Physics 211B : Solution Set \#2

[1] Rectangular Barrier - Consider a symmetric planar barrier consisting of a layer of $\mathrm{Al}_{x} \mathrm{Ga}_{1-x} \mathrm{As}$ of width $2 a$ imbedded in GaAs. The barrier height V_{0} is simply the difference between conduction band minima ΔE_{c} at the Γ point; energies are defined relative to $E_{\Gamma}^{\text {GaAs }}$. Derive the \mathcal{S}-matrix for this problem. Show that

$$
T(E)=\frac{1}{1+\left[\frac{\sinh (b \sqrt{1-\eta})}{2 \sqrt{\eta(1-\eta)}}\right]^{2}} \quad(\eta \leq 1)
$$

and

$$
T(E)=\frac{1}{1+\left[\frac{\sin (b \sqrt{\eta-1})}{2 \sqrt{\eta(\eta-1)}}\right]^{2}} \quad(\eta \geq 1)
$$

where $\eta=E / V_{0}$ and $b=a / \ell$ with $\ell=\hbar / \sqrt{2 m^{*} V_{0}}$. Sketch $T(E)$ versus E / V_{0} for various values of the dimensionless thickness b.

Solution: Let the barrier extend from $x=0$ to $x=d \equiv 2 a$. The energy is

$$
E=\frac{\hbar^{2} k^{2}}{2 m^{*}}=\frac{\hbar^{2} q^{2}}{2 m^{*}}+V_{0} .
$$

Thus, with $\eta=E / V_{0}$, and $\ell=\hbar / \sqrt{2 m^{*} V_{0}}$, the wavevectors k and q outside and inside the barrier region are given by $k=\ell^{-1} \sqrt{\eta}$ and $q=\ell^{-1} \sqrt{\eta-1}$, respectively.

The wavefunction in the three regions is written

$$
\begin{aligned}
\psi(x) & =A e^{i k x}+B e^{-i k x} & & (x \leq 0) \\
& =C e^{i q x}+D e^{-i q x} & & (0 \leq x \leq d) \\
& =E e^{i k x}+F e^{-i k x} & & (d \leq x) .
\end{aligned}
$$

Matching the wavefunction and its derivative at the points $x=0$ and $x=d$ gives four equations in the six unknowns A, B, C, D, E, and F :

$$
\begin{aligned}
A+B & =C+D \\
k(A-B) & =q(C-D) \\
C e^{i q d}+D e^{-i q d} & =E e^{i k d}+F e^{-i k d} \\
q\left(C e^{i q d}+D e^{-i q d}\right) & =k\left(E e^{i k d}-F e^{-i k d}\right) .
\end{aligned}
$$

Solving the first two equations for C and D yields

$$
\binom{C}{D}=\left(\begin{array}{cc}
1 & 1 \\
q & -q
\end{array}\right)^{-1}\left(\begin{array}{cc}
1 & 1 \\
k & -k
\end{array}\right)\binom{A}{B}
$$

The bottom pair says

$$
\binom{E}{F}=\left(\begin{array}{cc}
e^{i k d} & e^{-i k d} \\
k e^{i k d} & -k e^{i k d}
\end{array}\right)^{-1}\left(\begin{array}{cc}
e^{i q d} & e^{-i q d} \\
q e^{i q d} & -q e^{-i q d}
\end{array}\right)\binom{C}{D} .
$$

Thus, the transfer matrix for this problem is

$$
\begin{aligned}
\mathcal{M} & =\frac{1}{4 k q}\left(\begin{array}{cc}
k e^{-i k d} & e^{-i k d} \\
k e^{i k d} & -e^{i k d}
\end{array}\right)\left(\begin{array}{cc}
e^{i q d} & e^{-i q d} \\
q e^{i q d} & -q e^{-i q d}
\end{array}\right)\left(\begin{array}{cc}
q & 1 \\
q & -1
\end{array}\right)\left(\begin{array}{cc}
1 & 1 \\
k & -k
\end{array}\right) \\
& =\frac{1}{4 k q}\left(\begin{array}{cc}
(k+q)^{2} e^{-i(k-q) d}-(k-q)^{2} e^{-i(k+q) d} & -2 i\left(k^{2}-q^{2}\right) e^{-i k d} \sin (q d) \\
2 i\left(k^{2}-q^{2}\right) e^{i k d} \sin (q d) & (k+q)^{2} e^{i(k-q) d}-(k-q)^{2} e^{i(k+q) d}
\end{array}\right) \\
& =\left(\begin{array}{cc}
1 / t^{*} & -r^{*} / t^{*} \\
-r / t^{\prime} & 1 / t^{\prime}
\end{array}\right) .
\end{aligned}
$$

Thus,

$$
t^{*}=\frac{4 k q e^{i k d}}{(k+q)^{2} e^{i q d}-(k-q)^{2} e^{-i q d}}
$$

and (see sketch in figure 1):

$$
\begin{array}{rlr}
T(E)=|t|^{2} & =\frac{1}{1+\left(\frac{k^{2}-q^{2}}{2 k q}\right)^{2} \sin ^{2}(q d)} & \\
& =\frac{1}{1+\left[\frac{\sin (2 b \sqrt{\eta-1})}{2 \sqrt{\eta(\eta-1)}}\right]^{2}} & (\eta \geq 1) \\
& =\frac{1}{1+\left[\frac{\sinh (2 b \sqrt{1-\eta})}{2 \sqrt{\eta(1-\eta)}}\right]^{2}} & (\eta \leq 1) .
\end{array}
$$

[2] Multichannel Scattering - Consider a multichannel scattering process defined by the Hamiltonian matrix

$$
\mathcal{H}_{i j}=\left(-\frac{\hbar^{2}}{2 m} \frac{\partial^{2}}{\partial x^{2}}+\varepsilon_{i}\right) \delta_{i j}+\Omega_{i j} \delta(x),
$$

which describes the scattering among N channels by a δ-function impurity at $x=0$. The matrix $\Omega_{i j}$ allows a particle in channel j passing through $x=0$ to be scattered into channel i. The $\left\{\varepsilon_{i}\right\}$ are the internal (transverse) energies for the various channels. For $x \neq 0$, we can write the channel j component of the wavefunction as

$$
\begin{aligned}
\psi_{j}(x) & =I_{j} e^{i k_{j} x}+O_{j}^{\prime} e^{-i k_{j} x} & & (x<0) \\
& =O_{j} e^{i k_{j} x}+I_{j}^{\prime} e^{-i k_{j} x} & & (x>0)
\end{aligned}
$$

where the k_{j} are positive and determined by

$$
\varepsilon_{\mathbf{F}}=\frac{\hbar^{2} k_{j}^{2}}{2 m}+\varepsilon_{j} .
$$

Show that the incoming and outgoing flux amplitudes are related by a $2 N \times 2 N \mathcal{S}$-matrix:

$$
\left(\begin{array}{cc}
\sqrt{v} & O^{\prime} \\
\sqrt{v} & O
\end{array}\right)=\overbrace{\left(\begin{array}{ll}
r & t^{\prime} \\
t & r^{\prime}
\end{array}\right)}^{\mathcal{S}}\left(\begin{array}{c}
\sqrt{v} \\
\sqrt{v} \\
\sqrt{\prime}
\end{array}\right)
$$

Figure 1: Dimensionless barrier conductance versus incident energy for a set of thickness parameters.
where $v=\operatorname{diag}\left(v_{1}, \ldots, v_{N}\right)$ with $v_{i}=\hbar k_{i} / m>0$. Find explicit expressions for the component $N \times N$ blocks $r, t, t^{\prime}, r^{\prime}$, and show that \mathcal{S} is unitary, i.e. $\mathcal{S}^{\dagger} \mathcal{S}=\mathcal{S S}^{\dagger}=\mathbb{I}$.

Solution: Continuity of the wavefunction at $x=0$ requires

$$
I_{j}+O_{j}^{\prime}=O_{j}+I_{j}^{\prime} .
$$

Integrating the Schrödinger equation from $x=0^{-}$to $x=0^{+}$yields

$$
-\frac{\hbar^{2}}{2 m}\left[\psi_{i}^{\prime}\left(0^{+}\right)-\psi_{i}^{\prime}\left(0^{-}\right)\right]+\Omega_{i j} \psi_{j}(0)=0
$$

which is equivalent to

$$
(i \hbar V+\Omega)_{i j}\left(I_{j}+I_{j}^{\prime}\right)=(i \hbar V-\Omega)_{i j}\left(O_{j}+O_{j}^{\prime}\right)
$$

with $V_{i j}=v_{i} \delta_{i j}$. Thus,

$$
\left(\begin{array}{cc}
1 & -1 \\
i \hbar V-\Omega & i \hbar V-\Omega
\end{array}\right)\binom{O^{\prime}}{O}=\left(\begin{array}{cc}
-1 & 1 \\
i \hbar V+\Omega & i \hbar V+\Omega
\end{array}\right)\binom{I}{I^{\prime}} .
$$

If A is any $N \times N$ matrix, then

$$
\left(\begin{array}{cc}
1 & -1 \\
A & A
\end{array}\right)=\frac{1}{2}\left(\begin{array}{cc}
1 & A^{-1} \\
-1 & A^{-1}
\end{array}\right) .
$$

Consequently,

$$
\binom{O^{\prime}}{O}=\frac{1}{2}\left(\begin{array}{ll}
Q-1 & Q+1 \\
Q+1 & Q-1
\end{array}\right)\binom{I}{I^{\prime}}
$$

with $Q=(i \hbar V-\Omega)^{-1}(i \hbar V+\Omega)$. This immediately gives the \mathcal{S}-matrix as

$$
\mathcal{S}=\binom{O^{\prime}}{O}=\frac{1}{2}\left(\begin{array}{ll}
\widetilde{Q}-1 & \widetilde{Q}+1 \\
\widetilde{Q}+1 & \widetilde{Q}-1
\end{array}\right)
$$

where

$$
\widetilde{Q}=V^{1 / 2} Q V^{-1 / 2}=\left(1+i \hbar^{-1} \widetilde{\Omega}\right)^{-1}\left(1-i \hbar^{-1} \widetilde{\Omega}\right)
$$

with $\widetilde{\Omega}=V^{-1 / 2} \Omega V^{-1 / 2}$. Note that the product in the above equation may be taken in either order, as the two factors commute. Since $\widetilde{\Omega}=\widetilde{\Omega}^{\dagger}$ is Hermitian, \widetilde{Q} is unitary, which in turn guarantees the unitarity of \mathcal{S} :

$$
\mathcal{S}^{\dagger} \mathcal{S}=\frac{1}{2}\left(\begin{array}{ll}
\widetilde{Q}^{\dagger} \widetilde{Q}+1 & \widetilde{Q}^{\dagger} \widetilde{Q}-1 \\
\widetilde{Q}^{\dagger} \widetilde{Q}-1 & \widetilde{Q}^{\dagger} \widetilde{Q}+1
\end{array}\right)=\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right) .
$$

[3] Spin Valve - Consider a barrier between two halves of a ferromagnetic metallic wire. For $x<0$ the magnetization lies in the $\hat{\boldsymbol{z}}$ direction, while for $x>0$ the magnetization is directed along the unit vector $\hat{\boldsymbol{n}}=(\sin \theta \cos \phi, \sin \theta \sin \phi, \cos \theta)$. The Hamiltonian is given by

$$
\mathcal{H}=-\frac{\hbar^{2}}{2 m^{*}} \frac{d^{2}}{d x^{2}}+\mu_{\mathrm{B}} \boldsymbol{H}_{\mathrm{int}} \cdot \boldsymbol{\sigma},
$$

where $\boldsymbol{H}_{\text {int }}$ is the (spontaneously generated) internal magnetic field and $\mu_{\mathrm{B}}=e \hbar / 2 m_{\mathrm{e}} \boldsymbol{c}$ is the Bohr magneton ${ }^{1}$. The magnetization \boldsymbol{M} points along $\boldsymbol{H}_{\text {int }}{ }^{2}$. For $x<0$ we therefore have

$$
E_{\mathrm{F}}=\frac{\hbar^{2} k_{\uparrow}^{2}}{2 m^{*}}+\Delta=\frac{\hbar^{2} k_{\downarrow}^{2}}{2 m^{*}}-\Delta,
$$

where $\Delta=\mu_{\mathrm{B}} H_{\mathrm{int}}$. A similar relation holds for the Fermi wavevectors corresponding to spin states $|\hat{\boldsymbol{n}}\rangle$ and $|-\hat{\boldsymbol{n}}\rangle$ in the region $x>0$.

Consider the \mathcal{S}-matrix for this problem. The 'in' and 'out' states should be defined as local eigenstates, which means that they have different spin polarization axes for $x<0$ and $x>0$. Explicitly, for $x<0$ we write

$$
\binom{\psi_{\uparrow}(x)}{\psi_{\downarrow}(x)}=\left\{A_{\uparrow} e^{i k_{\uparrow} x}+B_{\uparrow} e^{-i k_{\uparrow} x}\right\}\binom{1}{0}+\left\{A_{\downarrow} e^{i k_{\downarrow} x}+B_{\downarrow} e^{-i k_{\downarrow} x}\right\}\binom{0}{1}
$$

[^0]while for $x>0$ we write
$$
\binom{\psi_{\uparrow}(x)}{\psi_{\downarrow}(x)}=\left\{C_{\uparrow} e^{i k_{\uparrow} x}+D_{\uparrow} e^{-i k_{\uparrow} x}\right\}\binom{u}{v}+\left\{C_{\downarrow} e^{i k_{\downarrow} x}+D_{\downarrow} e^{-i k_{\downarrow} x}\right\}\binom{-v^{*}}{u},
$$
where $u=\cos (\theta / 2)$ and $v=\sin (\theta / 2) \exp (i \phi)$. The \mathcal{S}-matrix relates the flux amplitudes of the in-states and out-states:
\[

\left($$
\begin{array}{l}
b_{\uparrow} \\
b_{\downarrow} \\
c_{\uparrow} \\
c_{\downarrow}
\end{array}
$$\right)=\overbrace{\left($$
\begin{array}{lll}
r_{11} & r_{12} & t_{11}^{\prime} \\
r_{21} & r_{22}^{\prime} & t_{21}^{\prime} \\
t_{22}^{\prime} \\
t_{11} & t_{12} & r_{11}^{\prime} \\
t_{21} & t_{22}^{\prime} & r_{21}^{\prime}
\end{array}
$$ r_{22}^{\prime}\right.}^{\prime})\left($$
\begin{array}{l}
a_{\uparrow} \\
a_{\downarrow} \\
d_{\uparrow} \\
d_{\downarrow}
\end{array}
$$\right) .
\]

Derive the 2×2 transmission matrix t (you don't have to derive the entire \mathcal{S}-matrix) and thereby obtain the dimensionless conductance $g=\operatorname{Tr}\left(t^{\dagger} t\right)$. Define the polarization P by

$$
P=\frac{n_{\uparrow}-n_{\downarrow}}{n_{\uparrow}+n_{\downarrow}},
$$

where $n_{\sigma}=k_{\sigma} / \pi$ is the electronic density. Find $g(P, \theta)$.
Solution: Continuity of the wavefunction and its derivatives at $x=0$ yields four equations, conveniently written in matrix form:

$$
\left(\begin{array}{cccc}
1 & 0 & -u & v^{*} \\
0 & 1 & -v & -u \\
k_{\uparrow} & 0 & k_{\uparrow} u & -k_{\downarrow} v \\
0 & k_{\downarrow} & k_{\uparrow} v & k_{\downarrow} u
\end{array}\right)\left(\begin{array}{l}
B_{\uparrow} \\
B_{\downarrow} \\
C_{\uparrow} \\
C_{\downarrow}
\end{array}\right)=\left(\begin{array}{cccc}
-1 & 0 & u & -v^{*} \\
0 & -1 & v & u \\
k_{\uparrow} & 0 & k_{\uparrow} u & -k_{\downarrow} v \\
0 & k_{\downarrow} & k_{\uparrow} v & k_{\downarrow} u
\end{array}\right)\left(\begin{array}{l}
A_{\uparrow} \\
A_{\downarrow} \\
D_{\uparrow} \\
D_{\downarrow}
\end{array}\right) .
$$

Defining the 2×2 blocks,

$$
\Sigma \equiv\left(\begin{array}{cc}
u & -v^{*} \\
v & u
\end{array}\right) \quad, \quad K \equiv\left(\begin{array}{cc}
k_{\uparrow} & 0 \\
0 & k_{\downarrow}
\end{array}\right)
$$

we have

$$
\binom{B}{C}=\left(\begin{array}{cc}
1 & -\Sigma \\
K & \Sigma K
\end{array}\right)^{-1}\left(\begin{array}{cc}
-1 & \Sigma \\
K & \Sigma K
\end{array}\right)\binom{A}{D} .
$$

Converting to flux amplitudes, we have

$$
\mathcal{S}=\left(\begin{array}{cc}
\sqrt{K} & 0 \\
0 & \sqrt{K}
\end{array}\right)\left(\begin{array}{cc}
1 & -\Sigma \\
K & \Sigma K
\end{array}\right)^{-1}\left(\begin{array}{cc}
-1 & \Sigma \\
K & \Sigma K
\end{array}\right)\left(\begin{array}{cc}
\sqrt{K^{-1}} & 0 \\
0 & \sqrt{K^{-1}}
\end{array}\right)
$$

We now invoke the general result

$$
\left(\begin{array}{ll}
A & B \\
C & D
\end{array}\right)^{-1}=\left(\begin{array}{ll}
\left(A-B D^{-1} C\right)^{-1} & \left(C-D B^{-1} A\right)^{-1} \\
\left(B-A C^{-1} D\right)^{-1} & \left(D-C A^{-1} B\right)^{-1}
\end{array}\right)
$$

to obtain the blocks of \mathcal{S} :

$$
\begin{aligned}
r & =K^{1 / 2}\left\{\left(1+K^{-1} \Sigma K \Sigma^{-1}\right)^{-1}-\left(1+\Sigma K^{-1} \Sigma^{-1} K\right)^{-1}\right\} K^{-1 / 2} \\
t^{\prime} & =2 K^{1 / 2}\left(\Sigma^{-1}+K^{-1} \Sigma^{-1} K\right)^{-1} K^{-1 / 2} \\
t & =2 K^{1 / 2}\left(\Sigma+K^{-1} \Sigma K\right)^{-1} K^{-1 / 2} \\
r^{\prime} & =K^{1 / 2}\left\{\left(1+K^{-1} \Sigma^{-1} K \Sigma\right)^{-1}-\left(1+\Sigma^{-1} K^{-1} \Sigma K\right)^{-1}\right\} K^{-1 / 2}
\end{aligned}
$$

We find

$$
t=\frac{1}{u^{2}+|v|^{2} \cosh ^{2} y}\left(\begin{array}{cc}
u & v^{*} \cosh y \\
-v \cosh y & u
\end{array}\right)
$$

with $y=\frac{1}{2} \ln \left(k_{\uparrow} / k_{\downarrow}\right)$. The dimensionless conductance is

$$
g(P, \theta)=\operatorname{Tr}\left(t^{\dagger} t\right)=\frac{2}{u^{2}+|v|^{2} \cosh ^{2} y}=\frac{2\left(1-P^{2}\right)}{\left(1-P^{2}\right) \cos ^{2} \frac{1}{2} \theta+\sin ^{2} \frac{1}{2} \theta},
$$

where P is the polarization. Note that $g(P= \pm 1, \theta)=0$, since it is impossible to match boundary conditions on the lower components. One can also compute the reflection matrix,

$$
r=\frac{\sinh y \sin \frac{1}{2} \theta}{\cos ^{2} \frac{1}{2} \theta+\sin ^{2} \frac{1}{2} \theta \cosh ^{2} y}\left(\begin{array}{cc}
\cos \frac{1}{2} \theta & \cosh y \sin \frac{1}{2} \theta e^{-i \phi} \\
-\cosh y \sin \frac{1}{2} \theta e^{i \phi} & \cos \frac{1}{2} \theta
\end{array}\right) .
$$

[4] Distribution of Resistances of a One-Dimensional Wire - In this problem you are asked to derive an equation governing the probability distribution $P(\mathcal{R}, L)$ for the dimensionless resistance \mathcal{R} of a one-dimensional wire of length L. The equation is called the Fokker-Planck equation. Here's a brief primer on how to derive Fokker-Planck equations.

Suppose $x(t)$ is a stochastic variable. We define the quantity

$$
\begin{equation*}
\delta x(t) \equiv x(t+\delta t)-x(t), \tag{1}
\end{equation*}
$$

and we assume

$$
\begin{aligned}
\langle\delta x(t)\rangle & =F_{1}(x(t)) \delta t \\
\left\langle[\delta x(t)]^{2}\right\rangle & =2 F_{2}(x(t)) \delta t
\end{aligned}
$$

but $\left\langle[\delta x(t)]^{n}\right\rangle=\mathcal{O}\left((\delta t)^{2}\right)$ for $n>2$. The $n=1$ term is due to drift and the $n=2$ term is due to diffusion. Now consider the conditional probability density, $P\left(x, t \mid x_{0}, t_{0}\right)$, defined to be the probability distribution for $x \equiv x(t)$ given that $x\left(t_{0}\right)=x_{0}$. The conditional probability density satisfies the composition rule,

$$
P\left(x, t \mid x_{0}, t_{0}\right)=\int_{-\infty}^{\infty} d x^{\prime} P\left(x, t \mid x^{\prime}, t^{\prime}\right) P\left(x^{\prime}, t^{\prime} \mid x_{0}, t_{0}\right),
$$

for any value of t^{\prime}. Therefore, we must have

$$
P\left(x, t+\delta t \mid x_{0}, t_{0}\right)=\int_{-\infty}^{\infty} d x^{\prime} P\left(x, t+\delta t \mid x^{\prime}, t\right) P\left(x^{\prime}, t \mid x_{0}, t_{0}\right)
$$

Now we may write

$$
\begin{aligned}
P\left(x, t+\delta t \mid x^{\prime}, t\right) & =\left\langle\delta\left(x-x^{\prime}-\delta x(t)\right)\right\rangle \\
& =\left\{1+\langle\delta x(t)\rangle \frac{d}{d x^{\prime}}+\frac{1}{2}\left\langle[\delta x(t)]^{2}\right\rangle \frac{d^{2}}{d x^{\prime 2}}+\ldots\right\} \delta\left(x-x^{\prime}\right)
\end{aligned}
$$

where the average is over the random variables. Upon integrating by parts and expanding to $\mathcal{O}(\delta t)$, we obtain the Fokker-Planck equation,

$$
\frac{\partial P}{\partial t}=-\frac{\partial}{\partial x}\left[F_{1}(x) P(x, t)\right]+\frac{\partial^{2}}{\partial x^{2}}\left[F_{2}(x) P(x, t)\right]
$$

That wasn't so bad, now was it?
For our application, $x(t)$ is replaced by $\mathcal{R}(L)$. We derived the composition rule for series quantum resistors in class:

$$
\begin{aligned}
\mathcal{R}(L+\delta L)= & \mathcal{R}(L)+\mathcal{R}(\delta L)+2 \mathcal{R}(L) \mathcal{R}(\delta L) \\
& -2 \cos \beta \sqrt{\mathcal{R}(L)[1+\mathcal{R}(L)] \mathcal{R}(\delta L)[1+\mathcal{R}(\delta L)]}
\end{aligned}
$$

where β is a random phase. For small values of δL, we needn't worry about quantum interference and we can use our Boltzmann equation result. Show that

$$
\mathcal{R}(\delta L)=\frac{e^{2}}{h} \frac{m^{*}}{n e^{2} \tau} \delta L=\frac{\delta L}{2 \ell}
$$

where $\ell=v_{\mathrm{F}} \tau$ is the elastic mean free path. (Assume a single spin species throughout.)
Find the drift and diffusion functions $F_{1}(\mathcal{R})$ and $F_{2}(\mathcal{R})$. Show that the distribution function $P(\mathcal{R}, L)$ obeys the equation

$$
\frac{\partial P}{\partial L}=\frac{1}{2 \ell} \frac{\partial}{\partial \mathcal{R}}\left\{\mathcal{R}(1+\mathcal{R}) \frac{\partial P}{\partial \mathcal{R}}\right\}
$$

Show that this equation may be solved in the limits $\mathcal{R} \ll 1$ and $\mathcal{R} \gg 1$, with

$$
P(\mathcal{R}, z)=\frac{1}{z} e^{-\mathcal{R} / z}
$$

for $\mathcal{R} \ll 1$, and

$$
P(\mathcal{R}, z)=(4 \pi z)^{-1 / 2} \frac{1}{\mathcal{R}} e^{-(\ln \mathcal{R}-z)^{2} / 4 z}
$$

for $\mathcal{R} \gg 1$, where $z=L / 2 \ell$ is the dimensionless length of the wire. Compute $\langle\mathcal{R}\rangle$ in the former case, and $\langle\ln \mathcal{R}\rangle$ in the latter case.

Solution: We have

$$
\begin{aligned}
\mathcal{R}(\delta L) & =\frac{e^{2}}{h} \rho \delta L=\frac{e^{2}}{h} \frac{m^{*}}{n e^{2} \tau} \delta L=\frac{e^{2}}{h} \frac{m^{*} v_{\mathrm{F}}}{n e^{2} \ell} \delta L \\
& =\frac{k_{\mathrm{F}}}{2 \pi n} \frac{\delta L}{\ell}=\frac{\delta L}{2 \ell} .
\end{aligned}
$$

From the composition rule for series quantum resistances, we derive the phase averages

$$
\begin{aligned}
\langle\delta \mathcal{R}\rangle & =(1+2 \mathcal{R}(L)) \frac{\delta L}{2 \ell} \\
\left\langle(\delta \mathcal{R})^{2}\right\rangle & =(1+2 \mathcal{R}(L))^{2}\left(\frac{\delta L}{2 \ell}\right)^{2}+2 \mathcal{R}(L)(1+\mathcal{R}(L)) \frac{\delta L}{2 \ell}\left(1+\frac{\delta L}{2 \ell}\right) \\
& =2 \mathcal{R}(L)(1+\mathcal{R}(L)) \frac{\delta L}{2 \ell}+\mathcal{O}\left((\delta L)^{2}\right),
\end{aligned}
$$

whence we obtain the drift and diffusion terms

$$
F_{1}(\mathcal{R})=\frac{2 \mathcal{R}+1}{2 \ell} \quad, \quad F_{2}(\mathcal{R})=\frac{\mathcal{R}(1+\mathcal{R})}{2 \ell}
$$

Note that $F_{1}(\mathcal{R})=d F_{2} / d \mathcal{R}$, which allows us to write the Fokker-Planck equation as

$$
\frac{\partial P}{\partial L}=\frac{\partial}{\partial \mathcal{R}}\left\{\frac{\mathcal{R}(1+\mathcal{R})}{2 \ell} \frac{\partial P}{\partial \mathcal{R}}\right\}
$$

Defining the dimensionless length $z=L / 2 \ell$, we have

$$
\frac{\partial P}{\partial z}=\frac{\partial}{\partial \mathcal{R}}\left\{\mathcal{R}(1+\mathcal{R}) \frac{\partial P}{\partial \mathcal{R}}\right\}
$$

In the limit $\mathcal{R} \ll 1$, this reduces to

$$
\frac{\partial P}{\partial z}=\mathcal{R} \frac{\partial^{2} P}{\partial \mathcal{R}^{2}}+\frac{\partial P}{\partial \mathcal{R}}
$$

which is satisfied by $P(\mathcal{R}, z)=z^{-1} \exp (-\mathcal{R} / z)$. In the opposite limit, $\mathcal{R} \gg 1$, we have

$$
\begin{aligned}
\frac{\partial P}{\partial z} & =\mathcal{R}^{2} \frac{\partial^{2} P}{\partial \mathcal{R}^{2}}+2 \mathcal{R} \frac{\partial P}{\partial \mathcal{R}} \\
& =\frac{\partial^{2} P}{\partial \nu^{2}}+\frac{\partial P}{\partial \nu}
\end{aligned}
$$

where $\nu \equiv \ln \mathcal{R}$. This is solved by the log-normal distribution,

$$
P(\mathcal{R}, z)=(4 \pi z)^{-1 / 2} e^{-(\nu+z)^{2} / 4 z}
$$

Note that

$$
P(\mathcal{R}, z) d \mathcal{R}=(4 \pi z)^{-1 / 2} \exp \left\{-\frac{(\ln \mathcal{R}-z)^{2}}{4 z}\right\} d \ln \mathcal{R}
$$

[^0]: ${ }^{1}$ Note that it is the bare electron mass m_{e} which appears in the formula for μ_{B} and not the effective mass $m^{*}!$).
 ${ }^{2}$ For weakly magnetized systems, the magnetization is $\boldsymbol{M}=\mu_{\mathrm{B}}^{2} g\left(\varepsilon_{\mathrm{F}}\right) \boldsymbol{H}_{\mathrm{int}}$, where $g\left(\varepsilon_{\mathrm{F}}\right)$ is the total density of states per unit volume at the Fermi energy.

