Homework April 9, 2015 (to be returned on April 21)

We consider a randomly dioecious species with different numbers of males, N_{m}, and females, N_{f}. The purpose of this exercise is to derive the expression for the effective population size, N_{e}.

We define by \mathcal{G} the probability that a random individual is homozygous; by $P_{q, r s}$ the probability that a locus picked at random from two individuals, one of sex r and the other of sex s, descend from the same parent of sex q (the index 1 is for males and 2 for females); $g_{r, s}$ is the probability that two loci picked randomly from individuals of $\operatorname{sex} r$ and sex s are the same allele, i.e. identical by state.

1) Derive the equations:

$$
\begin{align*}
\mathcal{G}^{\prime} & =g_{1,2} \\
g_{r, s}^{\prime} & =\frac{1}{4} \times\left[P_{1, r s}\left(\mathcal{G}+(1-\mathcal{G}) \times \frac{1}{2}\right)+\left(1-P_{1, r s}\right) g_{11}\right] \\
& +\frac{1}{4} \times\left[P_{2, r s}\left(\mathcal{G}+(1-\mathcal{G}) \times \frac{1}{2}\right)+\left(1-P_{2, r s}\right) g_{22}\right]+\frac{1}{2} \times g_{1,2} \tag{1}
\end{align*}
$$

where the primes indicate the values at the next generation, after random mating.

We are interested in the limit where both populations N_{m} and N_{f} are large, yet possibly different so that $P_{q, r s}$ is a small parameter $O(\epsilon)$ that we shall use as described below. In Wright-Fisher models, homozygosity approaches its asymptotic value (as generations increase) with the rate 1 $1 / 2 N_{e}$ so that we can determine the effective population size from the dominant eigenvalue of the dynamics.
2) Define the vector $\boldsymbol{V}^{T}=\left(\mathcal{G}, g_{11}, g_{12}, g_{22}\right)$ and write the dynamics (1) as

$$
\begin{equation*}
\boldsymbol{V}^{\prime}=\left(A_{0}+A_{1}\right) \boldsymbol{V}+\text { const. }, \tag{2}
\end{equation*}
$$

where the index of the matrices A indicates the order in ϵ, i.e. A_{0} does not contain $P_{q, r s}$ and A_{1} is linear in those terms.

We are interested in the asymptotic behavior at long times of homozygosity, i.e. in the eigenvalues

$$
\begin{equation*}
\left(A_{0}+A_{1}\right) \boldsymbol{V}=\lambda \boldsymbol{V} \tag{3}
\end{equation*}
$$

Write down the explicit expressions for the two matrices A_{0} and A_{1}; show that A_{0} has eigenvalue unity and determine the corresponding left and right eigenvectors, \boldsymbol{L} and \boldsymbol{R}. It will be convenient to normalize them as $\boldsymbol{L} \cdot \boldsymbol{R}=1$.
3) Use the results above and the small value of ϵ to find perturbatively the dominant eigenvalue $\lambda=1-1 / 2 N_{e}+\ldots$ of (3). The corresponding right eigenvector is sought as $\boldsymbol{V}=\boldsymbol{R}+\boldsymbol{v}_{1}+\ldots$. The eigenvalue equation (3) at the order ϵ^{0} is $A_{0} \boldsymbol{R}=\boldsymbol{R}$, which is satisfied by construction. Find the eigenvalue equation at the order ϵ and take its scalar product with \boldsymbol{L} to show that

$$
\begin{equation*}
-\frac{1}{2 N_{e}}=\boldsymbol{L}^{T} A_{1} \boldsymbol{R} \tag{4}
\end{equation*}
$$

and write down the explicit expression in terms of the $P_{q, r s}$.
4) For simple generation processes $P_{q, r s}=\frac{1}{N_{q}}$. Show then that

$$
\begin{equation*}
N_{e}=\frac{4 N_{m} N_{f}}{N_{m}+N_{f}} . \tag{5}
\end{equation*}
$$

5) Show that $N_{e} \leq N=N_{m}+N_{f}$. Estimate N_{e} / N for $N_{m}=0.1 N_{f}$.
