Homework May 12, 2015 (to be returned on May 19)
Run a computer simulation to reproduce the result shown during the lectures about the final heterozygosity as a function of the distance from the selected locus, as measured by the ratio s / r (selection over recombination rates). It is reminded that selection acts only on locus A (selection coefficients: $1,1-h s, 1-s$ for $A_{1} A_{1}, A_{1} A_{2}, A_{2} A_{2}$, respectively) while the second diallelic locus B is taken neutral. The frequency p_{1} of the selected allele A_{1} is initially $1 / 2 N$ (N being the population size) and sweeps then to high values (stochastic fluctuations are neglected). Run the simulation up to high values of p_{1}, e.g. $p_{1}>=0.9999$, and measure the heterozygosity $2 p_{2} q_{2}$. Suppose additivity $h=1 / 2$ for simplicity. Try different values of the population size $N=1,000 ; 5,000 ; 10,000$ and selection coefficient $s=10^{-4}, 10^{-3}, 10^{-2}$ and see how much that changes the graph, always using r / s as measure of the distance.

