Physics 4A March 3, 2015

Sunil Sinha
UCSD Physics

Center Of Gravity

In many situations one of the forces acting on the rigid body is gravity. The weight of the body is distributed over entire body ⇒ need to be able to calculate torque due to weight

$$\vec{\tau} = \sum_{i} \vec{\tau}_{i} = \sum_{i} \vec{r}_{i} \times \vec{w}_{i} = \sum_{i} \vec{r}_{i} \times m_{i} \vec{g}$$

$$\Rightarrow \vec{\tau} = \left(\sum_{i} m_{i} \vec{r}_{i}\right) \times \vec{g} = \left(\frac{\sum_{i} m_{i} \vec{r}_{i}}{M}\right) \times M \vec{g}$$

$$\Rightarrow \vec{\tau} = \vec{r}_{cm} \times \vec{w}$$

Total au_{grav} is same as if total weight was acting at \vec{r}_{cm}

Define CG as the point at which gravity can be considered to act.

If \vec{g} has same value over entire body then CG=CM

CM of rigid body has $\vec{a}=0 \Rightarrow \sum \vec{F}=0$

can't have tendency to start rotating about any point

$$\Rightarrow \sum \vec{\tau} = 0$$

Stability & Balance

Body in static equilibrium, if left undisturbed, will undergo no translational or rotational acceleration

If object disturbed, 3 outcomes possible:

- 1. Stable equilibrium: object returns to its original position
- 2. Unstable Equilibrium: Object moves even further away from its original position
- 3. Neutral Equ.: Object stays in new position (like a sphere on a flat table)

