
Physics 211B : Assignment #2

[1] Rectangular Barrier – Consider a symmetric planar barrier consisting of a layer of
AlxGa1−xAs of width 2a imbedded in GaAs. The barrier height V0 is simply the difference
between conduction band minima ∆Ec at the Γ point; energies are defined relative to EGaAs

Γ .
Derive the S-matrix for this problem. Show that
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1

1 +

[
sinh
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b
√

1−η
)

2
√

η(1−η)

]2 (η ≤ 1)

and

T (E) =
1
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[
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b
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η−1
)

2
√

η(η−1)

]2 (η ≥ 1) ,

where η = E/V0 and b = a/ℓ with ℓ = ~/
√

2m∗V0. Sketch T (E) versus E/V0 for various
values of the dimensionless thickness b.

[2] Multichannel Scattering – Consider a multichannel scattering process defined by the
Hamiltonian matrix

Hij =

(

− ~
2

2m

∂2

∂x2
+ εi

)

δij + Ωij δ(x) ,

which describes the scattering among N channels by a δ-function impurity at x = 0. The
matrix Ωij allows a particle in channel j passing through x = 0 to be scattered into channel
i. The {εi} are the internal (transverse) energies for the various channels. For x 6= 0, we
can write the channel j component of the wavefunction as

ψj(x) = Ij e
ikjx +O′

j e
−ikjx (x < 0)

= Oj e
ikjx + I ′j e

−ikjx (x > 0) ,

where the kj are positive and determined by

εF =
~

2k2
j

2m
+ εj .

Show that the incoming and outgoing flux amplitudes are related by a 2N × 2N S-matrix:

(√
v O′

√
v O

)

=

S
︷ ︸︸ ︷
(
r t′

t r′

) (√
v I√
v I ′

)

where v = diag(v1, . . . , vN ) with vi = ~ki/m > 0. Find explicit expressions for the compo-
nent N ×N blocks r, t, t′, r′, and show that S is unitary, i.e. S†S = SS† = I.

[3] Spin Valve – Consider a barrier between two halves of a ferromagnetic metallic wire.
For x < 0 the magnetization lies in the ẑ direction, while for x > 0 the magnetization is
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directed along the unit vector n̂ = (sin θ cosφ, sin θ sinφ, cos θ). The Hamiltonian is given
by

H = − ~
2

2m∗
d2

dx2
+ µBHint · σ ,

where Hint is the (spontaneously generated) internal magnetic field and µB = e~/2mec is
the Bohr magneton1. The magnetization M points along Hint

2. For x < 0 we therefore
have

EF =
~

2k2
↑

2m∗ + ∆ =
~

2k2
↓

2m∗ − ∆ ,

where ∆ = µ
B
Hint. A similar relation holds for the Fermi wavevectors corresponding to

spin states
∣
∣ n̂
〉

and
∣
∣ − n̂

〉
in the region x > 0.

Consider the S-matrix for this problem. The ‘in’ and ‘out’ states should be defined as
local eigenstates, which means that they have different spin polarization axes for x < 0 and
x > 0. Explicitly, for x < 0 we write

(

ψ↑(x)

ψ↓(x)

)

=
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↑
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−ik
↑
x
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0

)

+
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x
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0
1

)

,

while for x > 0 we write
(

ψ↑(x)

ψ↓(x)

)

=

{

C↑ e
ik

↑
x +D↑ e

−ik
↑
x

}(
u
v

)

+

{

C↓ e
ik↓x +D↓ e

−ik
↓
x

}(
−v∗
u

)

,

where u = cos(θ/2) and v = sin(θ/2) exp(iφ). The S-matrix relates the flux amplitudes of
the in-states and out-states:
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b↓
c↑
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=

S
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r11 r12 t′11 t′12
r21 r22 t′21 t′22
t11 t12 r′11 r′12
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a↑
a↓
d↑
d↓








.

Derive the 2 × 2 transmission matrix t (you don’t have to derive the entire S-matrix) and
thereby obtain the dimensionless conductance g = Tr (t†t). Define the polarization P by

P =
n↑ − n↓
n↑ + n↓

,

where nσ = kσ/π is the electronic density. Find g(P, θ).

1Note that it is the bare electron mass me which appears in the formula for µB and not the effective mass
m

∗!).
2For weakly magnetized systems, the magnetization is M = µ

2

B g(ε
F
)Hint, where g(ε

F
) is the total

density of states per unit volume at the Fermi energy.
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[4] Distribution of Resistances of a One-Dimensional Wire – In this problem you are asked
to derive an equation governing the probability distribution P (R, L) for the dimensionless
resistance R of a one-dimensional wire of length L. The equation is called the Fokker-Planck
equation. Here’s a brief primer on how to derive Fokker-Planck equations.

Suppose x(t) is a stochastic variable. We define the quantity

δx(t) ≡ x(t+ δt) − x(t) , (1)

and we assume

〈
δx(t)

〉
= F1

(
x(t)

)
δt

〈[
δx(t)

]2〉
= 2F2

(
x(t)

)
δt

but
〈[
δx(t)

]n〉
= O

(
(δt)2

)
for n > 2. The n = 1 term is due to drift and the n = 2 term is

due to diffusion. Now consider the conditional probability density, P (x, t |x0, t0), defined
to be the probability distribution for x ≡ x(t) given that x(t0) = x0. The conditional
probability density satisfies the composition rule,

P (x, t |x0, t0) =

∞∫

−∞

dx′ P (x, t |x′, t′)P (x′, t′ |x0, t0) ,

for any value of t′. Therefore, we must have

P (x, t+ δt |x0, t0) =

∞∫

−∞

dx′ P (x, t+ δt |x′, t)P (x′, t |x0, t0) .

Now we may write

P (x, t+ δt |x′, t) =
〈
δ
(
x− x′ − δx(t)

)〉

=

{

1 +
〈
δx(t)

〉 d

dx′
+ 1

2

〈[
δx(t)

]2〉 d2

dx′2
+ . . .

}

δ(x − x′) ,

where the average is over the random variables. Upon integrating by parts and expanding
to O(δt), we obtain the Fokker-Planck equation,

∂P

∂t
= − ∂

∂x

[
F1(x)P (x, t)

]
+

∂2

∂x2

[
F2(x)P (x, t)

]
.

That wasn’t so bad, now was it?

For our application, x(t) is replaced by R(L). We derived the composition rule for series
quantum resistors in class:

R(L+ δL) = R(L) + R(δL) + 2R(L)R(δL)

− 2 cos β
√

R(L)
[
1 + R(L)

]
R(δL)

[
1 + R(δL)

]
,
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where β is a random phase. For small values of δL, we needn’t worry about quantum
interference and we can use our Boltzmann equation result. Show that

R(δL) =
e2

h

m∗

ne2τ
δL =

δL

2ℓ
,

where ℓ = vFτ is the elastic mean free path. (Assume a single spin species throughout.)

Find the drift and diffusion functions F1(R) and F2(R). Show that the distribution function
P (R, L) obeys the equation

∂P

∂L
=

1

2ℓ

∂

∂R

{

R (1 + R)
∂P

∂R

}

.

Show that this equation may be solved in the limits R ≪ 1 and R ≫ 1, with

P (R, z) =
1

z
e−R/z

for R ≪ 1, and

P (R, z) = (4πz)−1/2 1

R e−(lnR−z)2/4z

for R ≫ 1, where z = L/2ℓ is the dimensionless length of the wire. Compute 〈R〉 in the
former case, and 〈lnR〉 in the latter case.
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