Power of Probability Principle of Maximum Likelihood Weighted Averages
 Linear Least Squares Fitting

Lecture \# 6
Physics 2BL
Summer 2015

Principle of Maximum Likelihood

- Best estimates of X and σ from N measurements ($\mathrm{x}_{1}-\mathrm{x}_{\mathrm{N}}$) are those for which $\operatorname{Prob}_{\mathrm{X}, \mathrm{\sigma}}\left(\mathrm{x}_{\mathrm{i}}\right)$ is a maximum

Clicker Question 8

Upon flipping a coin three times, what are the chances of three heads in a row?
(a) 1
(b) 0.5
(c) 0.25
(d) 0.125
(e) 0.0625

Clicker Question 8.5

What are the chances that two people in this room have a Birthday within one day of someone else?

$$
\begin{aligned}
& \text { (a) }>80 \% \\
& \text { (b) } 60-80 \% \\
& \text { (c) } 40-60 \% \\
& \text { (d) } 20-40 \% \\
& \text { (e) }<20 \%
\end{aligned}
$$

The Principle of Maximum Likelihood

Recall the probability density for measurements of some quantity x (distributed as a Gaussian with mean X and standard deviation σ)

$$
P_{X, \sigma}(x)=\frac{1}{\sqrt{2 \pi} \sigma} e^{-\frac{(x-X)^{2}}{2 \sigma^{2}}}
$$

Normal distribution is one example of $P(x)$.

Now, lets make repeated measurements of x to help reduce our errors.

$$
x_{1}, x_{2}, x_{3}, \ldots, x_{n}
$$

We define the Likelihood as the product of the probabilities. The larger L, the $L=P\left(x_{1}\right) P\left(x_{2}\right) P\left(x_{3}\right) \ldots P\left(x_{n}\right)$ more likely a set of measurements is.

Is L a Probability?

Why does max L give the best estimate?

The best estimate for the parameters of $P(x)$ are those that maximize L.

Using the Principle of Maximum Likelihood:

Prove the mean is best estimate of X
Assume X is a parameter of $P(x)$.
When L is maximum, we must have: $\frac{\partial L}{\partial X}=0$ Lets assume a Normal error distribution and find the formula for the best value for X.

$$
\begin{align*}
& L=P\left(x_{1}\right) P\left(x_{2}\right) \ldots P\left(x_{n}\right)=\prod_{i=1}^{n} P\left(x_{i}\right) \\
& L=\prod_{i=1}^{n} \frac{1}{\sqrt{2 \pi} \sigma} e^{-\frac{\left(x_{i}-X\right)^{2}}{2 \sigma^{2}}}=\frac{1}{(2 \pi)^{\frac{n}{2}} \sigma^{n}} e^{-\sum_{i=1}^{n} \frac{\left(x_{i}-X\right)^{2}}{2 \sigma^{2}}} \\
& L=C e^{-\chi^{2} / 2} \\
& \chi^{2}=\sum_{i=1}^{n} \frac{\left(x_{i}-X\right)^{2}}{\sigma^{2}} \quad \text { Defininition } \tag{Defininition}
\end{align*}
$$

What is the Error on the Mean

$$
\bar{x}=\frac{1}{n} \sum_{i=1}^{n} x_{i}
$$

Formula for mean of measurements. (We just proved that this is the best estimate of the true x.)

Now, use propagation of errors to get the error on the mean.

$$
\begin{aligned}
& \sigma_{\bar{x}}=\frac{\partial \bar{x}}{\partial x_{1}} \sigma_{x_{1}} \oplus \frac{\partial \bar{x}}{\partial x_{2}} \sigma_{x_{2}} \oplus \ldots \oplus \frac{\partial \bar{x}}{\partial x_{n}} \sigma_{x_{n}} \\
& \frac{\partial \bar{x}}{\partial x_{i}}=\frac{1}{n} \\
& \sigma_{\bar{x}}=\sqrt{\sum_{i=1}^{n}\left(\frac{\sigma_{x_{i}}}{n}\right)^{2}}=\sqrt{n\left(\frac{\sigma}{n}\right)^{2}}=\frac{\sigma}{\sqrt{n}}
\end{aligned}
$$

We got the error on the mean (SDOM) by propagating errors.

Weighted averages (Chapter 7)

We can use maximum Likelihood $\left(\chi^{2}\right)$ to average measurements with different errors.

$$
\chi^{2}=\sum_{i=1}^{n}\left(\frac{x_{i}-X}{\sigma_{i}}\right)^{2}
$$

We derived the result that:

$$
\bar{x}=\frac{\sum_{i=1}^{n} w_{i} x_{i}}{\sum_{i=1}^{n} w_{i}}
$$

Using error propagation, we can determine the error on the weighted mean:

What does this give in the limit where all errors are equal?

$$
\begin{aligned}
& \frac{\partial \chi^{2}}{\partial X}=0=-2 \sum_{i=1}^{n} \frac{x_{i}-X}{\sigma_{i}^{2}} \\
& \sum_{i=1}^{n} \frac{x_{i}}{\sigma_{i}^{2}}-X \sum_{i=1}^{n} \frac{1}{\sigma_{i}^{2}}=0 \\
& w_{i} \equiv \frac{1}{\sigma_{i}^{2}} \\
& \sum_{i=1}^{n} w_{i} x_{i}=X \sum_{i=1}^{n} w_{i} \\
& X=\frac{\sum_{i=1}^{n} w_{i} x_{i}}{\sum_{i=1}^{n} w_{i}}
\end{aligned}
$$

Weighted averages

- $X=x=\frac{\sum_{i=1}^{n} w_{i} x_{i}}{\sum_{i=1}^{n} w_{i}}$
where $w_{i}=\frac{1}{\sigma_{i}{ }^{2}}$

$$
\sigma_{w a v}=\frac{1}{\sqrt{\sum_{i=1}^{n} w_{i}}}
$$

Example: Weighted Average

Suppose 2 students measure the radius of Neptune.

- Student A gets $\mathrm{r}=80 \mathrm{Mm}$ with an error of 10 Mm and
- Student B gets $r=60 \mathrm{Mm}$ with an error of 3 Mm

What is the best estimate of the true radius?

$$
\bar{r}=\frac{w_{A} r_{A}+w_{B} r_{B}}{w_{A}+w_{B}}=\frac{\frac{1}{100} 80+\frac{1}{9} 60}{\frac{1}{100}+\frac{1}{9}}=61.65 \mathrm{Mm}
$$

What does this tell us about the importance of error estimates?

Clicker Question 9

Two measurements of the speed of sound give the answers:
$u_{A}=(332 \pm 1) \mathrm{m} / \mathrm{s}$ and $u_{B}=(339 \pm 3) \mathrm{m} / \mathrm{s}$.
What is the random chance of getting two results that is \geq this difference?
(A) 2%
(B) 3%
(C) 4%
(D) 8%
(E) 40%

t	0.00	0.01	0.02	0.03	0.04	0.05	0.06	0.07	0.08	0.09
0.0	0.00	0.80	1.60	2.39	3.19	3.99	4.78	5.58	6.38	7.17
0.1	7.97	8.76	9.55	10.34	11.13	11.92	12.71	13.50	14.28	15.07
0.2	15.85	16.63	17.41	18.19	18.97	19.74	20.51	21.28	22.05	22.82
0.3	23.58	24.34	25.10	25.86	26.61	27.37	28.12	28.86	29.61	30.35
0.4	31.08	31.82	32.55	33.28	34.01	34.73	35.45	36.16	36.88	37.59
0.5	38.29	38.99	39.69	40.39	41.08	41.77	42.45	43.13	43.81	44.48
0.6	45.15	45.81	46.47	47.13	47.78	48.43	49.07	49.71	50.35	50.98
0.7	51.61	52.23	52.85	53.46	54.07	54.67	55.27	55.87	56.46	57.05
0.8	57.63	58.21	58.78	59.35	59.91	60.47	61.02	61.57	62.11	62.65
0.9	63.19	63.72	64.24	64.76	65.28	65.79	66.29	66.80	67.29	67.78
1.0	$68.27)$	68.75	69.23	69.70	70.17	70.63	71.09	71.54	71.99	72.43
1.1	72.87	73.30	73.73	74.15	74.57	74.99	75.40	75.80	76.20	76.60
1.2	76.99	77.37	77.75	78.13	78.50	78.87	79.23	79.59	79.95	80.29
1.3	80.64	80.98	81.32	81.65	81.98	82.30	82.62	82.93	83.24	83.55
1.4	83.85	84.15	84.44	84.73	85.01	85.29	85.57	85.84	86.11	86.38
1.5	86.64	86.90	87.15	87.40	87.64	87.89	88.12	88.36	88.59	88.82
1.6	89.04	89.26	89.48	89.69	89.90	90.11	90.31	90.51	90.70	90.90
1.7	91.09	91.27	91.46	91.64	91.81	91.99	92.16	92.33	92.49	92.65
1.8	92.81	92.97	93.12	93.28	93.42	93.57	93.71	93.85	93.99	94.12
1.9	94.26	94.39	94.51	94.64	94.76	94.88	95.00	95.12	95.23	95.34
2.0	95.45	95.56	95.66	95.76	95.86	95.96	96.06	96.15	96.25	96.34
2.1	96.43	96.51	96.60	96.68	96.76	96.84	96.92	97.00	97.07	97.15
2.2	97.22	97.29	97.36	97.43	97.49	97.56	97.62	97.68	97.74	97.80

a) To check if the two measurements are consistent, we compute:

$$
\mathrm{q}=\mathrm{u}_{\mathrm{A}}-\mathrm{u}_{\mathrm{B}}=339-332=7 \mathrm{~m} / \mathrm{s}
$$

and: $\quad \sigma_{q}=\sqrt{\sigma_{u A}^{2}+\sigma_{u B}^{2}}=3.16 \mathrm{~m} / \mathrm{s}$
so that: $\quad t=\frac{q}{\sigma_{q}}=\frac{339-332}{3.16}=2.21$
From Table A we get that 2.21 sigma corresponds to: 97.21% Therefore the probability to get a worse result is $1-97 \% \sim 3 \%$.

Clicker Question 10

Two measurements of the speed of sound give the answers: $u_{A}=(332 \pm 1) \mathrm{m} / \mathrm{s}$ and $u_{B}=(339 \pm 3) \mathrm{m} / \mathrm{s}$. What is the best estimate (weighted mean)?
(A) $336.5 \pm 2 \mathrm{~m} / \mathrm{s}$
(B) $336 \pm 2 \mathrm{~m} / \mathrm{s}$
(C) $336.5 \pm 0.9 \mathrm{~m} / \mathrm{s}$
(D) $332.7 \pm 0.9 \mathrm{~m} / \mathrm{s}$
(E) $333 \pm 2 \mathrm{~m} / \mathrm{s}$
b) Best estimate is the weighted mean:

$$
\begin{gathered}
\bar{u}=\frac{w_{A} u_{A}+w_{B} u_{B}}{w_{A}+w_{B}}=\frac{\frac{1}{1} 332+\frac{1}{9} 339}{\frac{1}{1}+\frac{1}{9}}=332.7 \mathrm{~m} / \mathrm{s} \\
\sigma_{\bar{u}}=\frac{1}{\sqrt{1 / w_{A}+1 / w_{B}}}=\frac{1}{\sqrt{1 / 1+1 / 9}}=0.9 \mathrm{~m} / \mathrm{s}
\end{gathered}
$$

Linear Relationships: $y=A+B x$ (Chapter 8)

- Data would lie on a straight line, except for errors
- What is 'best' line through the points?
- What is uncertainty in constants?
- How well does the relationship describe
 the data?

Analytical Fit

- Best means 'minimize the square of the deviations between line and points'
- Can use error analysis to find constants, error

The Details of How to Do This (Chapter 8)

- Want to find A, B that minimize difference between data and line
- Since line above some data, below other, minimize sum of squares of deviations
- Find A, B that minimize this sum

$$
\frac{y_{i=1}-y=y_{i}-A-B x_{i}}{\sum_{i}^{N}\left(y_{i}-A-B x_{i}\right)^{2}}
$$

$$
\begin{aligned}
& \frac{\partial}{\partial A}=\sum y_{i}-A N-B \sum x_{i}=0 \\
& \frac{\partial}{\partial B}=\sum x_{i} y_{i}-A \sum x_{i}+B \sum x_{i}^{2}=0
\end{aligned}
$$

Finding A and B

- After minimization, solve equations for A and B

$$
\begin{aligned}
& \frac{\partial}{\partial A}=\sum y_{i}-A N-B \sum x_{i}=0 \\
& \frac{\partial}{\partial B}=\sum x_{i} y_{i}-A \sum x_{i}+B \sum x_{i}^{2}=0
\end{aligned}
$$

- Looks nasty, not so bad...
- See Taylor, example 8.1

$$
\begin{aligned}
& A=\frac{\sum x_{i}^{2} \sum y_{i}-\sum x_{i} \sum x_{i} y_{i}}{\Delta} \\
& B=\frac{N \sum x_{i} y_{i}-\sum x_{i} \sum y_{i}}{\Delta} \\
& \Delta=N \sum x_{i}^{2}-\left(\sum x_{i}\right)^{2}
\end{aligned}
$$

Uncertainty in Measurements of y

- Before, measure several times and take

$$
\sigma_{x}=\sqrt{\frac{1}{N} \sum_{i=1}^{N}\left(x_{i}-\bar{x}\right)^{2}}
$$ standard deviation as error in y

- Can't now, since y_{i} 's are different quantities
- Instead, find standard

$$
\sigma_{y}=\sqrt{\frac{1}{N-2} \sum_{i=1}^{N}\left(y_{i}-A-B x_{i}\right)^{2}}
$$

Uncertainty in A and B

- A, B are calculated from x_{i}, y_{i}
- Know error in x_{i}, y_{i}; use error propagation to find error in A, B
- A distant extrapolation

$$
\begin{aligned}
\sigma_{A} & =\sigma_{y} \sqrt{\frac{\sum x_{i}{ }^{2}}{\Delta}} \\
\sigma_{B} & =\sigma_{y} \sqrt{\frac{N}{\Delta}} \\
\Delta & =N \sum x_{i}{ }^{2}-\left(\sum x_{i}\right)^{2}
\end{aligned}
$$ will be subject to large uncertainty

Uncertainty in x

- So far, assumed negligible uncertainty in x
- If uncertainty in x, not y, just switch them
- If uncertainty in both, convert error in x to error in y, then add errors

$$
\begin{aligned}
\Delta y & =B \Delta x \\
\sigma_{y}(\text { equiv }) & =B \sigma_{x} \\
\sigma_{y}(\text { equiv }) & =\sqrt{\sigma_{y}^{2}+\left(B \sigma_{x}\right)^{2}}
\end{aligned}
$$

Other Functions

- Convert to linear
- Can now use least

$$
\begin{aligned}
y & =A e^{B x} \\
\ln y & =\ln A+B x
\end{aligned}
$$ squares fitting to get \ln A and B

Experiment 3

- Goals: Test model for damping
- Model of a shock absorber in car
- Procedure: develop and demonstrate critically damped system
- check out setup, take data, do data make sense?
- Write up results - Does model work under all conditions, some conditions? Need modification?

Simple Harmonic Motion

- Spring provides linear restoring force
\Rightarrow Mass on a spring is a harmonic oscillator

$$
x(t)=x_{0} \cos \omega t
$$

$$
T=\frac{2 \pi}{\omega} \quad \omega=\sqrt{\frac{k}{m}}
$$

Damped SHM

- Consider both position and velocity

$$
m \frac{d^{2} x}{d t^{2}}=-k x-b \frac{d x}{d t}
$$ dependant forces

- Behavior depends on how much damping occurs during one

$$
x=x_{0} \exp \left(-\frac{b}{2 m} t\right) \exp \left(i t \sqrt{\frac{k}{m}-\frac{b^{2}}{4 m^{2}}}\right)
$$

'oscillation'

$$
x=x_{0} \exp \left(-\frac{b}{2 m} t\right) \cos \left(t \sqrt{\frac{k}{m}-\frac{b^{2}}{4 m^{2}}}\right) \quad \text { Or }
$$

Relative Damping Strength: Weak damping

$x=x_{0} \exp \left(-\frac{b}{2 m} t\right) \cos \left(t \sqrt{\frac{k}{m}-\frac{b^{2}}{4 m^{2}}}\right)$.

$$
\frac{b^{2}}{4 m^{2}} \ll \frac{k}{m}
$$

weak damping
(underdamped)

Relative Damping Strength: Strong damping

strong damping
(overdamped)

Relative Damping Strength:

 Critical damping

$$
\frac{b^{2}}{4 m^{2}}=\frac{k}{m}
$$

critical damping

$$
b_{c r i t}=2 \sqrt{\mathrm{mk}}
$$

Comparison of the various types of damping

Terminal Velocity

For velocity: $\quad \dot{y}(t)=v_{t}\left[1-e^{-(b / m) t}\right]$

Experimental Setup for Falling Mass and Drag

How do you measure velocity?

Plotting Graphs

Give each graph a title

Determine independent and dependent variables

Determine boundaries

Include error bars

Demonstrate critical damping: show convincing evidence that critical damping was achieved

- Demonstrate that damping is critical
- No oscillations (overshoot)
- Shortest time to return to equilibrium position

Remember

- Write-up for Experiment \# 3
- Homework Taylor \#8.6, 8.10
- Last assignment
- Read Taylor Chapter 12

