Establishing Relationships, Confidence of Data,

Propagation of Uncertainties for Racket Balls and Rods

Lecture \# 4
Physics 2BL
Summer 2015

Outline

- Review of Gaussian distributions
- Rejection of data?
- Determining the relationship between measured values
- Uncertainties for lab 2
- Propagate errors
- Minimize errors

The Gauss, or Normal Distribution

the limiting distribution for a measurement subject to many small random errors is bell shaped and centered on the true value of x
the mathematical function that describes the bell-shape curve is called the normal distribution, or Gauss function

prototype function

$$
e^{-x^{2} / 2 \sigma^{2}}
$$

$$
e^{-(x-X)^{2} / 2 \sigma^{2}}
$$

σ - width parameter
$X-\operatorname{true}$ value of x

The Gaussian Distribution

- A bell-shaped distribution curve that approximates many physical phenomena - even when the underlying physics is not known.
- Assumes that many small, independent effects are additively contributing to each observation.
- Defined by two parameters: Location and scale, i.e., mean and standard deviation (or variance, σ^{2}).
- Importance due (in part) to central-limit theorem:

The sum of a large number of independent and identically-distributed random variables will be approximately normally distributed (i.e., following a Gaussian distribution, or bell-shaped curve) if the random variables have a finite variance.

The Gauss, or Normal Distribution

normalize

$$
\begin{gathered}
e^{-(x-X)^{2} / 2 \sigma^{2}} \longrightarrow \int_{-\infty}^{+\infty} f(x) d x=1 \\
\downarrow \\
G_{X, \sigma}(x)=\frac{1}{\sigma \sqrt{2 \pi}} e^{-(x-X)^{2} / 2 \sigma^{2}}
\end{gathered}
$$

standard deviation $\sigma_{x}=$ width parameter of the Gauss function σ the mean value of $x=$ true value X

Gauss distribution: changing X

Gauss distribution: changing σ

Accuracy vs. Precision

A
 C
 C

Precision

Accuracy vs. Precision

Table A. The percentage probability, $\operatorname{Prob}($ within $t \sigma)=\int_{X-t \sigma}^{X+t \sigma} G_{X, \sigma}(x) d x$, as a function of t.

t	0.00	0.01	0.02	0.03	0.04	0.05	0.06	0.07	0.08	0.09
0.0	0.00	0.80	1.60	2.39	3.19	3.99	4.78	5.58	6.38	7.17
0.1	7.97	8.76	9.55	10.34	11.13	11.92	12.71	13.50	14.28	15.07
0.2	15.85	16.63	17.41	18.19	18.97	19.74	20.51	21.28	22.05	22.82
0.3	23.58	24.34	25.10	25.86	26.61	27.37	28.12	28.86	29.61	30.35
0.4	31.08	31.82	32.55	33.28	34.01	34.73	35.45	36.16	36.88	37.59
0.5	38.29	38.99	39.69	40.39	41.08	41.77	42.45	43.13	43.81	44.48
0.6	45.15	45.81	46.47	47.13	47.78	48.43	49.07	49.71	50.35	50.98
0.7	51.61	52.23	52.85	53.46	54.07	54.67	55.27	55.87	56.46	57.05
0.8	57.63	58.21	58.78	59.35	59.91	60.47	61.02	61.57	62.11	62.65
0.9	63.19	63.72	64.24	64.76	65.28	65.79	66.29	66.80	67.29	67.78
1.0	$68.27)$	68.75	69.23	69.70	70.17	70.63	71.09	71.54	71.99	72.43
1.1	72.87	73.30	73.73	74.15	74.57	74.99	75.40	75.80	76.20	76.60
1.2	76.99	77.37	77.75	78.13	78.50	78.87	79.23	79.59	79.95	80.29
1.3	80.64	80.98	81.32	81.65	81.98	82.30	82.62	82.93	83.24	83.55
1.4	83.85	84.15	84.44	84.73	85.01	85.29	85.57	85.84	86.11	86.38
1.5	86.64	86.90	87.15	87.40	87.64	87.89	88.12	88.36	88.59	88.82
1.6	89.04	89.26	89.48	89.69	89.90	90.11	90.31	90.51	90.70	90.90
1.7	91.09	91.27	91.46	91.64	91.81	91.99	92.16	92.33	92.49	92.65
1.8	92.81	92.97	93.12	93.28	93.42	93.57	93.71	93.85	93.99	94.12
1.9	94.26	94.39	94.51	94.64	94.76	94.88	95.00	95.12	95.23	95.34
2.0	95.45	95.56	95.66	95.76	95.86	95.96	96.06	96.15	96.25	96.34
2.1	96.43	96.51	96.60	96.68	96.76	96.84	96.92	97.00	97.07	97.15
2.2	97.22	97.29	97.36	97.43	97.49	97.56	97.62	97.68	97.74	97.80

p. 287 Taylor

Clicker Question 4

Table A. The percentage probability, $\operatorname{Prob}($ within $t \sigma)=\int_{X-t \sigma}^{X+t \sigma} G_{X, \sigma}(x) d x$, as a function of t.

t	0.00	0.01	0.02	0.03	0.04	0.05	0.06	0.07	0.08	0.09
0.0	0.00	0.80	1.60	2.39	3.19	3.99	4.78	5.58	6.38	7.17
0.1	7.97	8.76	9.55	10.34	11.13	11.92	12.71	13.50	14.28	15.07
0.2	15.85	16.63	17.41	18.19	18.97	19.74	20.51	21.28	22.05	22.82
0.3	23.58	24.34	25.10	25.86	26.61	27.37	28.12	28.86	29.61	30.35
0.4	31.08	31.82	32.55	33.28	34.01	34.73	35.45	36.16	36.88	37.59
0.5	38.29	38.99	39.69	40.39	41.08	41.77	42.45	43.13	43.81	44.48
0.6	45.15	45.81	46.47	47.13	47.78	48.43	49.07	49.71	50.35	50.98
0.7	51.61	52.23	52.85	53.46	54.07	54.67	55.27	55.87	56.46	57.05
0.8	57.63	58.21	58.78	59.35	59.91	60.47	61.02	61.57	62.11	62.65
0.9	63.19	63.72	64.24	64.76	65.28	65.79	66.29	66.80	67.29	67.78

Referring to the table above, what is the probability that a data point differs by 0.59σ or greater?
(A) 38
(B) 44
(C) 56
(D) 62

Compatibility of a measured result(s): t-score

- Best estimate of x :

$$
x_{b e s t} \pm \sigma_{\bar{X}}
$$

- Compare with expected answer $\mathrm{x}_{\text {exp }}$ and compute t-score:

$$
t \equiv \frac{\left|x_{\text {best }}-x_{\text {expected }}\right|}{\sigma_{X}}
$$

- This is the number of standard deviations that $x_{\text {best }}$ differs from $\mathrm{x}_{\text {exp }}$.
- Therefore,the probability of obtaining an answer that differs from $x_{\exp }$ by t or more standard deviations is:
$\operatorname{Prob}($ outside $t \sigma)=1-\operatorname{Prob}($ within $t \sigma))$

"Acceptability" of a measured result Conventions

- Large probability means likely outcome and hence reasonable discrepancy.
- "reasonable" is a matter of convention...
- We define:

$<5 \%$ - significant discrepancy, $t>1.96$
$<1 \%$ - highly significant discrepancy, $t>2.58$
\uparrow
boundary for unreasonable improbability
If the discrepancy is beyond the chosen boundary for unreasonable improbability, $==>$ the theory and the measurement are incompatible (at the stated level)

Example: Confidence Level

Two students measure the radius of a planet.

- Student A gets $R=9000 \mathrm{~km}$ and estimates an error of $\sigma=600 \mathrm{~km}$
- Student B gets $R=6000 \mathrm{~km}$ with an error of $\sigma=1000 \mathrm{~km}$
- What is the probability that the two measurements would disagree by more than this (given the error estimates)?
$==>$ Define the quantity $q=R_{A}-R_{B}=3000 \mathrm{~km}$. The expected q is zero. Use propagation of errors to determine the error on q.

$$
\sigma_{q}=\sqrt{\sigma_{A}^{2}+\sigma_{B}^{2}}=1170 \mathrm{~km}
$$

- Compute t the number of standard deviations from the expected q.

$$
t=\frac{q}{\sigma_{q}}=\frac{9000-6000}{1170}=2.56
$$

- Now we look at Table $A==>2.56 \sigma$ corresponds to 98.95%

So, The probability to get a worse result is $1.05 \%(=100-98.95)$
We call this the Confidence Level, and this is a bad one.

Rejection of Data?

Chapter 6

- Consider series $-3.8 \mathrm{~s}, 3.5 \mathrm{~s}, 3.9 \mathrm{~s}, 3.9 \mathrm{~s}, 3.4 \mathrm{~s}$, 1.8 s
- Reject 1.8s?
- Bad measurement
- New effect
- Something new
- Make more measurements so that it does not matter

How different is the data point?

- From series obtain

$$
\begin{aligned}
- & <\mathrm{x}> & =3.4 \mathrm{~s} \\
- & \sigma & =0.8 \mathrm{~s}
\end{aligned}
$$

- How does 1.8 s data point apply?
- How far from average is it?
$-x-<x>=\Delta x=1.6 \mathrm{~s}=2 \sigma$
- How probable is it?
$-\operatorname{Prob}(|\Delta \mathrm{x}|>2 \sigma)=1-0.95=0.05$

Chauvenet's Criterion

- Given our series, what is prob of measuring a value 2σ off?
- Multiply Prob by number of measurement
- Total Prob $=6 \times 0.05=0.3$
- If chances $<50 \%$ discard

Strategy

- $\mathrm{t}_{\text {sus }}=\Delta \mathrm{x}($ in $\sigma)$
- Prob of x outside Δx
- Total Prob $=$ N x Prob
- If total Prob $<50 \%$ then reject

Refinement

- When is it useful
- Best to identify suspect point
- remeasure
- When not to reject data
- When repeatable
- May indicate insufficient model
- Experiment may be sensitive to other effects
- May lead to something new (an advance)

Rejection of other data points

- If more than one data point suspect, consider that model is incorrect
- Look at distribution
- Additional analysis
- Such as χ^{2} testing (chapter 12)
- Remeasure/ repeatable
- Determine circumstances were effect is observed.

Useful concept for complicated formula

- Often the quickest method is to calculate with the extreme values
$-\mathrm{q}=\mathrm{q}(\mathrm{x})$
$-q_{\max }=q(\bar{x}+\delta x)$
$-q_{\text {min }}=q(\bar{x}-\delta x)$
$\square \delta \mathrm{q}=\left(\mathrm{q}_{\max }-\mathrm{q}_{\min }\right) / 2$

Clicker Question 5

Suppose you roll the ball down the ramp 5 times and measure the rolling times to be $[3.092 \mathrm{~s}, 3.101 \mathrm{~s}, 3.098 \mathrm{~s}, 3.095 \mathrm{~s}, 4.056 \mathrm{~s}]$. For this set, the average is 3.288 s and the standard deviation is 0.4291 s . According to Chauvenet's criterion, would you be justified in rejecting the time measurement $\mathrm{t}=4.056 \mathrm{~s}$?
(A) Yes
(B) No
(C) Give your partner a timeout
(A) t-score $=(4.056 \mathrm{~s}$
-3.288 s) / 0.4291
$\mathrm{s}=1.78 \sigma$
(B) Prob within t score $=92.5$
(C) Prob outside tscore $=7.5$
(D) Total prob $=5 * 7.5$ $=37.5 \%$
(E) $<50 \%$, reject

(0.00	0.01	0.02	0.03	0.04	0.05	0.06	0.07	0.08	0.09
0.0	0.00	0.80	1.60	2.39	3.19	3.99	4.78	5.58	6.38	7.17
0.1	7.97	8.76	9.55	10.34	11.13	11.92	12.71	13.50	14.28	15.07
0.2	15.85	16.63	17.41	18.19	18.97	19.74	20.51	21.28	22.05	22.82
0.3	23.58	24.34	25.10	25.86	26.61	27.37	28.12	28.86	29.61	30.35
0.4	31.08	31.82	32.55	33.28	34.01	34.73	35.45	36.16	36.88	37.59
0.5	38.29	38.99	39.69	40.39	41.08	41.77	42.45	43.13	43.81	44.48
0.6	45.15	45.81	46.47	47.13	47.78	48.43	49.07	49.71	50.35	50.98
0.7	51.61	52.23	52.85	53.46	54.07	54.67	55.27	55.87	56.46	57.05
0.8	57.63	58.21	58.78	59.35	59.91	60.47	61.02	61.57	62.11	62.65
0.9	63.19	63.72	64.24	64.76	65.28	65.79	66.29	66.80	67.29	67.78
1.0	68.271	68.75	69.23	69.70	70.17	70.63	71.09	71.54	71.99	72.43
1.1	72.87	73.30	73.73	74.15	74.57	74.99	75.40	75.80	76.20	76.60
1.2	76.99	77.37	77.75	78.13	78.50	78.87	79.23	79.59	79.95	80.29
1.3	80.64	80.98	81.32	81.65	81.98	82.30	82.62	82.93	83.24	83.55
1.4	83.85	84.15	84.44	84.73	85.01	85.29	85.57	85.84	86.11	86.38
1.5	86.64	86.90	87.15	87.40	87.64	87.89	88.12	88.36	88.59	88.82
1.6	89.04	89.26	89.48	89.69	89.90	90.11	90.31	90.51	90.70	90.90
1.7	91.09	91.27	91.46	91.64	91.81	91.99	92.16	92.33	92.49	92.65
1.8	92.81	92.97	93.12	93.28	93.42	93.57	93.71	93.85	93.99	94.12
1.9	94.26	94.39	94.51	94.64	94.76	94.88	95.00	95.12	95.23	95.34

The Four Experiments

Determine the average density of the earth Veigh the Earth, Measure its volume Measure simple things like lengths and times Learn to estimate and propagate errors

- Non-Destructive measurements of densities, inner structure of objects
- Absolute measurements vs. Measurements of variability
- Measure moments of inertia
- Use repeated measurements to reduce random errors Adjust performance of a mechanical system Demonstrate critical damping of your shock absorber - Measure coulomb force and calibrate a voltmeter. Reduce systematic errors in a precise measurement.

Racquet Balls

We should check if the variation in d is much less than 10%.

Measuring I by Rolling Objects

racketball
photogate timer
distance before starting timer

1. Measure M and R
2. Using photo gate timer measure the time, t, to travel distance x

$$
\begin{aligned}
& M g h=\frac{1}{2} M v^{2}+\frac{1}{2} I \omega^{2} \\
& v=R^{\prime} \omega \\
& v=\frac{2 x}{t}
\end{aligned}
$$

energy conservation
rolling radius
for uniform acceleration
rolling radius R^{\prime}

$M g h=\frac{1}{2} v^{2}\left(M+\frac{I}{R^{\prime 2}}\right)$
$g h=\frac{2 x^{2}}{t^{2}}\left(1+\frac{I}{M R^{\prime 2}}\right)$
$\frac{I}{M R^{\prime 2}}=\left(\frac{g h t^{2}}{2 x^{2}}-1\right)$

$$
\tilde{I} \equiv \frac{I}{M R^{2}}=\frac{R^{\prime 2}}{R^{2}}\left(\frac{g h t^{2}}{2 x^{2}}-1\right)
$$

Measuring the Variation in Thickness of the Shell

- 1. Measure rolling time of one ball many times to determine the measurement error in t, $\sigma_{\text {measurement }}$
- 2. Measure rolling time of many balls to determine the total spread in $t, \sigma_{\text {total }}$
- 3. Calculate the spread in time due to ball manufacture, $\sigma_{\text {manufacture }}$, by subtracting the measurement error
- 4. Propagate error on t into error on I and then into error
 on thickness d

Propagate Error from I to d

$$
\begin{aligned}
& I=\frac{2}{5} M \frac{R^{5}-r^{5}}{R^{3}-r^{3}} \\
& z \equiv \frac{r}{R} \approx \frac{28.25-4.5 \mathrm{~mm}}{28.25 \mathrm{~mm}} \approx 0.841 \\
& \text { measured thickness and } \\
& \text { radius for one ball } \\
& d=4.5 \mathrm{~mm} \quad R=28.25 \mathrm{~mm} \\
& d=R-r \\
& \tilde{I}(0.841) \equiv \frac{I}{M R^{2}}=\frac{2}{5} \frac{1-z^{5}}{1-z^{3}} \approx 0.571892 \\
& \tilde{I}(0.840) \equiv \frac{I}{M R^{2}}=\frac{2}{5} \frac{1-z^{5}}{1-z^{3}} \approx 0.571366 \\
& \frac{\partial z}{\partial \tilde{I}}=\frac{0.841-0.840}{0.571892-0.571366}=\frac{0.001}{0.00526}=1.901 \\
& \frac{\sigma_{d}}{d}=\frac{\sigma_{r}}{d}=\frac{R \sigma_{z}}{d}=\frac{R \tilde{I}}{d} \frac{\partial z}{\partial \tilde{I}} \frac{\sigma_{\tilde{I}}}{\tilde{I}} \approx \frac{(28.25 \mathrm{~mm})(0.572)}{4.5 \mathrm{~mm}}(1.901) \frac{\sigma_{\tilde{I}}}{\tilde{I}}=6.826 \frac{\sigma_{\tilde{I}}}{\tilde{I}} \approx 6.8 \frac{\sigma_{\tilde{I}}}{\tilde{I}} \\
& \frac{\sigma_{d}}{d} \approx 6.8 \frac{\sigma_{\tilde{I}}}{\tilde{I}}
\end{aligned}
$$

Propagate Error from t to I

$\tilde{I}=\frac{I}{M R^{2}}=\frac{R^{\prime 2}}{R^{2}}\left(\frac{g h t^{2}}{2 x^{2}}-1\right) \approx 0.572 \quad$ from previous page
$\frac{\partial \tilde{I}}{\partial t}=\frac{R^{\prime 2}}{R^{2}}\left(\frac{g h t}{x^{2}}\right) \quad$ compute derivative
$\sigma_{\bar{I}}=\frac{R^{\prime 2}}{R^{2}}\left(\frac{g h t}{x^{2}}\right) \sigma_{t} \quad$ propagate error
$\frac{\sigma_{\tilde{I}}}{\tilde{I}}=\frac{\left(\frac{g h t}{x^{2}}\right)}{\left(\frac{g h t^{2}}{2 x^{2}}-1\right)} \sigma_{t} \approx \frac{\left(\frac{g h t}{x^{2}}\right)}{\frac{R^{2}}{R^{\prime 2}}(0.572)} \sigma_{t}$
work out
fractional error

$$
\frac{\sigma_{\tilde{I}}}{\tilde{I}} \approx 4 \frac{\sigma_{t}}{t}
$$

$$
\left(\frac{g h t}{x^{2}}\right)=\frac{2}{t}\left(\frac{R^{2}}{R^{\prime 2}} \tilde{I}+1\right)
$$

numerically
to get a 10% error on the thickness

$$
\frac{\sigma_{\tilde{I}}}{\tilde{I}} \approx \frac{\frac{2}{t}\left(\frac{R^{2}}{R^{\prime 2}} \tilde{I}+1\right)}{\frac{R^{2}}{R^{\prime 2}}(0.572)} \sigma_{t}=\frac{2\left(0.572+\frac{R^{\prime 2}}{R^{2}}\right)}{(0.572)} \frac{\sigma_{t}}{t} \approx 4 \frac{\sigma_{t}}{t}
$$ we need 0.37% error on the rolling time

accuracy can be improved by rolling each ball many times

Standard Deviation versus Trial Number

$=S T D E V(A \$ 1: A 2)$

Remember

- Lab Writeup
- Read lab description, prepare
- Read Taylor Chapter 5 through 9
- Problems 6.4, 7.2

