
Experiment 3, Physics 2BL
Construct and test a critically damped shock absorber.

Last Updated: 2013-08-16

Preparation
Before this experiment, we recommend you review
or familiarize yourself with the following:
– Chapters 7 in Taylor
– Simple Harmonic Motion

1. PHYSICS

For this experiment you will need to be familiar with 3
physical systems and the equations of motion that govern
them. Our method for discussing these systems will be
as follows. First we will set up a force body diagram and
specify initial conditions for the position and velocity.
Then we will determine the equilibrium condition that
occurs when the forces cancel out. When we sum up
the forces and set them equal to mass times acceleration
(Newton’s Second Law) we get a differential equation.
After we write the general solution to this differential
equation, we can solve for the constants using the initial
conditions and plot the resulting motion over time.

1.1. Spring Harmonic Oscillator

The first system is very simple but is a good warm up
problem. We have a mass hanging from a spring as shown
in the figure. The equilibrium position, y0 is determined
when the forces cancel out:

mg = ky0 → y0 =
mg

k

We also set the initial conditions so that the initial
position is given a slight displacement, ∆y, from equi-
librium. This is similar to the small angle displacement
we used for the simple pendulum, but in this case we are
assuming that the spring constant is not going to change

for a small amount of stretching. Also we are releasing
the mass at rest, so the initial velocity is zero. We will
be using the notation that a dot is a derivative in time.

y(t = 0) = y0 + ∆y; ẏ(t = 0) = 0

We set the forces equal to the mass times acceleration.

ΣF = −ky +mg = mÿ

And rearrange to form a differential equation.

ÿ +
k

m
y = g

Define ω ≡
√

k
m . Then the roots to the characteristic

equation r2 + ω2 = 0 are r1 = +iω and and r2 = −iω.
Given these roots, the general solution to the homoge-
neous differential equation, ÿ + k

my = 0, is:

yh(t) = c1 cosωt+ c2 sinωt

While the particular solution is:

yp(t) =
mg

k
= y0

Then the general solution to our differential equation
is:

y(t) = yh(t) + yp(t) = c1 coswt+ c2 sinwt+ y0

Now we substitute our initial conditions to determine
the constants c1 and c2.

y(0) = c1 + y0 = y0 + ∆y → c1 = ∆y

ẏ(t) = −c1ω sinωt+ c2ω cosωt

ẏ(0) = c2ω = 0 → c2 = 0

Plugging in the constants we have the following solu-
tion for the position, which we have plotted below.

y(t) = ∆y cosωt+ y0
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FIG. 1: Motion of a Spring Harmonic Oscillator

Questions

1. What are the differences between this ideal system
and a spring oscillator in the presence of real life
conditions? Hint: What are we assuming about the
spring? Why would we never see motion exactly like
the plot in FIG. 1?

2. What are the physical units of the spring
constant, k?

3. Say you have two oscillating ideal spring systems.
First, suppose both have the same spring constant k,
but have different masses hanging from the springs,
m1 and m2, where m1 < m2. How do the
periods of these two systems compare? Next, suppose
they have different spring constants k1 and k2,
where k1 < k2, but they both have the same mass m.
You displace each mass by the same amount, ∆y, from
their respective equilibrium and release them. How do
the amplitudes compare?

1.2. Mass falling in a drag force

The next system describes a mass in free fall with a
drag force that is linearly proportional to the velocity
of the mass (i.e. Fdrag = −bv). In order to vary the

drag force in the lab, we use a tube that has a variable
amount of air pressure under the mass. Now, instead
of an equilibrium length, we have an equilibrium velocity.
We will call this the terminal velocity, vt, because during
free fall the mass will speed up to the terminal velocity
and then remain fixed at that speed.

Note that in general the damping force may not depend
linearly on velocity, but can have quadratic or other func-
tional dependence on it. The purpose of this lab is to test
the validity of this assumption.

In order to solve for vt we set the forces equal to each
other.

bvt = mg → vt =
mg

b

We’ll set the initial position and velocity at zero be-
cause we are dropping the mass from rest from the top
of the tube.

y(t = 0) = 0; ẏ(t = 0) = 0

We set the sum of the forces equal to the mass times
acceleration.

ΣF = −bẏ +mg = mÿ

And rearrange to form a differential equation.

ÿ +
b

m
ẏ = g

In this case, the roots to the characteristic equation
r2 + b

mr = 0 are r1 = 0 and r2 = − b
m . The homogeneous

and particular solutions to the differential equation end
up as

yh(t) = c1 + c2e
− b

m t

yp(t) =
mg

b
t = vtt

Then the general solution is:

y(t) = yh(t) + yp(t) = c1 + c2e
− b

m t + vtt

Now we substitute in our initial conditions to deter-
mine the constants c1 and c2. We arrive at the following
solution for y(t):

y(t) = vt[
m

b
(e−

b
m t − 1) + t]

This function is not terribly enlightening because it’s
just the equation of a mass falling. What is more inter-
esting is if we take a derivative and look at the velocity:
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ẏ(t) = vt[1− e−
b
m t]

The prefactor vt, which equals mg
b , determines the final

value that the velocity will reach. The constant in the ex-
ponent, b

m determines how fast the velocity will reach its
final value. This function is plotted in the figure below.
These graphs are a plot of the velocity function for four
different values of the drag constant, b, while keeping the
mass constant.

FIG. 2: Velocity of a mass falling in a drag force for varying
drag constant.

Questions

4. What are the physical units of the drag constant, b?

5. According to the FIG. 2, what happens to the terminal
velocity as the damping is increased? (horizontal lines)
What happens to the time it takes for the velocity to
reach terminal velocity as the damping is increased?
(vertical lines)

1.3. Damped Harmonic Motion

Now we will combine the spring force and the drag
force to show what happens when the harmonic motion
of a spring is damped. We will use the same initial condi-
tions as the first system. Also the equilibrium position,

y0 = mg
k , will be the same because when the mass is

stationary, it feels no drag force.
We set the sum of the forces equal to the mass times

acceleration.

ΣF = −ky − bẏ +mg = mÿ

And rearrange to form the differential equation.

ÿ +
b

m
ẏ +

k

m
y = g

In this case, the roots to the characteristic equation
r2 + b

mr+ k
m = 0 are found using the quadratic formula.

This gives us r = − b
2m±

√
b2

4m2 − k
m Let’s introduce some

variables to make this notation look nicer. If we define
γ = b

2m and ω0 =
√

k
m then we get r = −γ ±

√
γ2 − ω0

2

The damping coefficient b, the mass m, and the spring
constant k are parameters of the system that we can con-
trol. Since we can give b, m, and k any values we want, in
the equation for r, the value under the square root sign
can be positive, negative, or zero. These three options
give us the three types of solutions to the differential
equation. A list of the three cases and the conditions
under which they occur is given here.

• Overdamped: When γ2 − ω2
0 = b2

4m2 − k
m > 0

• Underdamped: When γ2 − ω2
0 = b2

4m2 − k
m < 0

• Critically damped: When γ2 − ω2
0 = b2

4m2 − k
m = 0

Note: In this experiment, m and k are fixed and we
only adjust the value of b.

Overdamped

This is the condition where the value under the radical,
γ2 − ω2

0 = b2

4m2 − k
m is positive. In this case the solution

to the differential equation is:

y(t) =
∆y
2
e−γt[e−(

√
γ2−ω2

0)t + e+(
√
γ2−ω2

0)t] + y0
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How do we interpret this graph physically? This solu-
tion/graph tells us, for a system that is overdamped, if
we drop the mass from a position ∆y above the equilib-
rium point y0, then it fall toward the equilibrium position
exponentially in time. In other words, it will initially fall
toward y0 quickly, then it will fall more slowly toward y0

as time passes.

Underdamped

This is the condition where the value under the radical,
γ2−ω2

0 = b2

4m2 − k
m is negative. In order to deal with this

imaginary root, we can factor out a
√
−1. This switches

the values under the radical. As in the simple harmonic
case, imaginary roots to the characteristic equation give
oscillatory solutions to the differential equation. In this
case the solution to the differential equation is:

y(t) = ∆ye−γt cos[(
√
ω2

0 − γ2)t] + y0

How do we interpret this graph physically? The solu-
tion/graph tells us, for a system that is underdamped,
if we drop a mass from a position ∆y above y0 then the
mass will oscillate about y0 but the amplitude of this
oscillation will decrease exponentially in time. In a non-
ideal case the mass will eventually stop at the equilibrium
point y0.

Critically Damped

This is the condition where the value under the radical,
γ2 − ω2

0 = b2

4m2 − k
m is zero. Solving for b gives us

bcrit = 2
√
mk

In this case the solution to the differential equation is
simply :

y(t) = ∆y(1 + γt)e−γt + y0

How do we interpret this graph physically? The solu-
tion/graph here tell us, for a critically damped system, a
mass dropped from ∆y above y0 will behave much like the

overdamped system. It will initially fall quickly toward
y0 and then fall more slowly toward y0 as time passes.
The difference is that in this critically damped system the
mass will fall to y0 in the shortest time possible without
oscillating about y0.

2. METHODS FOR STATISTICAL
ANALYSIS

2.1. Plotting graphs

Plotting data makes it easy to visualize trends and in
some cases it can end up saving you a lot of work. You
will be required to create graphs in your report for this
experiment, so here are some guidelines to keep in mind.

1. Give each graph a title

2. Decide which variable is the independent variable (val-
ues that you have chosen, i.e. height to drop the mass
down the tube) and which is the dependent variable (the
output of your experiment or a calculated value from that
output). Always plot the independent variables on the
horizontal axis and the dependent variables on the verti-
cal axis.

3. Figure out what boundaries will be appropriate for
each axis, mark off the divisions, and label each axis with
its units. Each graph should be about half a page in size.

4. Include error bars for the data points when appropri-
ate.

2.2. Short-cut method for error
propagation

The following method is very useful for saving time in
the error propagation process, however, you should only
use it when it is appropriate. It can only be used
when the function you are propagating error to is
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a product of measured variables to given powers.
For example:

f(x, y) = Axnym

Starting with the general formula for error propagation
we use the rule for taking derivatives of powers, in this
case n and m.

σf =

√
(
∂f

∂x
σx)2 + (

∂f

∂y
σy)2

∂f

∂x
= Anxn−1ym;

∂f

∂y
= Amxnym−1

Now we divide both sides by f . Notice that on the right
we have replaced f with its functional form.

σf
f

=

√
(
Anxn−1ym

Axnym
σx)2 + (

Amxnym−1

Axnym
σy)2

This reduces to a very simple formula.

σf
f

=
√

(n
σx
x

)2 + (m
σy
y

)2 (1)

Notice that this works just as well for cases where n
and m are negative numbers. This formula can also be
useful because you can compare fractional errors and in
some cases rule out errors that are negligible. If you are
interested in calculating σf then simply multiply your
result by f .

Questions

6. Find an expression for σk where k = 4π2m
T 2 .

First write out the error propagation the long way, using
partial derivatives. then divide the left hand side by k
and the right hand side by 4π2m

T 2 and reduce
it to get an expression that only has fractional errors
for m and T . You should get the same thing that you
would have gotten using the short cut method.

3. EXPERIMENTAL PROCEDURE

In this experiment you will be testing a model using an
”engineering-approach” in which you will need to answer:
does the data support the assumed model? The proce-
dure below guides you to determine the spring constant
k of a spring by two different methods. The first method
is based on the model discussed in section 1.1. In this

case, to determine k, you only need to measure the mass
and period of a mass on a spring. The second method
is based on the model discussed in section 1.3 where we
assume that the damping force is linearly dependent on
velocity. Then you can test the validity of this assump-
tion made in the model of section 1.3 by comparing the
value of k obtained by both methods using the quantita-
tive analysis tools you’ve learned so far in this course. A
brief outline of the procedure is:

• first calculate the spring constant, k, of a spring
using model of section 1.1.

• from this you compute the desired value of b to
critically damp a mass m.

• setup an experiment to determine b for a variety of
damping setups, until you are able to adjust it to
the desired value, bcrit.

• Check whether critical damping has been achieved
by observing the motion of the spring/mass system
within the damping mechanism.

• Drop the mass through the critically damped
damping mechanism without the spring attached.

• Use collected data to calculate the spring constant,
k.

3.1. Spring Harmonic Oscillator

Step 1 Go to the back of the lab and get a spring, sil-
ver colored piston (with eye-hook), and a damping tube
(this will be used in the procedure described in the next
section). Note: The pistons and damping tubes are num-
bered. The number on the piston indicates which tube
the piston belongs too. Be sure to pick the piston and
damping tube with the same number.

Measure the mass m of your piston. Hang your piston
from the spring and measure the period T of small oscil-
lations. In order to increase accuracy, measure the time
for N oscillations and divide the total time by N (It is
recommended N be at least 10). You will, however, have
to determine the uncertainty on the period. This can be
done by making p measurements of N periods and calcu-
lating the mean and standard deviation, which you then
divide by N in order to obtain the mean period and the
standard deviation. Then you can calculate the standard
deviation of the mean (i.e. the uncertainty on the mean).
This procedure is the same as was done in experiment 1
for the pendulum. Refer to experiment 1 guidelines for
more detail if this is unclear. Now calculate k = 4π2m

T 2 ,
its uncertainty, and bcrit = 2

√
mk

3.2. Damped Free Fall

NOTE: Steps 2 and 3 that follow may take a con-
siderable amount of time. In order to complete the
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experiment in time, please come well prepared for
this experiment and work as quickly and diligently as
possible.

Step 2 Measure the thickness of the piston ∆x (Your
piston will look like two stacked cylinders of differing
diameters. IMPORTANT: make sure that the ∆x you
measure corresponds to the one the gate timer ”sees”!!!
See for example the diagram below.). Set up the photo-
gate at the bottom of the tube and set the photogate to
“Gate” mode and the little black switch to 0.1ms. This
set up will allow you to measure the time ∆t it takes for
∆x of the piston to fall through the photogate. From this
data you can then calculate the velocity of the mass at
the bottom of the tube (i.e. v = ∆x

∆t ). The orientation of
your piston is important. Orient your piston so the lower
half is the cylinder with the smaller diameter (See the
diagram below.) Attach an eye-hook to the top of the
piston and tie a string to the eye-hook so you can pull
the piston out of the damping tube easily. Position the
photogate so that it triggers at the beginning and end of
the ∆x of your piston. Be sure it does not trigger from
the bottom to the top of the piston nor on the eye-hook.
Clamp the tube and photogate down to the table.

Now that the setup is complete, close the valve on the
tube if it isn’t closed already and place a piece of mask-
ing tape over 1 hole at the base of the tube so that you
have 5 holes OPEN. You will next be dropping the pis-
ton from various heights in the tube. Using the length
scale attached to the tube, choose a length by which you
would like to increment the drop height. Then, using
the string attached to the piston, drop your piston from
each chosen height at least 10 times and record the times
∆t that correspond to each of these release heights. DO

NOT WRITE ON THE TUBES! Now, place tape over
an additional hole so 4 holes remain OPEN and repeat
the procedure just used.

Calculate the average times ∆̄t for each height from
the data you just collected.

Step 3 Convert your time data to velocities using
v = ∆x

∆̄t
and make a plot of h vs. v for 5 and 4 holes

open. These graphs should look very similar to the
graph on page 3 of this lab guide. Because it would be
very difficult to measure velocity of something falling as
a function of time, we can measure it as a function of
release height. The purpose of this step is to see whether
the piston is reaching terminal velocity by the time it is
dropped from the top of the tube.

The following questions, Q, are not quiz questions.
They are intended to be answered as part of your lab
report.

Q: Will the piston reach vt for 6 holes? Do we need
to check for 0,1,2,3 holes open?

Questions

7. Suppose your damping tube has 4 holes open and
you find that your piston does reach terminal velocity
when released from a certain height below the maximum
release height. Sketch what you would expect a h vs. v
plot to look like for this experiment. (h is the release
height.) Briefly describe what your plot means.

Now, using an ”engineering approach” to test the
model of section 1.3 implies that you assume the model
is correct from the beginning and that you use the
theoretical results from this model while conducting the
experiment. The remainder of this procedure does just
this. It is important that you keep in mind that all
quantities obtained are a result of assuming this model
is correct from the beginning.

Step 4 Determine the terminal velocity vt for 0-
5 holes open. This can be done by simply measuring ∆t
of the piston dropped from the top of the tube for each
configuration of holes open. It is recommended that you
measure ∆t many times and determine the average ∆̄t
for each hole setting.

Step 5 Convert your terminal velocity data for
0-5 holes open to b values using b = mg

vt
and make a plot

of b for 0-5 holes open (i.e. number of holes open vs. b).
Plot bcrit as a horizontal line across your graph.

Q: Where do the two lines intersect? What is the
rough estimate for how many holes need to be open for
the damping tube to be critically damped according to
bcrit?
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Step 6 Solve for the ∆t∗1 which gives bcrit. The result
is

∆t∗1 =
2∆x
mg

√
mk

Calculate ∆t∗1.

Step 7 Next, you want to open the number of holes
according to what you answered in the previous Q ques-
tion. Open up the lower number in your range and then
you will use the valve on the tube to open a hole par-
tially. You need to determine how many revolutions of
the fine adjustment valve correspond to the valve being
fully opened. Also you can use the 10 tick marks on the
fine adjustment valve to get an extra digit of significance
in your fraction of a hole open.

3.3. Damped Harmonic Motion

Step 8 Now that you have achieved ∆t∗1, your system
is damped according to the value you calculated for bcrit.
So, if bcrit is correct, then your system should be criti-
cally damped. Next, attach the spring and observe the
motion in the tube.

Q: Does this system look underdamped or over-
damped? How can you tell?

Step 9 Next, adjust the valve until the system is un-
derdamped, then adjust the valve until you have critically
damped the system by eye.

Step 10 Take the piston off the spring, release the
piston from the top of the tube, and measure ∆t∗2. Drop
the piston down the tube N more times and record ∆t∗2.
Calculate ∆̄t∗2±σ∆̄t∗2

. ∆t∗2 is the time it takes the piston
to fall through the photogate when the tube has been
critically damped by eye and the piston is falling at it’s
terminal velocity.

Questions

8. In this experiment, how can you tell the difference
between overdamped and critically damped motion?
Do not give a mathematical definition. Describe what
you would do in this experiment to distinguish between
an overdamped and critically damped system.

3.4. Cautions

It is HIGHLY recommended that you do the following.

• Clamp down setup to reduce wobbling.

• Don’t overstretch the spring

• Attach a string to the piston so you can pull it out
of the tube.

• Do NOT use clear tape for any part of this experi-
ment.

• Make sure you are triggering on the correct ∆x by
pulling the mass slowly through the photogate.

• Make sure the spring is colinear with the tube in
steps 8 and 9.

4. ANALYSIS

As previously mentioned, in order to test the model
assumed for damping (linear dependence on velocity),
you will need to compare the value of the spring constant
obtained by the two methods, which can be calculated
using the following formula.

kspring =
4π2m

T 2
± σkspring

kby−eye = m(
g∆t∗2
2∆x

)2 ± σkbe

Find these two values and propagate the errors from m,
T , ∆t, and ∆x. Also, determine the discrepancy and its
uncertainty. Then, using t-score, determine the level at
which these two values are discrepant and explain what
this means about the model you are testing.

Questions

9. Three students measure the period of their
piston-spring system with the results (in units of seconds):
1.5± 0.5
1.17± 0.03
1.82± 0.19
Determine the best estimate and its uncertainty for the
period.

Appendix 1: Lab Equipment, The Damping
Tube

In order to damp our spring motion we will be using
a long vertical tube that has holes drilled in the bottom.
You will be able to cover up the holes in order to increase
the pressure underneath the piston that you are damping.
The more holes that are open, the less damping, and the
piston will be able to move more freely. To fine adjust
between the levels of holes open, there is a valve that can
go anywhere between an open hole and a closed hole. The
insides of the valve look something like this. A screw on
the side of the tube allows air to flow through.
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Cross section of the fine adjustment valve.


