Physics 211B: Assignment #2

[1] Rectangular Barrier – Consider a symmetric planar barrier consisting of a layer of $Al_x Ga_{1-x} As$ of width 2*a* imbedded in GaAs. The barrier height V_0 is simply the difference between conduction band minima ΔE_c at the Γ point; energies are defined relative to E_{Γ}^{GaAs} . Derive the *S*-matrix for this problem. Show that

$$T(E) = \frac{1}{1 + \left[\frac{\sinh\left(b\sqrt{1-\eta}\right)}{2\sqrt{\eta(1-\eta)}}\right]^2} \qquad (\eta \le 1)$$

and

$$T(E) = \frac{1}{1 + \left[\frac{\sin\left(b\sqrt{\eta-1}\right)}{2\sqrt{\eta(\eta-1)}}\right]^2} \qquad (\eta \ge 1) ,$$

where $\eta = E/V_0$ and $b = a/\ell$ with $\ell = \hbar/\sqrt{2m^*V_0}$. Sketch T(E) versus E/V_0 for various values of the dimensionless thickness b.

[2] Multichannel Scattering – Consider a multichannel scattering process defined by the Hamiltonian matrix

$$\mathcal{H}_{ij} = \left(-\frac{\hbar^2}{2m} \frac{\partial^2}{\partial x^2} + \varepsilon_i \right) \delta_{ij} + \Omega_{ij} \,\delta(x) \;,$$

which describes the scattering among N channels by a δ -function impurity at x = 0. The matrix Ω_{ij} allows a particle in channel j passing through x = 0 to be scattered into channel i. The $\{\varepsilon_i\}$ are the internal (transverse) energies for the various channels. For $x \neq 0$, we can write the channel j component of the wavefunction as

$$\begin{split} \psi_j(x) &= I_j \, e^{ik_j x} + O'_j \, e^{-ik_j x} & (x < 0) \\ &= O_j \, e^{ik_j x} + I'_j \, e^{-ik_j x} & (x > 0) \ , \end{split}$$

where the k_j are positive and determined by

$$\varepsilon_{\rm F} = \frac{\hbar^2 k_j^2}{2m} + \varepsilon_j \ . \label{eq:expansion}$$

Show that the incoming and outgoing flux amplitudes are related by a $2N \times 2N$ S-matrix:

$$\begin{pmatrix} \sqrt{v} \ O' \\ \sqrt{v} \ O \end{pmatrix} = \overbrace{\begin{pmatrix} r & t' \\ t & r' \end{pmatrix}}^{\mathcal{S}} \begin{pmatrix} \sqrt{v} \ I \\ \sqrt{v} \ I' \end{pmatrix}$$

where $v = \text{diag}(v_1, \ldots, v_N)$ with $v_i = \hbar k_i/m > 0$. Find explicit expressions for the component $N \times N$ blocks r, t, t', r', and show that S is unitary, *i.e.* $S^{\dagger}S = SS^{\dagger} = \mathbb{I}$.

[3] Spin Valve – Consider a barrier between two halves of a ferromagnetic metallic wire. For x < 0 the magnetization lies in the \hat{z} direction, while for x > 0 the magnetization is directed along the unit vector $\hat{\boldsymbol{n}} = (\sin \theta \cos \phi, \sin \theta \sin \phi, \cos \theta)$. The Hamiltonian is given by

$$\mathcal{H} = -rac{\hbar^2}{2m^*}rac{d^2}{dx^2} + \mu_{
m B}oldsymbol{H}_{
m int}\cdotoldsymbol{\sigma} \; ,$$

where H_{int} is the (spontaneously generated) internal magnetic field and $\mu_{\text{B}} = e\hbar/2m_{\text{e}}c$ is the Bohr magneton¹. The magnetization M points along H_{int}^2 . For x < 0 we therefore have

$$E_{\rm F} = \frac{\hbar^2 k_{\uparrow}^2}{2m^*} + \Delta = \frac{\hbar^2 k_{\downarrow}^2}{2m^*} - \Delta ,$$

where $\Delta = \mu_{\rm B} H_{\rm int}$. A similar relation holds for the Fermi wavevectors corresponding to spin states $|\hat{n}\rangle$ and $|-\hat{n}\rangle$ in the region x > 0.

Consider the S-matrix for this problem. The 'in' and 'out' states should be defined as local eigenstates, which means that they have different spin polarization axes for x < 0 and x > 0. Explicitly, for x < 0 we write

$$\begin{pmatrix} \psi_{\uparrow}(x) \\ \psi_{\downarrow}(x) \end{pmatrix} = \left\{ A_{\uparrow} e^{ik_{\uparrow}x} + B_{\uparrow} e^{-ik_{\uparrow}x} \right\} \begin{pmatrix} 1 \\ 0 \end{pmatrix} + \left\{ A_{\downarrow} e^{ik_{\downarrow}x} + B_{\downarrow} e^{-ik_{\downarrow}x} \right\} \begin{pmatrix} 0 \\ 1 \end{pmatrix}$$

while for x > 0 we write

$$\begin{pmatrix} \psi_{\uparrow}(x) \\ \psi_{\downarrow}(x) \end{pmatrix} = \left\{ C_{\uparrow} e^{ik_{\uparrow}x} + D_{\uparrow} e^{-ik_{\uparrow}x} \right\} \begin{pmatrix} u \\ v \end{pmatrix} + \left\{ C_{\downarrow} e^{ik_{\downarrow}x} + D_{\downarrow} e^{-ik_{\downarrow}x} \right\} \begin{pmatrix} -v^* \\ u \end{pmatrix} + \left\{ C_{\downarrow} e^{ik_{\downarrow}x} + D_{\downarrow} e^{-ik_{\downarrow}x} \right\} \begin{pmatrix} -v^* \\ u \end{pmatrix} + \left\{ C_{\downarrow} e^{ik_{\downarrow}x} + D_{\downarrow} e^{-ik_{\downarrow}x} \right\} \begin{pmatrix} -v^* \\ u \end{pmatrix} + \left\{ C_{\downarrow} e^{ik_{\downarrow}x} + D_{\downarrow} e^{-ik_{\downarrow}x} \right\} \begin{pmatrix} -v^* \\ u \end{pmatrix} + \left\{ C_{\downarrow} e^{ik_{\downarrow}x} + D_{\downarrow} e^{-ik_{\downarrow}x} \right\} \begin{pmatrix} -v^* \\ u \end{pmatrix} + \left\{ C_{\downarrow} e^{ik_{\downarrow}x} + D_{\downarrow} e^{-ik_{\downarrow}x} \right\} \begin{pmatrix} -v^* \\ u \end{pmatrix} + \left\{ C_{\downarrow} e^{ik_{\downarrow}x} + D_{\downarrow} e^{-ik_{\downarrow}x} \right\} \begin{pmatrix} -v^* \\ u \end{pmatrix} + \left\{ C_{\downarrow} e^{ik_{\downarrow}x} + D_{\downarrow} e^{-ik_{\downarrow}x} \right\} \begin{pmatrix} -v^* \\ u \end{pmatrix} + \left\{ C_{\downarrow} e^{ik_{\downarrow}x} + D_{\downarrow} e^{-ik_{\downarrow}x} \right\} \begin{pmatrix} -v^* \\ u \end{pmatrix} + \left\{ C_{\downarrow} e^{ik_{\downarrow}x} + D_{\downarrow} e^{-ik_{\downarrow}x} \right\} \begin{pmatrix} -v^* \\ u \end{pmatrix} + \left\{ C_{\downarrow} e^{ik_{\downarrow}x} + D_{\downarrow} e^{-ik_{\downarrow}x} \right\} \begin{pmatrix} -v^* \\ u \end{pmatrix} + \left\{ C_{\downarrow} e^{ik_{\downarrow}x} + D_{\downarrow} e^{-ik_{\downarrow}x} \right\} \begin{pmatrix} -v^* \\ u \end{pmatrix} + \left\{ C_{\downarrow} e^{ik_{\downarrow}x} + D_{\downarrow} e^{-ik_{\downarrow}x} \right\} \begin{pmatrix} -v^* \\ u \end{pmatrix} + \left\{ C_{\downarrow} e^{ik_{\downarrow}x} + D_{\downarrow} e^{-ik_{\downarrow}x} \right\} \begin{pmatrix} -v^* \\ u \end{pmatrix} + \left\{ C_{\downarrow} e^{ik_{\downarrow}x} + D_{\downarrow} e^{-ik_{\downarrow}x} \right\} \begin{pmatrix} -v^* \\ u \end{pmatrix} + \left\{ C_{\downarrow} e^{ik_{\downarrow}x} + D_{\downarrow} e^{-ik_{\downarrow}x} \right\} \begin{pmatrix} -v^* \\ u \end{pmatrix} + \left\{ C_{\downarrow} e^{ik_{\downarrow}x} + D_{\downarrow} e^{-ik_{\downarrow}x} \right\} \begin{pmatrix} -v^* \\ u \end{pmatrix} + \left\{ C_{\downarrow} e^{ik_{\downarrow}x} + D_{\downarrow} e^{-ik_{\downarrow}x} \right\} \begin{pmatrix} -v^* \\ u \end{pmatrix} + \left\{ C_{\downarrow} e^{ik_{\downarrow}x} + D_{\downarrow} e^{-ik_{\downarrow}x} \right\} \begin{pmatrix} -v^* \\ u \end{pmatrix} + \left\{ C_{\downarrow} e^{ik_{\downarrow}x} + D_{\downarrow} e^{-ik_{\downarrow}x} \right\} \begin{pmatrix} -v^* \\ u \end{pmatrix} + \left\{ C_{\downarrow} e^{ik_{\downarrow}x} + D_{\downarrow} e^{-ik_{\downarrow}x} \right\} \begin{pmatrix} -v^* \\ u \end{pmatrix} + \left\{ C_{\downarrow} e^{ik_{\downarrow}x} + D_{\downarrow} e^{-ik_{\downarrow}x} \right\} \begin{pmatrix} -v^* \\ u \end{pmatrix} + \left\{ C_{\downarrow} e^{ik_{\downarrow}x} + D_{\downarrow} e^{-ik_{\downarrow}x} \right\} \begin{pmatrix} -v^* \\ u \end{pmatrix} + \left\{ C_{\downarrow} e^{ik_{\downarrow}x} + D_{\downarrow} e^{-ik_{\downarrow}x} \right\} \begin{pmatrix} -v^* \\ u \end{pmatrix} + \left\{ C_{\downarrow} e^{ik_{\downarrow}x} + D_{\downarrow} e^{-ik_{\downarrow}x} + \left\{ C_{\downarrow} e^{ik_{\downarrow}x} + D_{\downarrow} e^{-ik_{\downarrow}x} + \left\{ C_{\downarrow} e^{ik_{\downarrow}x} + D_{\downarrow} e^{ik_{\downarrow}x} + D_{\downarrow} e^{-ik_{\downarrow}x} + \left\{ C_{\downarrow} e^{ik_{\downarrow}x} + D_{\downarrow} e^{ik_{\downarrow}x} + D_{\downarrow} e^{ik_{\downarrow}x} + \left\{ C_{\downarrow} e^{ik_{\downarrow}x} + D_{\downarrow} e^{ik_{\downarrow}x} + D_{$$

where $u = \cos(\theta/2)$ and $v = \sin(\theta/2) \exp(i\phi)$. The *S*-matrix relates the *flux amplitudes* of the in-states and out-states:

$$\begin{pmatrix} b_{\uparrow} \\ b_{\downarrow} \\ c_{\uparrow} \\ c_{\downarrow} \end{pmatrix} = \overbrace{\begin{pmatrix} r_{11} & r_{12} & t'_{11} & t'_{12} \\ r_{21} & r_{22} & t'_{21} & t'_{22} \\ t_{11} & t_{12} & r'_{11} & r'_{12} \\ t_{21} & t_{22} & r'_{21} & r'_{22} \end{pmatrix}}^{\mathcal{S}} \begin{pmatrix} a_{\uparrow} \\ a_{\downarrow} \\ d_{\uparrow} \\ d_{\downarrow} \end{pmatrix}$$

Derive the 2×2 transmission matrix t (you don't have to derive the entire S-matrix) and thereby obtain the dimensionless conductance $g = \text{Tr}(t^{\dagger}t)$. Define the polarization P by

$$P = \frac{n_{\uparrow} - n_{\downarrow}}{n_{\uparrow} + n_{\downarrow}} \; .$$

where $n_{\sigma} = k_{\sigma}/\pi$ is the electronic density. Find $g(P, \theta)$.

¹Note that it is the bare electron mass $m_{\rm e}$ which appears in the formula for $\mu_{\rm B}$ and *not* the effective mass m^* !).

²For weakly magnetized systems, the magnetization is $M = \mu_{\rm B}^2 g(\varepsilon_{\rm F}) H_{\rm int}$, where $g(\varepsilon_{\rm F})$ is the total density of states per unit volume at the Fermi energy.

[4] Distribution of Resistances of a One-Dimensional Wire – In this problem you are asked to derive an equation governing the probability distribution $P(\mathcal{R}, L)$ for the dimensionless resistance \mathcal{R} of a one-dimensional wire of length L. The equation is called the Fokker-Planck equation. Here's a brief primer on how to derive Fokker-Planck equations.

Suppose x(t) is a stochastic variable. We define the quantity

$$\delta x(t) \equiv x(t+\delta t) - x(t) , \qquad (1)$$

and we assume

$$\left\langle \delta x(t) \right\rangle = F_1(x(t)) \, \delta t$$

 $\left\langle \left[\delta x(t) \right]^2 \right\rangle = 2 \, F_2(x(t)) \, \delta t$

but $\langle [\delta x(t)]^n \rangle = \mathcal{O}((\delta t)^2)$ for n > 2. The n = 1 term is due to *drift* and the n = 2 term is due to *diffusion*. Now consider the conditional probability density, $P(x, t | x_0, t_0)$, defined to be the probability distribution for $x \equiv x(t)$ given that $x(t_0) = x_0$. The conditional probability density satisfies the composition rule,

$$P(x,t \mid x_0,t_0) = \int_{-\infty}^{\infty} dx' P(x,t \mid x',t') P(x',t' \mid x_0,t_0) ,$$

for any value of t'. Therefore, we must have

$$P(x,t+\delta t \,|\, x_0,t_0) = \int_{-\infty}^{\infty} dx' \, P(x,t+\delta t \,|\, x',t) \, P(x',t \,|\, x_0,t_0) \; .$$

Now we may write

$$P(x,t+\delta t | x',t) = \left\langle \delta(x-x'-\delta x(t)) \right\rangle$$

= $\left\{ 1 + \left\langle \delta x(t) \right\rangle \frac{d}{dx'} + \frac{1}{2} \left\langle \left[\delta x(t) \right]^2 \right\rangle \frac{d^2}{dx'^2} + \dots \right\} \delta(x-x') ,$

where the average is over the random variables. Upon integrating by parts and expanding to $\mathcal{O}(\delta t)$, we obtain the Fokker-Planck equation,

$$\frac{\partial P}{\partial t} = -\frac{\partial}{\partial x} \left[F_1(x) P(x,t) \right] + \frac{\partial^2}{\partial x^2} \left[F_2(x) P(x,t) \right] \,.$$

That wasn't so bad, now was it?

For our application, x(t) is replaced by $\mathcal{R}(L)$. We derived the composition rule for series quantum resistors in class:

$$\mathcal{R}(L+\delta L) = \mathcal{R}(L) + \mathcal{R}(\delta L) + 2 \mathcal{R}(L) \mathcal{R}(\delta L) - 2 \cos \beta \sqrt{\mathcal{R}(L) [1 + \mathcal{R}(L)] \mathcal{R}(\delta L) [1 + \mathcal{R}(\delta L)]},$$

where β is a random phase. For small values of δL , we needn't worry about quantum interference and we can use our Boltzmann equation result. Show that

$$\mathcal{R}(\delta L) = \frac{e^2}{h} \frac{m^*}{ne^2\tau} \,\delta L = \frac{\delta L}{2\ell} \;,$$

where $\ell = v_{\rm F} \tau$ is the elastic mean free path. (Assume a single spin species throughout.)

Find the drift and diffusion functions $F_1(\mathcal{R})$ and $F_2(\mathcal{R})$. Show that the distribution function $P(\mathcal{R}, L)$ obeys the equation

$$\frac{\partial P}{\partial L} = \frac{1}{2\ell} \frac{\partial}{\partial \mathcal{R}} \left\{ \mathcal{R} \left(1 + \mathcal{R} \right) \frac{\partial P}{\partial \mathcal{R}} \right\} \,.$$

Show that this equation may be solved in the limits $\mathcal{R} \ll 1$ and $\mathcal{R} \gg 1$, with

$$P(\mathcal{R}, z) = \frac{1}{z} e^{-\mathcal{R}/z}$$

for $\mathcal{R} \ll 1$, and

$$P(\mathcal{R}, z) = (4\pi z)^{-1/2} \frac{1}{\mathcal{R}} e^{-(\ln \mathcal{R} - z)^2/4z}$$

for $\mathcal{R} \gg 1$, where $z = L/2\ell$ is the dimensionless length of the wire. Compute $\langle \mathcal{R} \rangle$ in the former case, and $\langle \ln \mathcal{R} \rangle$ in the latter case.