$$\Rightarrow K_2 - K_1 = U_1 - U_2 \text{ or } K_1 + U_1 = K_2 + U_2$$

Define: E=K+U=Total mech. energy of system

$$E=K+U=constant$$

⇒ Conservation of Mechanical Energy

Effect Of Other Forces On Body (Fother)

When other forces act on body, in addition to

weight force then $\vec{F}_{other} \neq 0$ & it does work W_{other}

$$\Rightarrow \boxed{\mathbf{W}_{\text{tot}} = W_{other} + W_{grav} = K_2 - K_1}$$

Nevertheless, $W_{grav} = U_1 - U_2$

$$\Rightarrow$$
 W_{tot} = W_{other} + U₁ - U₂ = K₂ - K₁

$$\Rightarrow K_1 + U_1 + W_{\text{other}} = K_2 + U_2$$

master equation:

$$\frac{1}{2}mv_1^2 + mgy_1 + W_{other} = \frac{1}{2}mv_2^2 + mgy_2$$

Conservation Of Mechanical Energy

$$K_1 + U_1 + W_{\text{other}} = K_2 + U_2$$

$$\frac{1}{2}mv_1^2 + mgy_1 + W_{\text{other}} = \frac{1}{2}mv_2^2 + mgy_2$$

Work done on a body by all forces on the body other than gravity equals change in the total mechanical energy E=K+U of the system

If $W_{other} > 0$, E increases & Vice Verca

Gravitational Potential When Motion Along Curved Path

Body in curved trajectory under gravity & \vec{F}_{other}

Divide trajectory in smaller elements $\Delta \vec{s}$

$$\Delta \vec{s} = \Delta x \hat{i} + \Delta y \hat{j}$$

$$\therefore dW_{grav} = \vec{f}_{grav} . \ddot{A}\vec{s} = -mg\Delta y$$

$$\therefore W_{\text{grav}} = -mg \sum \Delta y = -mg(y_1 - y_2)$$

⇒ Work done by gravity is same whether path is curved or straight !

&
$$\Delta U = -W_{grav} = mg(y_1 - y_2)$$

Projectile Motion & Energy Conservation

Use energy conservation to find the maximum height h of projectile launched with initial speed \mathbf{v}_0 and at angle $\boldsymbol{\alpha}_0$

Determine K & U at 1 & 2 and apply energy conservation

$$K_1+U_1=K_2+U_2 \Rightarrow$$

$$\frac{1}{2}m(v_{1x}^2+v_{1y}^2)+0=\frac{1}{2}m(v_{2x}^2+v_{2y}^2)+mgh \Rightarrow v_{1x}^2+v_{1y}^2=v_{2x}^2+v_{2y}^2+2gh$$

Since in projectile motion: $v_{1x} = v_{2x} & v_{2y} = 0$

$$v_{1y}^2 = 2gh \implies h = \frac{v_1^2 \sin^2 \alpha}{2g}$$
 (as calculated before!)

Boy+board (m=25kg) starts from rest & skates down curved (R=3m) ramp with friction. At the bottom, his speed=6m/s. What work is done by friction

Forces on boy: weight, normal and *friction* \vec{f} \vec{n} always \perp to path \Rightarrow does no work done on boy!

But weight (mg) force and $\vec{F}_{other} = \vec{f}$ do work W_{other} on boy

$$K_1 = 0$$
, $U_1 = mgR = 735J$ & $K_2 = \frac{1}{2}mv_2^2 = 450J$, $U_2 = 0$

Conservation of Mechanical Energy

$$\Rightarrow \boxed{\mathbf{K}_1 + \mathbf{U}_1 + \mathbf{W}_{\text{other}} = \mathbf{K}_2 + \mathbf{U}_2}$$

$$\Rightarrow$$
 $\mathbf{W}_{\text{other}} = \mathbf{W}_f = (\mathbf{K}_2 + \mathbf{U}_2) - (\mathbf{K}_1 + \mathbf{U}_1)$

=-285J

did not need to know μ_{K} or f!

Quick Question

A girl throws a stone from a bridge. Consider the following ways she might throw the stone. The speed of the stone as it leaves her hand is the same in each case.

- (A) Thrown straight up.
- (B) Thrown Straight down
- (C)Thrown out at an angle of 45^o to the horizontal
- (D) thrown straight out horizontally

In which case will the speed of the stone be greatest when it hits the water below?

Quick Question

- A pendulum in a grandfather clock swings back and forth.
- (A) Gravity does positive work on the pendulum when it is swinging from a high point to a low point.
- (B) gravity does positive work on it when it swings from a low to a high point.
- (C)Gravity does no work on the pendulum.
- (D) gravity does positive work in both cases.

Elastic Potential Energy

an extends spring+block from equilibrium position

ce by man to stretch ng by distance $x \Rightarrow F_x = kx$

Work done by man, on spring, to stretch

it from
$$x_1 \to x_2$$
: $W_{onS} = \frac{1}{2}kx_2^2 - \frac{1}{2}kx_1^2$

Force & Work Done By A Stretched Spring

 3^{rd} law \Rightarrow Spring exerts restoring force on block

 \Rightarrow does negative work when displaced from $x_1 \rightarrow x_2$

 $W_{\text{byS}} = -W_{\text{onS}} = W_{\text{el}} = \frac{1}{2}kx_1^2 - \frac{1}{2}kx_2^2 < 0$

At another instant when spring "relaxes" (unstretched) then pulls on block

x₁ > x₂ & spring does positive work on block which speeds up

 \vec{F}_{spring} & displacement \vec{s} are ||

Elastic Potential Energy

Define Elastic Potential Energy $U = \frac{1}{2}kx^2$

Work done W_{el} by spring on block

$$\mathbf{W}_{\text{el}} = \frac{1}{2}kx_1^2 - \frac{1}{2}kx_2^2 = U_1 - U_2 = -\Delta U$$

Stretched spring $\Rightarrow x_2 > x_1 \Rightarrow W_{el}$

decreases & potential U increases

Compressed spring $\Rightarrow x_2 < x_1$

When compressed spring compressed more, $W_{el} < 0$

If spring is compressed or stretched more, its potential energy U increases

Compressed spring \Rightarrow displacements negative with respect to reference x = 0

$$|\mathbf{x}_2| < |\mathbf{x}_1|$$

Potential energy $U_{el} = \frac{1}{2}kx^2$ is ALWAYS positive!

W-E Theorem \Rightarrow W_{tot} = K₂-K₁

If spring force is the *only force* that does work on block

$$\Rightarrow$$
 $W_{tot} = W_{el} = U_1 - U_2$ Combining this with W-E theorem \Rightarrow

$$W_{tot} = U_1 - U_2 = K_2 - K_1 \text{ or } K_1 + U_1 = K_2 + U_2$$

Conservation of Mechanical Energy E=K+U

Explicitly:
$$\frac{1}{2}mv_1^2 + \frac{1}{2}kx_1^2 = \frac{1}{2}mv_2^2 + \frac{1}{2}kx_2^2$$

in case of frictionless, massless spring

Quick question

- If a mass M falls with velocity v on a spring of force constant k and compresses it by x:
- (A) All the kinetic energy is converted to gravitational potential energy
- (B) The spring's stored elastic potential energy increases by ½ M v^2
- (C)gravitational potential energy is converted to elastic potential energy
- (D) all the kinetic energy plus gravitational potential energy is converted to stored elastic energy in the spring.

Compressed spring \Rightarrow displacements negative with respect to reference x = 0

$$|\mathbf{x}_2| < |\mathbf{x}_1|$$

Potential energy $U_{el} = \frac{1}{2}kx^2$ is ALWAYS positive!

W-E Theorem \Rightarrow W_{tot} = K₂-K₁

If spring force is the *only force* that does work on block

$$\Rightarrow$$
 $W_{tot} = W_{el} = U_1 - U_2$ Combining this with W-E theorem \Rightarrow

$$W_{tot} = U_1 - U_2 = K_2 - K_1 \text{ or } K_1 + U_1 = K_2 + U_2$$

Conservation of Mechanical Energy E=K+U

Explicitly:
$$\frac{1}{2}mv_1^2 + \frac{1}{2}kx_1^2 = \frac{1}{2}mv_2^2 + \frac{1}{2}kx_2^2$$

in case of frictionless, massless spring

Conservation of Mechanical Energy In Spring-Block syst

In Presence of Additional Forces On Block

In presence of additional forces, which do work W_{other}

$$\therefore W_{tot} = W_{el} + W_{other} \& W-E Theorem \implies W_{tot} = K_2 - K_1$$

Since
$$W_{el} = U_1 - U_2 \Rightarrow K_1 + U_1 + W_{other} = K_2 + U_2$$

or
$$\left| \frac{1}{2} m v_1^2 + \frac{1}{2} k x_1^2 + W_{other} \right| = \frac{1}{2} m v_2^2 + \frac{1}{2} k x_2^2$$

Work done by all forces other than elastic force equals change in the total mechanical energy E=K+U of system

If
$$W_{other} > 0 \implies Energy E increases$$

If
$$W_{other} < 0 \implies Energy E decreases$$

Situation With Both Gravitational & Elastic Potential Energy: Bungee Jumping!

Woman tied to an elastic rope of length L, jumps off a cliff!!

Survives because of conservation of mechanical energy

⇒the joy of bungee jumping!

Situation With Both Gravitational & Elastic Potential Energy: General Expression

$$K_1 + U_{g,1} + U_{el,1} + W_{other} = K_2 + U_{g,2} + U_{el,2}$$

Work done by all forces except gravitational and elastic force equals change in the total mechanical energy E=K+U

In bungee jumping as woman falls U_{grav} decreases, is converted into her increased kinetic energy K

Beyond a certain point in the fall, woman's speed decreases so that both K and U_{grav} are converted into elastic potential energy U_{el} .

The "Other force" in bungee jumping could be gusting of wind ... up or down!...

makes it an adventure to die for!

Elevator To Hell!

2000 Kg elevator with broken cable falling at 25m/s when it contacts a cushioning spring which is supposed to stop the fall by compressing by 3m.

During motion, a safety clamp applies constant 17000N frictional force on elevator. What must be the force constant k of the spring?

⇒ Use most general form of energy conservation

$$K_1 + U_{g,1} + U_{el,1} + W_{other} = K_2 + U_{g,2} + U_{el,2}$$

Apply Energy Conservation at points 1 & 2

$$\Rightarrow \mathbf{K}_1 + \mathbf{0} + \mathbf{W}_{\text{other}} = 0 + (\mathbf{mgy}_2 + \frac{1}{2}\mathbf{ky}_2^2)$$

$$\therefore \text{Spring constant } k = \frac{K_1 + W_{\text{other}} - mgy_2}{y_2^2}$$