Relaxation and magnetic reconnection in plasmas
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The theory of plasma relaxation is described and developed. Turbulence, allied with a small resistivity, al-
lows the plasma rapid access to a particular minimum-energy state. This process involves reconnection of
magnetic field lines in a manner that destroys all the topological invariants of ideal plasma so that only to-
tal magnetic helicity survives. Although this mechanism, and the equations describing the relaxed state,
are similar in all systems, the properties of the relaxed state depend crucially on the topology—toroidal or
spherical—of the container and on the boundary conditions. Consequently there are several different types
of relaxed state, each with its own special characteristics, which are derived and discussed. The measure-
ments made on many experiments, including toroidal pinches, OHTE, multipinch, and spheromaks, are re-
viewed and shown to be in striking agreement with the theoretical predictions.
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. INTRODUCTION

A. Background

In this paper a plasma is regarded as a conducting fluid
having small resistivity and small viscosity. Even in this
simple model interaction of the plasma with magnetic
fields leads to extremely complex behavior, especially
when turbulence occurs. It is therefore remarkable that
one can make quantitative predictions about the plasma
configuration resulting from such turbulence. This is
possible because the turbulence, allied with small resistivi-
ty, allows the plasma rapid access (in a time short com-
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pared with the usual resistive diffusion time) to a particu-
lar minimum-energy state. This process, known as plas-
ma relaxation, involves the reconnection of magnetic field
lines and is a remarkable example of the self-organization
of a plasma (Hasegawa, 1985). Since plasma turbulence
occurs frequently, so does this relaxation process, and the
theory has now been successfully applied to plasmas in
many different laboratory systems (see references herein)
and even to astrophysical plasmas (Heyvaerts and Priest,
1984; Konigl and Choudhuri, 1985).

An important concept in the theory is that of magnetic
helicity, A-Bdr, as an invariant of plasma motion.
This was used by Woltjer (1958) and by Wells and Nor-
wood (1969), but relaxation theory as described here be-
gan with the work of Taylor (1974a,1975,1976), which ex-
plained why total helicity alone, rather than the infinity
of invariants of ideal magnetohydrodynamics, should be
important and determined the properties of the relaxed
states of toroidal plasmas. These calculations showed
that the relaxed state accounted quantitatively for many
hitherto unexplained observations on toroidal pinch ex-
periments.

Toroidal Vessel

Toroidal
Toroidal Current  Regyltant
Field U] Field
(Bo)

FIG. 1. The toroidal pinch.

Copyright ©1986 The American Physical Society 741



742 J. B. Taylor: Relaxation and magnetic reconnection

TABLE I. Toroidal pinch experiments. Representative parameters. Based on a table prepared by Ortolani and Rostagni (1983), with
additional data from Bodin and Newton (1980), Watt et al. (1985), and Toyama et al. (1985).

ZETA ALPHA ETA-BETA TPE-1R(M) ZT-40(M) OHTE HBTX-1A REPUTE
R (m) 1.50 1.60 0.65 0.5 1.14 1.24 0.8 0.82
a (m) 0.50 0.50 0.125 0.09 0.20 0.19 0.26 0.20
I (kA) 350 180 130 190 230 200 220
Timax) 900 300 280 440 500 500 260
T, (eV) 200 40 300 150 75 50
n (102 m~—3) 2 0.3 0.25 0.4 0.2 0.5

The toroidal pinch is one of the simplest systems for
confining plasma by a magnetic field. In principle it in-
volves only a toroidal vacuum vessel in which a toroidal
magnetic field By is first created by external coils (Fig. 1).
Then, after creating an initial plasma by a suitable ioniz-
ing process, one induces a toroidal current I. This
current heats and compresses the plasma through the
well-known “pinch effect.” [The principal parameters of
several toroidal pinch experiments are shown in Table I.
For details see, for example, the review by Bodin and
Newton (1980).]

There are several remarkable features common to all
toroidal pinch experiments. First, it is found that, after
an initial highly turbulent phase, the plasma settles into a
more quiescent state in which the fluctuations are re-
duced. Second, in this quiescent state the mean magnetic
field profiles are essentially independent of the particular
experiment or the previous history of the discharge and
depend only on a single parameter, the pinch ratio
6=2I/aB,. Third, if 6 exceeds a certain critical value
the quiescent state is one in which the toroidal field is
spontaneously reversed in the outer region of the plasma
near the vessel wall [hence, the usual designation—
reversed-field pinch (RFP)]. Typical mean magnetic field
profiles are shown in Fig. 2.

It is clear from the behavior of plasma in the toroidal
pinch that during the turbulent phase it seeks out a pre-
ferred configuration—the relaxed state. The idea of a re-

FIG. 2. Experimental and theoretical magnetic field profiles.
HBTX-1A (from Bodin, 1984).
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laxed state can be illustrated by a simple analogy. Sup-
pose a flexible, current-carrying, closed loop of wire is im-
mersed in a viscous medium; what configuration would it
adopt when it is in equilibrium with its own magnetic
field? So long as the wire is moving, energy is dissipated,
so it will come to rest in a state of minimum energy sub-
ject to whatever constraints are applicable. If the wire is
perfectly conducting, the magnetic constraint is that (L)
be constant (where L is the inductance), and if this were
the only constraint the equilibrium, or relaxed state,
would be found by minimizing LI?/2 subject to this con-
straint. (This corresponds to a state of maximum induc-
tance.)

B. Plasma relaxation

A plasma resembles an infinity of interlinked flexible
conductors, and the problem is to identify the appropriate
constraints. If there were no constraints the state of
minimum energy would be a vacuum field with no plasma
current. This is indeed the eventual state of an isolated
resistive plasma, but is clearly not what we are concerned
with here. At the other extreme, if the plasma is perfectly
conducting, there is an infinity of constraints. These arise
because the fluid moves precisely with the magnetic field,
each field line maintains its identity, and the flux through
any closed curve moving with the fluid is constant.

To express these constraints mathematically (Taylor,
1974a) we introduce the vector potential B=V X A. If
the plasma is perfectly conducting, so that E+v X B=0,
the vector potential must satisfy

(1.1)

Clearly any change in the component A perpendicular to
B can be accommodated by a suitable choice of v, so Eq.
(1.1) imposes no constraint on changes of A;. However,
despite the arbitrary gauge X, there are constraints on 4,
the component of A parallel to B. From Eq. (1.1) we
have

B.vy=B-22

ot

This is a magnetic differential equation (Kruskal and
Kulsrud, 1958) for X which can be satisfied only if

dl ds J0A
$ 5 and § 3o B

(1.2)

(1.3)
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BB
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are zero on each closed field line and each magnetic sur-
face, respectively. The variation 4, must be constrained
accordingly. A convenient way to express this constraint
(Taylor, 1974a) is that for every infinitesimal flux tube
surrounding a closed line of force the quantity

K@p= [  A-Bdr (1.4)

is an invariant. (Here a,f label the line of force.) This
infinity of invariants replaces the single invariant (LI) of
the flexible wire loop. Note that these invariants are
essentially fopological—they require the identification of
lines of force and represent the linkage of lines of force
with one another (Moffatt, 1978; Berger and Field, 1984).
They state that if one closed field line initially links
another » times then in a perfectly conducting plasma the
two loops must remain linked » times during any subse-
quent plasma motion.
If we minimize the magnetic energy,

w=1 [(VXAYdr (1.5)

subject to the infinity of constraints described above, then
for a plasma confined by a perfectly conducting toroidal
shell we find that the equilibrium state satisfies

VXxXB=Aa,5)B,
B-VA=0.

(1.6a)
(1.6b)

Thus the state of minimum magnetic energy when all the
constraints of a perfectly conducting plasma are observed
is some force-free equilibrium. (This is hardly surprising,
since the plasma internal energy has been ignored.) How-
ever, this cannot be the appropriate description of the
quiescent state, for in order to determine the Lagrange
multiplier1 Ma,B) one would have to calculate the invari-
ant K(a,B) for each closed field line and relate it to its
initial value. Hence, far from being universal and in-
dependent of initial conditions, the state defined by Eq.
(1.6) depends on every detail of the initial state.

To escape from this dilemma we must recognize that
real plasmas, especially turbulent ones, are never perfectly
conducting in the sense discussed above. In the presence
of resistivity, however small, topological properties of
lines of force are no longer preserved. Lines of force may
break and reconnect even though the resistive diffusion
time may be very long and there is insignificant flux dissi-
pation. Mathematically the situation is one of nonuni-
form convergence; when =0 the equations do not per-
mit changes in the topology of field lines, whereas such
changes may occur when 7540, even in the limit of small
7. Physically, as 7—0, the regions over which resistivity

IStrictly, the minimization cannot be treated by a simple
Lagrange multiplier, since the paths over which the constraints
are applied themselves vary with 8A. An extension of the
Lagrange multiplier technique is necessary, but the final result
is indeed the elementary one of Eq. (1.6).
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acts get smaller, but the field gradients get corresponding-
ly larger and the rate of reconnection does not diminish as
fast as 7 and may not diminish at all. Furthermore, the
effect of local reconnection is felt throughout the plasma.
A similar process is involved in resistive instabilities
(Furth et al., 1963; Furth, 1985) and magnetic reconnec-
tion at X points (Parker, 1957; Sweet, 1958; Petschek,
1965; Vasyliunas, 1975; White, 1983).

We conclude that, in a turbulent resistive plasma, flux
tubes have no continuous independent existence. Conse-
quently all the topological invariants K (a,/3) cease to be
relevant, not because the magnetic flux changes signifi-
cantly, but because it is no longer possible to identify the
field line to which the flux belongs. However, the sum of
all the invariants, that is the integral of ( A-B) over the fo-
tal plasma volume V), is independent of any topological
considerations and of the need to identify field lines.
Consequently, it remains a good invariant so long as the
resistivity is small. An alternative description is that dur-
ing turbulence the field lines become chaotic and all parts
of the plasma are connected along any line of force. A
model of flux tubes in a turbulent plasma closely related
to this interpretation has been discussed by Rusbridge
(1977,1982).

To obtain the relaxed state of a slightly resistive tur-
bulent plasma, therefore, we must minimize the energy
subject to the single constraint that the total magnetic hel-
icity

Ko= fVO A-Bdr (1.7

be invariant. For a plasma enclosed by a perfectly con-
ducting toroidal shell (which incidentally ensures that the
toroidal flux ¢ is also invariant), the corresponding equili-
brium satisfies

VXB=uB, (1.8)

where p is a constant. This relaxed state depends only on
a single parameter u—which is directly related to the
pinch parameter 6 =pa /2. Already, therefore, this repro-
duces one aspect of the quiescent state. We shall show
later that the relaxed state is completely determined by
the two invariants K, and .

C. Additional comments on relaxation

Before discussing the nature of the relaxed states de-
fined by Eq. (1.8), we offer some further remarks on the
relaxation process that may be useful. During relaxation
the plasma energy decays, while total helicity K, remains
essentially constant. This difference in decay rates is a
consequence of the turbulent fluctuations. In a nontur-
bulent plasma, helicity and energy both decay slowly on a
resistive time scale

K~-2n [JB and W~—q [J?, (1.9)

but for small-scale fluctuations
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K~—293 kB} and W~ —q 3 k*B}, (1.10)
so that energy dissipation is finite at scale lengths
k ~n~12, whereas helicity dissipation is only ~7!/? a
this scale. (One may also note that viscosity d1ss1pates
turbulent energy but has no direct effect on helicity.) The
generation of small-scale turbulence is related to field line
reconnection through the condition B-VA=0 for a sta-
tionary force-free plasma (i.e., A must be uniform along a
field line). When two field lines having different values
of A connect, the subsequent adjustment of A is brought
about by small-scale (Alfvén wave) motion. Thus relaxa-
tion inherently requires both large- and small-scale fluc-
tuations.

There have been several attempts at computer simula-
tion of the relaxation process (Sykes and Wesson, 1977;
Riyopoulos et al., 1982; Caramana et al., 1983; Aydemir
and Barnes, 1984; Aydemir et al., 1985; Sato and
Kusano, 1985). These simulations lend some support to
the picture described above, but because of the inherent
difficulties of simulating large-Reynolds-number tur-
bulence a conclusive demonstration of the detailed mecha-
nism (and hence of the time scale for relaxation) has not
yet been given. In this connection it must be emphasized
that relaxation is fundamentally a three-dimensional pro-
cess. In some simulations (e.g., Caramana et al., 1983)
the motion is restricted to a two-dimensional helically
symmetric form.? In this event the imposed symmetry in-
troduces, in addition to K, an infinity of additional con-
straints (Bhattacharjee et al., 1980; Bhattacharjee and
Dewar, 1982)

Ko= [ X*(A-B)d7 (1.11)

(where X is the helical flux), which are not present in fully
three-dimensional turbulence. Indeed, an interesting
mathematical viewpoint (Hameiri and Hammer, 1982) of
the central role played by K is that it is the only member
of the set K, that is independent of the pitch of the as-
sumed helical symmetry, and therefore is the only one
that persists when disturbances of all pitch lengths are
present.

D. Boundary conditions and the invariant

A comment is also necessary on the nature of the boun-
dary conditions that are assumed during relaxation. At a
perfectly conducting boundary, the normal component B,
of the magnetic field is fixed, and for the present we con-
sider only B, =0. One consequence of the boundary con-
dition is that the toroidal flux v in the plasma is invari-
ant. In terms of the vector potential A the boundary con-
ditions in a toroidal system require that QS A-dl and

A-ds (where gS dl and ds denote loop integrals

2These are referred to as “single-helicity” computations. The
term ““helicity” in this context should not be confused with its
meaning elsewhere in this paper.
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along closed paths the long and short way around the
toroidal boundary) should be fixed. In this case P A-ds
prescribes the toroidal flux .

Some additional features of the invariant K, should
also be noted. One of these concerns gauge invariance.
Under a gauge transformation A— A + VX the change in
the helicity K is

B-VXd7t=Q XB-dS . (1.12)
J ¢

With the boundary condition B-n=0 the surface integral
vanishes and K is indeed gauge invariant. Nevertheless,
difficulties may arise because the interior of the torus is a
multiply connected region in which X may not be single
valued. To overcome this it is sometimes convenient
(Bevir and Gray, 1980; Taylor, 1980) to replace K, by

K= [ABdr— P AdlP Aas, (1.13)
where dl and ds again denote loop integrals the long and
short way around the toroidal surface. If a complete con-
ducting shell surrounds the plasma, these loop integrals
are constant, and nothing in our discussion is changed;
K, is invariant during relaxation just as K, is. The. ad-
vantage of Eq. (1.13) is that it is manifestly gauge invari-
ant, even for multivalued gauge potentials.

If the boundary of the plasma is not a flux surface (i.e.,
B,+0 everywhere on the boundary), then (1.12) is
nonzero and the helicity is not well defined. This reflects
the fact that (A-B) is not a local quantity. One cannot
specify the “local” helicity at a point—only the total heli-
city within a flux surface. Where the helicity is located
within that surface is not a valid question, any more than
is the related question of where the linkage between two
interlinked hoops is located. Consequently the question
of gauge invariance and the definition of helicity must be
reconsidered when we discuss systems in which B, 50 on
the boundary (see Sec. VL.B).

Although the helicity K is invariant when the plasma
is enclosed within a complete conducting shell, it does
change when an external loop voltage V) is applied across
a gap in the toroidal shell (as when the toroidal discharge
is first created). According to Eq. (1.13) this change can
be expressed as

dK,
dt

=2V, (1.14)

where 9 is the toroidal flux. This shows that helicity can
be given a practical interpretation (Taylor, 1975); at con-
stant toroidal flux it is proportional to the volt-seconds
stored in the discharge. Equation (1.14) also shows that
by suitably phased simultaneous oscillation of V; and ¥
helicity can be continuously fed into the plasma without
the need for a continuous supply of volt-seconds (Bevir
and Gray, 1980). The mean rate of helicity injection is

(o) _(42) 73

(1.15)
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E. Plasma pressure

A comment is also necessary on the role of the plasma
pressure. Relaxation proceeds by reconnection of lines of
force, and during this reconnection plasma pressure can
equalize itself so that the fully relaxed state is also a state
of uniform pressure. Hence, the inclusion of plasma pres-
sure does not change our conclusions about the relaxed
state. Of course, one may argue that pressure relaxation
might be slower than field relaxation, so that the former
was incomplete and some pressure gradients would
remain. A pressure gradient can be introduced directly
(Kondoh, 1981; Edenstrasse and Schuurman, 1983) or by
incorporating additional invariants (Bhattacharjee et al.,
1980; Turner and Christiansen, 1981; Bhattacharjee and
Dewar, 1982). However, no convincing argument for
determining the correct residual pressure gradient has yet
been given. We shall, therefore, consider Vp to be negligi-
ble in relaxed states—which in any event is a good ap-
proximation for low-f3 plasmas.

Il. RELAXED STATE IN A
LARGE-ASPECT-RATIO TORUS

We now return to the properties of the relaxed state de-
fined by Eq. (1.8). For a circular-cross-section torus of
large-aspect ratio we may take the cylindrical limit in
which the solution to Eq. (1.8) is

2.1

This is the well-known “Bessel function” solution. By
straightforward calculation, ua (where a is the minor ra-
dius of the discharge) can be expressed as a function of
K /¢?* (Martin and Taylor, 1974):

B,=0, Bg=aJ,(ur), B,=aly(ur).

pa[J5(pa)+J3(ua)]— 2 o(ua)l, (ua)
J3(ua)

K1
Y*  2ma

22)

where [ is the length of the cylinder—to be identified with
27R in a toroidal system.

Thus the field profiles in the relaxed state are deter-
mined by K /y?, although as we have remarked earlier it
is customary to label the relaxed states by the pinch ratio
6(=pa/2). In this regard one should note that although
0, na, and K /y? are equally valid parameters for the final
relaxed state, only K /y? is constant during relaxation.
Note also that the relaxed state is completely determined
by the two invariants K and ; the ratio K /4 fixes the
field profile, and either K or ¢ then fixes the magnitude
of the fields. No arbitrary or adjusted parameters are re-
quired in the theory.

The field profiles given by Eq. (2.1) agree well with
those observed in the quiescent phase of many toroidal
discharges. Figure 2 shows a comparison with measure-
ments on HBTX-1A (Bodin, 1984). The other toroidal
pinch experiments listed in Table I show similar profiles.

The onset of the spontaneous reversed toroidal field at
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FIG. 3. F-0 diagram. Data from HBTXI1, ALPHA, and
ZETA and theoretical curve (from Bodin and Newton, 1980).

the wall can also now be determined. It occurs when
pa>2.4, ie., when the pinch ratio 6> 1.2. This result is
also in good agreement with many observations. The
relevant experimental data are usually presented through
an F-0 diagram, where F is the ratio of toroidal field at
the wall to the average toroidal field (F<0 implies rever-
sal). Figure 3 shows points on the F-8 curve for several
experiments (Bodin and Newton, 1980), together with the
corresponding theoretical curve. It is noteworthy that the
experimental points in Fig. 3 do indeed all lie on a univer-
sal F-0 curve close to the theoretical curve, although the
experimental value of 6 for field reversal is somewhat
higher than the theoretical value.

One reason for this discrepancy is that u=(j-B)/B?2,
which would be uniform in a fully relaxed state, falls off
near the wall. The observed profile of u(r) in the OHTE
experiment (Ohkawa et al., 1980; Tamano et al., 1983) is
shown in Fig. 4. Similar profiles have been observed in
the ETA-BETA (Antoni et al., 1983) and HBTX experi-
ments (Bodin, 1984), and the effect of the u(r) profile on

4.0 - T T
3o T T~ -~ .
\\
AN
A \
o0 \ —
B \
\\
1.0 \ -
\
| AN
0.0 - 0.1 0.2
r

FIG. 4. Measured profile of u(r). OHTE (from Tamano et al.,
1983).
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the value of 6 has been discussed in detail by Ortolani
(1984). The fall in u near the wall is believed to be due to
the high plasma resistivity there—which the relaxation
process cannot fully overcome.

Another reason for the discrepancy between the
theoretical and experimental values of € is that the mea-
surements are often distorted by the flux-conserving liner
and by toroidal plasma shifts. In recent experiments
where 0 is corrected for these effects, the agreement be-
tween theory and experiment is further improved
(Newton, 1985).

Even more striking evidence for relaxation is observed
in the time-dependent behavior of toroidal pinches. This
is illustrated in the F-6 curves shown in Figs. 5 and 6.
Figure 5(a) (Bodin and Newton, 1980) shows that during a
fast current rise in HBTX the discharge is temporarily
forced away from the relaxed state but quickly falls back
to it and subsequently closely follows the theoretical F-6
curve. When the current rise is slower, the discharge lies
close to the theoretical curve throughout [Fig. 5(b)].
Similar F-6 curves for ZT-40 (DiMarco, 1983), for OHTE
(Tamaru et al., 1979), and for REPUTE (Toyama et al.,
1985) are shown in Fig. 6.

These results, and many others from the experiments
listed in Table I, show that the theory presented here ac-
counts extremely well for the features of toroidal
discharges described in the Introduction. We now turn to
some additional and unexpected consequences of the
theory.

Ill. FURTHER PROPERTIES OF RELAXED
STATES IN A LARGE-ASPECT-RATIO TORUS

Determination of the relaxed state is actually more
complex than we have indicated so far. This is because
Eq. (1.8) may have several solutions compatible with the
boundary conditions and with the given values of K and
1. In this event, one must select that solution which has
the lowest energy. The procedure can be demonstrated by
considering again the large-aspect-ratio circular plasma
(Taylor, 1975).

The general solution of Eq. (1.8) can be written (Chan-
drasekhar and Kendall, 1957) as

B= 3 a,;B" (1), 3.1

FIG. 5. Time-dependent F-6 curve for HBTX1. Times in usec:
(a) Fast mode; (b) slow mode (from Bodin and Newton, 1980).
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FIG. 6. Time-dependent F-6 curves: (a) ZT-40 experiment
(from DiMarco, 1983); (b) TPRE experiment (from Tamaru
et al,, 1979); (c) REPUTE experiment (from Toyama et al.,
1985).
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where the a,,; are arbitrary and the individual B are

k__ —1 ’ mp ;

B"= PR lkJm(yH- y I (p) [sin(mO+kz) ,

B ———=L | )+ 2K, () |costmO+kz)
e = (‘U.z—k2)1/2 M \y + y m\y ’

(3.2)
B =], (y)cos(mO+kz) ,
with y =r(u2—k?)!/2,

Although this solution satisfies Eq. (1.8), we have not
yet imposed the boundary condition B,(r =a)=0, nor
have we considered the value of the invariant K or the
toroidal flux . Before doing so, we should note an im-
portant feature of the above expressions, namely, that the
m=0, k=0 term is different in character from all the
others. This term satisfies the boundary condition for any
value of u and carries a nonzero toroidal flux. All the
other terms satisfy the boundary condition only for
discrete values of p given by

ka[(u*—k»)'2a)d,, [(u2—k2)%a]

+mpal,[(W2—kH)2a]=0, (3.3)

and do not contribute any toroidal flux.
Thus, there are two distinct types of solutions to Eq.

(1.8) which could satisfy the boundary conditions and cor-
respond to the given toroidal flux. They are the follow-

ing.

(i) The “symmetric” m =0, k =0 solution, which exists
for any . For such a solution, as already noted, the ap-
propriate value of u is determined by the value of K /9>,

(i) A “mixed” solution containing the m=0, k=0
term (to give the required toroidal flux) together with one
of the other terms, i.e., a solution (aeB®+ a,,;, B™*). This
mixed solution exists only for fixed discrete values of u,
and the role of the invariant K /4? is no longer to deter-
mine p; instead it determines the ratio a,,; /a,.

We see that both types of solutions are completely de-
fined by the two invariants K and ¢, but in a different
way in the two cases. We now need to determine which
solution has the lowest energy. [Note there is only one
solution of type (i), but there are many of type (ii).] It can
be shown that the lowest-energy solution of Eq. (1.8) is
that with the smallest u (see Appendix B), so of all possi-
ble solutions of the second type, only that corresponding
to the smallest root of Eq. (3.3) can be of interest. This
smallest root occurs for m=1, ka~1.25, and is given by
pua=3.11 (Martin and Taylor, 1974; see also Gibson and
Whiteman, 1968).

The selection of the appropriate solution can now be
made. The first “symmetric” solution is the lowest-
energy state for all values of K /4? that correspond to
pa<3.11. For any larger value of K/y? the lowest-
energy state is a “mixed” solution, with ua=3.11 (6 ~1.6)
containing a helical component with m=1 and ka~1.25.
Since, for fixed toroidal flux, K /y? is proportional to
volt-seconds in the discharge, the helical relaxed state
arises when the volt-seconds exceed a critical value.
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Furthermore, in the helical relaxed state, 6 is independent
of K /¢? hence the plasma current (at fixed toroidal flux)
does not increase with volt-seconds. The physical ex-
planation for this is that above the critical value of K /4°
the current channel becomes increasingly helically de-
formed as K /4? increases, and the increased inductive
voltage absorbs the added volt-seconds. (In this regime,
but not in the others, the plasma begins to resemble a sin-
gle current filament, which seeks out a configuration of
maximum inductance.) The amplitude of the helical de-
formation a;/aq is given by (Martin and Taylor, 1974;
Reiman, 1980)
2
XK __L [8.21+4.493% : (3.4)
¥ 2ma ag
Thus we see that the theory of relaxed states predicts
not one, but two, critical values of 6 for the toroidal
discharge (Taylor, 1975). At 6=1.2 a reversed field is
first generated, and at 8=1.6 current saturation sets in.
Evidence for this second critical 8 was found in HBTX-
1A (Butt et al., 1975; Verhage et al., 1978; Bodin and
Newton, 1980) and is illustrated in Fig. 7. This shows a
discharge in which 6 was initially driven to a large value
but quickly dropped back to around 1.6 and remained
there for the rest of the discharge. The drop in 6 was ac-
companied by the appearance of an m=1 helical distor-
tion.
Not all toroidal pinches show a clear current limitation
at 6~1.6, but when 6 significantly exceeds this value
there are usually increased fluctuations and a higher plas-

(a)

41—
m=1
A=45cm
0,
| |
0 20 40
t(ps)
(b)
m=1
4 A=15cm
0 2
1 |
0 20 40
t(ps)

FIG. 7. Limitation of §. HBTX1 (from Bodin and Newton,
1980).
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FIG. 8. Fluctuation level vs 6. ZT-40 (from Watt and Nebel,
1983).

ma resistance—indicating that the plasma is not fully re-
laxed. An example of this is shown in Fig. 8 (Watt and
Nebel, 1983). We shall later describe much clearer evi-
dence for current limitations (Sec. V). First, however, we
must say something more about relaxed states in general
toroidal systems.

IV. GENERAL TOROIDAL RELAXED STATES

The general theory of toroidal relaxed states follows
closely that for the large-aspect-ratio circular pinch
(Faber et al., 1982,1985; Jensen and Chu, 1984) and is
described .in Appendix A. The present section is a sum-
mary of those features needed for the discussion of the
multipinch experiment below, and is restricted to axisym-
metric systems.

In general the relaxed state of a toroidal system is the
lowest-energy solution of

VXVXA=pVXA , 4.1)

with n-VX A=0 on the boundary and with gﬁ A-ds,

A-dl, and the helicity K given. In order to describe
the relevant solutions we need also to consider the associ-
ated eigenvalue problem

VXVXai=7&,~VXa,~ (4.2)

with boundary condition a;=0. (Note that because of
this boundary condition an eigenfunction carries no
toroidal flux.)

As in the circular case there can be many solutions of
Eq. (4.1) that satisfy the boundary conditions and have
the correct values of the invariants K and ¢ (= ¢ A-ds),
but only two of them are possible lowest-energy solutions.
The first is an axisymmetric solution, analogous to the
m=0, k=0 solution in the circular discharge. This may
exist for any value of u (except p=A;), and p is deter-
mined by K/y?. The second is a superposition of the
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first solution and the lowest eigenfunction (i.e., the eigen-
function with smallest eigenvalue® Ay). In this mixed
solution, p=A»Ao, and K /4?* determines the amplitude of
the eigenfunction component.

Bearing in mind that the lowest-energy solution is that
with the smallest u, we see that the first solution describes
the relaxed state when K /4? is small and the correspond-
ing p is less than A,. The second solution describes the
relaxed state for larger 'K /¢?, when u> A, in the first
solution. In this event the toroidal current (at fixed
toroidal flux) is fixed and does not increase with K /4.
(Strictly, this second solution arises only if the lowest
eigenfunction is “decoupled,” in the sense defined in Ap-
pendix A, but this is usually the case in axisymmetric sys-
tems. If the lowest eigenfunction is not decoupled, only
the first type of solution is relevant. However, in this
event K /Y — w0 as p—Aq, so that it is still true that u
can never exceed the smallest eigenvalue and that current
saturation occurs at this point.)

Although the relaxed states of general axisymmetric
systems are similar to those in the large-aspect circular-
cross-section system, there is one important feature of the
general system that is not apparent in the circular exam-
ple. In that example the lowest eigenvalue (ua=3.11)
corresponds to a nonaxisymmetric eigenfunction, in fact
to a helical mode with m =1,ka =1.25. [The lowest
axisymmetric (k=0) eigenvalue is ua=3.83 and is degen-
erate.] However, in a system with a highly convoluted
cross section, the lowest eigenfunction may be axisym-
metric. This is the case for the configuration of the
“multipinch” experiment discussed in the next section
and, as we shall see, it has important consequences.

V. THE MULTIPINCH EXPERIMENT
AND AXISYMMETRIC RELAXED STATES

The multipinch, investigated at GA Technologies (La
Haye et al., 1984,1986), is an example of an axisym-
metric toroidal system with noncircular cross section.
The cross section resembles a figure eight whose height is
about 2.5 times its width (Fig. 9). The major radius is
52.5 cm, the height 50 cm, and the width 20 cm. These
dimensions were chosen so that the multipinch resembles
two circular-cross-section pinches; similar to TPE-1R(M),
one above the other. The method of operation of the mul-
tipinch is similar to that of other toroidal pinch experi-
ments.

The axisymmetric relaxed states of the multipinch are
readily found. An axisymmetric field can be written, in
cylindrical coordinates R, ¢, Z, as

e, XVX e

R R (5.1)

3For systems with mirror symmetry the eigenvalues occur in
pairs £A;. Otherwise one must consider séparately states with
positive and negative helicity.
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FIG. 9. Multipinch experiment (from La Haye et al., 1986).

Then, for the relaxed state, Eq. (4.1) gives

X d |1 ax
+y=2x LS I )
ATx= P +RaR 3 uf (5.2)
and
Vf=—uvx, (5.3)

so that f=C —puX.

The boundary condition is X =const, and without loss
of generality this constant can be set to zero. The toroidal
flux condition then gives

- X 1
V=—p [ LdRAZ+C [ dRdZ, (5.4)
so, defining a toroidally weighted average,

O=|[ - wdraz

) -1
1
[fRdezl , (5.3

the equation for axisymmetric relaxed states becomes (La
Haye et al., 1986)

AFTX 4 puX —p*(X) =*“—<%2! , (5.6)

where A is the cross-section area of the discharge.
The corresponding axisymmetric eigenvalue problem,
Eq. (4.2), becomes

AFXG A — (X ))=0 : 5.7
with X; =0 on the boundary.

Solutions of Eq. (5.6) can easily be computed, and an
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FIG. 10. Relaxed profile in multipinch. ua=1.5.

example of the relaxed state at ua=1.5 is shown in Fig.
10 (Taylor and Turner, 1985; La Haye et al., 1986). This
configuration is symmetric in the upper and lower halves
of the cross section, and B, is of the same sign every-
where.

Similarly the eigenfunctions, Eq. (5.7), can also be com-
pared. The lowest eigenvalue is found to be ua=2.21 (La
Haye et al.,, 1986). The corresponding eigenfunction,
shown in Fig. 11, is antisymmetric in the two halves of
the cross section, i.e., B, is of opposite sign in the upper
and lower halves.

—

FIG. 11. Eigenfunction for multipinch. pa=2.21.
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The axisymmetric relaxed states can also be described .
in terms of the toroidal field. The function f satisfies

AT f4+uf=0 (5.8)
with f constant around the boundary. In this description
there is no direct reference to the toroidal flux ¥, which
must be introduced through the requirement that

(R)VY

-_—. (5.9)
A

(f)=

In terms of f the associated eigenvalue problem is also
described by (5.8) with f constant on the boundary-—so
there may appear to be no eigenvalue condition. In fact
this arises from the vanishing-flux condition

(f>=0. (5.10)

One now sees that it is important to distinguish be-
tween this eigenvalue problem (problem A) and the
simpler eigenvalue problem defined by Eq. (5.8) with
f =zero on the boundary (problem B). Problem A is en-
tirely equivalent to Eq. (5.7), and its lowest eigenvalue
determines the point of current saturation. An eigenvalue
of problem B, on the other hand, only determines a point
at which the toroidal field vanishes at the wall, i.e., a
point of “field reversal” F=0.

The two eigenvalue problems A and B are quite dis-
tinct. However, when there is an equatorial plane of sym-
metry some of the eigenfunctions X; for problem A are
antisymmetric about this plane. For such eigenfunctions
{X;)=0, so Eq. (5.7) and its boundary condition (problem
A) are then identical with Eq. (5.8) and its boundary con-
dition (problem B). Consequently the two problems then
have a common solution and a common eigenvalue.

This coincidence occurs in the multipinch, where the
lowest eigenvalue (ua=2.21) of problem A (determining
current saturation) coincides with the second-lowest
eigenvalue of problem B. Furthermore, this second eigen-
value of problem B is very close to the first, which deter-
mines field reversal. [The first and second eigenvalues of
problem B differ by less than 2% (Taylor and Turner,
1985): they would be exactly degenerate if the gap be-
tween the two lobes of the figure eight were infinitesimal.]
As a result, field reversal and current saturation are al-
most coincident in the multipinch.

We can now describe the properties expected for re-
laxed states in the multipinch. For small values of K /4?
(low volt-seconds), the relaxed state is axisymmetric and
symmetric about the equatorial plane. In this state ua
and the plasma current increase with volt-seconds. How-
ever, when pa reaches 2.21 the relaxed state changes to
one that is no longer symmetric about the equatorial
plane (i.e., more current flows in one lobe of the figure
eight than the other), although it remains axisymmetric.
This ‘“up-down” asymmetry increases with increasing
volt-seconds, but pa and the total current are fixed and
F =B,(wall)/(B,) is almost zero.
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FIG. 12. Plasma current vs driving voltage in multipinch (from
La Haye et al., 1986).

These features of the relaxed state are all clearly
demonstrated in the multipinch experiment. Figure 12
(La Haye et al., 1986) shows the peak plasma current I,
(at fixed toroidal flux (B,)) as a function of the
capacitor-bank voltage Vcp (the voltage applied to the
primary circuit of which the plasma forms the secondary;
K /y? increases roughly linearly with Vcg). At low volt-
age the configuration is axisymmetric and symmetric
about the equatorial plane, and the current increases with
Vceg. At higher Vg the current saturates, and the
discharge acquires an “up-down” asymmetry which in-
creases with further increase in Vg. The current satura-
tion and the onset of “up-down” asymmetry almost coin-
cide with vanishing toroidal field at the wall, i.e.,, with
F=0.

It can also be seen from Fig. 12 that the saturation
current depends on (B, ), i.e., on the toroidal flux ¥. The
variation of saturation current with toroidal flux is shown
in Fig. 13. The straight line corresponds to pa=2.42 and
is thus in very good agreement with the calculated
theoretical value pa=2.21.

One may now ask why current saturation is more clear-
ly demonstrated in the multipinch than in the circular-
cross-section pinch. This is probably because in the circu-
lar pinch the current-saturated state is reached well after
toroidal field reversal, and so involves reverse toroidal
current flow near the wall and strong plasma-wall interac-
tion. [See also Mannheimer (1981).] Such currents are
inhibited by the low plasma conductivity in this region.
On the other hand, because of the near coincidence be-
tween toroidal field reversal and current saturation, no
such reverse current is called for in the multipinch.

In theory, the up-down asymmetry of the multipinch in
the current-saturated state should increase -indefinitely
with increasing voltage, until eventually the current in one
half of the cross section would be reversed. In practice
the asymmetry increases until the current in one half falls
to zero and the discharge is entirely confined to the other
half. From that point on it acts as a circular-cross-section
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FIG. 13. Variation of I with toroidal flux in multipinch.
6=1.56 corresponds to ua =2.42 in this configuration (from La
Haye et al., 1986).

discharge confined to one half of the machine—with the
other half acting somewhat as an external inductance.

VI. RELAXED STATES IN OTHER SYSTEMS

A. Spheromak

So far we have considered relaxation only for toroidal
systems. However, relaxed states are of equal importance
in another class of plasma configurations, of which the

prototype is the spheromak, Fig. 14. In this configuration
(Rosenbluth and Bussac, 1979), the magnetic field has -

nested toroidal surfaces surrounding a magnetic axis as in
a toroidal pinch, but the confining shell is topologically
spherical instead of toroidal. (Of course, although the
spherical topology is essential, the actual shape need not
be a true sphere.) '

The essential distinguishing feature of a spheromak is
that there is no central aperture for toroidal field coils:
consequently the toroidal field is zero everywhere on the
wall, and in this respect the spheromak resembles a
toroidal pinch at the point of field reversal, with F=0.
However, in the pinch the vanishing toroidal field implies
that g(4) is zero at the wall, whereas in the spheromak
this is not the case. In fact, for a truly spherical system,
q () decreases only from 0.825 on the magnetic axis to
0.72 at the wall (Rosenbluth and Bussac, 1979). [The
quantity g () is the winding number of the lines of force
on the toroidal flux surface ; i.e., 27q is the toroidal an-
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FIG. 14. Spheromak configuration. Schematic.

gle turned through, following a field line, for each com-
plete rotation about the magnetic axis. Because g (1) in-
volves an average over the flux surface, it remains finite
even though the toroidal field tends to zero over part of
the surface.]

Plasma formation in the spheromak is considerably
more difficult to visualize than it is in the toroidal pinch
(Furth, 1981; Goldenbaum, 1982). In one method, used in
the CTX, Beta II, and CTCC-1 experiments (Jarboe
et al., 1980,1983; Turner et al., 1981,1983; Nagata et al.,
1985), a plasma is produced by a coaxial plasma gun and
injected into a confinement chamber (Fig. 15). Plasma
formed in the gun carries both poloidal field, provided by
coils in the gun, and toroidal field produced by plasma
currents. The magnetic forces eject the plasma from the
gun into the container (known as the flux conserver),
where it relaxes into a spheromak configuration. Another
method for forming a spheromak plasma employs a com-
bination of - and z-pinch discharges, as in the PS-1 ex-
periment (Goldenbaum et al., 1980; Nogi et al., 1980;
Bruhns et al., 1983). This process is illustrated in Fig.
16. :

Spheromak plasmas can also be formed by a slow in-
ductive process, as in the S-1 experiment (Fig. 17; Yama-
da et al., 1981). An initial poloidal field is generated by
current in a ring-shaped (toroidal) flux core and is weak-
ened on the small-major-radius side of the core by an
externally generated vertical field. The flux core also con-
tains a toroidal solenoid, which generates a toroidal flux
within it. When this toroidal solenoid is energized it in-
duces poloidal current in plasma surrounding the ring.
The associated toroidal field distends the plasma, stretch-
ing it towards the axis. Then the toroidal current in the
flux core is reversed and additional toroidal current is in-
duced in the plasma. Reconnection of the poloidal field
occurs, and a separated plasma toroid is created on the
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FIG. 15. Spheromak formation by plasma gun (from Turner
et al., 1983).
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FIG. 16. Spheromak formation by combined 6-z discharge
(from Goldenbaum et al., 1980).
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small-major-radius side of the flux core. This toroid, the
desired spheromak configuration, is held in equilibrium
by the external vertical field.

The parameters of several spheromak experiments are
shown in Table II. The references cited should be con-
sulted for more details. '

1. Relaxed states of spheromak

As in the toroidal systems, the helicity K,= f A-Bdr

is conserved during relaxation in the spheromak, and the
relaxed state satisfies

(a)

Flux core

B, Generating
solenoid

Reconnection
area

B, Current
reduced

B, Generated
thru zero

in plasma

B, Current reversed
and crowbarred

FIG. 17. Spheromak formation by inductive flux core (S-1)
(from Yamada et al., 1981).
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TABLE II. Spheromak experiments. Representative parameters.

ps-1# CTX® S-1°

BETA II CTCC-1° HSEf cops

Flux 6x 14
container

(cm)

Iax (kKA) 130 500 300
T. (eV) 150 110

3040 30x55

4040 20%25 6X9 4X8

330 100 240 20
10 40 10 10

-2Goldenbaum et al. (1980).
YJarboe et al. (1980,1984).
“Yamada et al. (1981,1985).
9Turner et al. (1983).
“Nagata et al. (1985).
fBruhns et al. (1984).
EKawai and Pietrzyk (1981).

VXVXA=uVXxA . 6.1)

Despite this formal similarity, however, there is a signifi-
cant difference between the theory of relaxed states in the
spheromak and in the toroidal pinch. In a toroidal device
there are two invariant quantities, the helicity K and the
toroidal flux 9, and, as we have seen, these are just suffi-
cient to determine the relaxed state. In the spheromak,
toroidal flux ¥ is not a conserved quantity; annihilation
and creation of flux can occur at the axis of symmetry.
Consequently one has only a single invariant K from
which to determine the relaxed state.

On the other hand, the spheromak is a singly-connected
volume, and P A-ds vanishes over any closed path in the
bounding surface. Apart from a gauge transformation
this is equivalent to setting A =0 on the boundary, so
that the only possible solutions of Eq. (6.1) for a
spheromak are eigenfunctions, and the only possible
values for u are the corresponding eigenvalues.

It is therefore much simpler to find the relaxed state in
a spheromak than in a toroidal pinch. There is no need to
select from different types of solution; the relaxed state is
just the eigenfunction corresponding to the smallest eigen-
value of Eq. (6.1). The value of u and the field profiles
are thus determined by the shape of the container alone.
The role of the single invariant K is only to fix the mag-
nitude of the magnetic field, and the toroidal flux v plays
no direct role in determining the relaxed state.

The axisymmetric eigenfunctions for spheromak sys-
tems are easily found. The magnetic field is again ex-
pressed in the form (5.1), and the eigenvalue problem for
a spheromak reduces to

AYX;+uiX; =0 (6.2)

with X; =0 on the boundary. For simple containers the
eigenfunctions can be obtained analytically, and for more
complex shapes they are readily computed.

In a spherical container of radius a, the lowest eigen-
value is given by na=4.49, and the corresponding eigen-
function is

B,=2Bq[j1(up)/uplcosb ,
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B¢,=Boj1(,up)sin0 ’ (63)
d . .
By=—B, dp [pj1(up)]sing ,

where p, 6, ¢ are spherical coordinates and
J1(x)=J3,,(x)/x'/? (Rosenbluth and Bussac, 1979).
In a cylindrical container of height 4 and radius a the
lowest eigenvalue is
= 2
h

2
(for h /a less than a critical value, see below), and the cor-
responding eigenfunction is

B,=—BykJ(lr)cos(kz) ,
B, =BouJ,(Ir)sin(kz) , (6.5)
B,=BkJy(Ir)sin(kz) ,

172
3.83

a

(6.4)

where kh =, la=3.83, and r, ¢, z are cylindrical coordi-
nates (Bondeson et al., 1981; Finn et al., 1981).

The eigenfunctions (6.3) and (6.5) are axisymmetric, but
it is possible that the lowest eigenvalue may be that of a
nonaxisymmetric mode. Whether this is so depends on
the shape of the container. For example, in a cylindrical
container the axisymmetric eigenfunction described above
has the lowest eigenvalue only when 4 /a <1.67. When
h/a>1.67 a nonaxisymmetric mode has a lower eigen-
value, and in this case the relaxed state is nonaxisym-
metric (Bondeson et al., 1981; Finn et al., 1981).

2. Spheromak experiments

Measurements have been made of relaxed-state plasmas
in several spheromak experiments. Some of the data from
the Beta-II experiment (which has a roughly cylindrical
flux conserver with h/a~1) are illustrated in Fig. 18
(Turner et al., 1983). This shows the measured poloidal
and toroidal fields, together with the theoretical profiles
for the relaxed state given by Eq. (6.5). The agreement is
very satisfactory, particularly in view of the complex way
in which the plasma is formed. It should also be noted
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FIG. 18. Magnetic field in BETA II spheromak. Experiment
and theory: (a) poloidal field; (b) toroidal field (from Turner
et al., 1983).

that the field profiles retained their form, while the ener-
gy in the discharge decayed to about one-eighth of its ini-
tial value. Furthermore, except for a cutoff when the
volt-seconds are too low or the magnetic flux in the gun
too high, the initial magnetic flux in the initial relaxed
state was proportional to the square root of the helicity
produced by the gun—as required by the theory.

Confirmation that u(=j-B/B?) is uniform in the re-
laxed state of a spheromak is provided by Fig. 19 (Hart
et al., 1985). This shows the poloidal current versus po-
loidal flux in the S-1 experiment (which has an ellipsoidal
plasma). Not only do the observations lie on a straight
line, corresponding to uniform u, but the slope of the line
also agrees well with the calculated value of pa. A more
detailed picture of u is given in Fig. 20, which shows the
profile before and after relaxation, as well as the theoreti-
cal value.

The most striking feature of S-1, however, occurs dur-
ing relaxation itself (Janos et al., 1985a,1985b). Figure
21 shows the evolution of the poloidal and toroidal fluxes,
and of g on the magnetic axis during the relaxation phase.
This indicates that during relaxation g rises rapidly from
its initial very small value to its theoretical predicted
value (0.65 for the ellipsoidal configuration of the S-1
plasma). This development is accompanied by destruc-
tion of poloidal flux and the spontaneous creation of
toroidal flux in a very short time compared with the resis-
tive decay time. Furthermore, following relaxation, ¢
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FIG. 19. Poloidal current vs poloidal flux in S-1 spheromak
(from Hart et al., 1985).

remains constant during the resistive decay of the plasma,
demonstrating the persistence of the relaxed configura-
tion.

B. Flux-core spheromak (FCS)

An interesting development of the spheromak is a con-
figuration obtained from it by introducing a central core
of externally produced magnetic flux along the axis of
symmetry (Fig. 22). This externally linked flux enters
through one polar cap and leaves through the other. [Of
course the actual boundary may again depart significantly
from the spherical form. See Jensen and Chu
(1981,1983).] Although the FCS may appear to resemble
a toroidal pinch, it is in fact completely different. Unlike
the toroidal pinch, it has only plasma in the central core,
not a fixed conductor; consequently, as in the simple
spheromak, the toroidal flux is not a conserved quantity.

8
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FIG. 20. Measured profile of u(7) in S-1 spheromak (from Hart
et al., 1985).
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FIG. 22. Flux-core spheromak. Schematic.

1. Relative helicity

In the FCS configuration the plasma container is not a
flux surface, and we have already noted that in this event
the helicity K is not well defined. A modification of the
definition of helicity is therefore needed to deal with the
flux-core spheromak and similar systems.

One method (Berger and Field, 1984) is to imagine that
the flux leaving and entering the boundary is extended
outside as a vacuum field (VXB=0). Then the total heli-
city f A B inside and outside the sphere is a well-defined
quantity. Furthermore, if the bounding surface of the
sphere is perfectly conducting, the normal component of
B is “frozen in” so that changes in the interior field do
not affect the hypothetical field outside. We may then
consider the difference in helicity of two fields, which
differ inside the spheromak but have identical normal
field components on the boundary and hence identical hy-
pothetical extension fields outside. This difference, the
relative helicity of the two configurations, is well defined
and gauge invariant. (Note that it is necessary to include
the contributions to f A-B from both the interior and
exterior regions, even though the exterior field does not
change. This reflects the fact that helicity is not a local
quantity and can be transferred, within a flux surface,
from the interior to the exterior of the container by a
gauge transformation.)
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Of course, to make use of the relative helicity Kz we
must show that it is invariant during relaxation. A
straightforward calculation gives

dKg
dt

The hypothetical exterior magnetic field is constant dur-
ing relaxation, so VXE=0. Thus E=Vg, where ¢ is a
single-valued function and

dKg
dt

When the bounding surface is equipotential, ¢ is constant
over it, and the surface integral vanishes. The interior in-
tegral is the usual one for any system and is negligible on
the relaxation time scale for a highly conducting plasma
(E| ~0). Consequently Ky is indeed invariant during re-
laxation. ‘ _

Equation (6.7) also shows that helicity may be injected
or extracted from the FCS if one of the polar caps is elec-
trically insulated and maintained at a different potential
from the other. Then helicity is changed at a rate (Tay-
lor, 1975,1976; Jensen and Chu, 1984)

dKx
dt

where V), is the voltage between the polar caps and ¢, is
the flux through them. This provides another method of
sustaining a relaxed state against resistive decay. [It also
describes the production of helicity in plasma guns
(Turner et al., 1983), referred to in Sec. VI.A.2 above.]

E-Bdr. (6.6)

exterior

=2  E-Bdr+2
interior

=2[ _ EB+2§ ¢B-ds. 6.7)

=2V, v, , (6.8)

2. Relaxed states

The relaxed state of a flux-core system is obtained by
minimizing the energy subject to Kz being invariant and
with the boundary condition that the normal component
of B be constant. Once again this leads to the equation
for relaxed states,

VXB=uB, (6.9)

but for the new system a new interpretation is needed.
Before discussing this we should remark that by neglect-
ing all other helicity constraints of the type K(a,f3)
=const we are implying that in the flux-core spheromak
turbulence can produce linking between flux lines that
thread the polar caps and those that do not, i.e., the
separatrix between the externally linked flux and the
internal flux is not preserved during turbulence.

For a flux-core system, one interpretation of Eq. (6.9)
closely resembles that for toroidal systems (Sec. III). This
is applicable when the plasma relaxes from an initial state
with given helicity Ky and given flux ¢, through the po-
lar caps. Then the value of u is determined by the ratio
Kr /1/:12, (in rather the same way as the symmetric state of
a toroidal pinch is determined by K /4?), and the magni-
tude of the field is determined by ,, so that the relaxed
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state is fully determined by the two invariants K and Yp-
This interpretation assumes that the polar caps can sup-
ply whatever current is required in the relaxed state; if
they cannot do so, the resulting voltage drop would
reduce the helicity until the relaxed state corresponded to
the current available.

The fact that voltages on the polar caps can change the
helicity leads to a second interpretation of Eq. (6.9) for
the FCS systems. If one of the polar caps, say that in
which B, >0, is electrically insulated from the rest of the
container (e.g., by a thin annular gap) and connected to a
suitable circuit, then u can be controlled by the current 1,
through it; u=1,/1,. (The magnitude of the field is still
determined by the polar-cap flux ¢,.) This view of Eq.
(6.9) describes a steady-state FCS in which initial condi-
tions are no longer significant. The helicity Kz is not
then independently specified, but reaches the value re-
quired to conform with pu—through a balance between
helicity injection (or extraction) and resistive dissipation.

A computed field profile for a spherical FCS system is
shown in Fig. 23 (Taylor and Turner, 1985). Analytic
solutions for an idealization in which the polar caps are
shrunk to polar points (though retaining finite flux
through them) are shown in Fig. 24 (Turner, 1984). This
illustrates some interesting changes that occur in the FCS
configuration as the ratio 1, /¢,, and ‘hence u, is in-
creased. When [I,/v, is much smaller than the lowest
eigenvalue for the configuration (u, =4.49/a), the exter-
nally linked flux (and current) forms a large part of the
total flux (and current) in the system. As I,/, ap-

T
I

FIG. 23. Computed field in flux-core spheromak. pa =4.09.
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FIG. 24. Field in idealized flux-core spheromak at various values of pa: (a) pa =0.001; (b) pa =2.25; (c) pa =2.70; (d) pa =3.00; (e)

pa=4.00; (f) pa =4.14; (g) pa =5.00 (from Turner, 1984).

proaches the eigenvalue y;, the ratio of self-generated flux
(and current) to the externally linked flux (and current)
increases indefinitely, and the externally linked flux is
confined to a slim pencil along the axis of the plasma—
which otherwise is identical to that in a simple
spheromak. As I, /v, increases beyond u,, the configura-
tion switches to one in which the externally linked flux
passes around the outside of the spheromak. [However,
one would not expect this to be a true lowest-energy state
(see Secs. VII and IX).]

The ratio of the self-generated poloidal flux to the
externally linked flux defines a flux magnification ratio
M () which could be used to characterize FCS experi-
ments in somewhat the same way as F(6) (the toroidal
field ratio) is used to characterize RFP experiments.

3. Experiments

Flux-cored configurations have been produced in the
PS-1 experiment (Bruhns et al., 1983) and in the CTX ex-
periment (Jarboe et al., 1983; Jarboe, 1985a). The latter
experiment is particularly interesting, as it has also
demonstrated the sustainment of the spheromak plasma
by a voltage across the polar caps—though in a much dis-
torted form. A schematic diagram of the configuration
of the sustained plasma in the CTX experiment is shown
in Fig. 25. It can be seen that there is a core of flux
(shown by hatched lines), which passes from the inner
electrode of the gun, along the axis of the spheromak
plasma, and returns around it to the outer gun electrode.
From the point of view of the plasma the gun voltage
therefore appears across the flux core—though the “polar
caps” are somewhat distant. The configuration shown
has been sustained by the gun voltage for much longer
than the normal resistive decay time of the magnetic
fields.

Recognition that near-relaxed-state plasmas can be
maintained in this way has opened up new possibilities
and led to the investigation of configurations in which the
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source of helicity is still more distant from the plasma
containment region (Barnes et al., 1985; Jarboe, 1985b;
Platts et al., 1985; Wright et al., 1985). An example is
shown schematically in Fig. 26. A remarkable feature of
these experiments is that not only was a spheromak plas-
ma successfully created in the flux conserver, but the
plasma in the connecting tube between flux conserver and
source also showed the characteristics of the helical
m =1, ka =1.25 relaxed state in a cylinder.

VIl. STABILITY OF RELAXED STATES

It is clear that, because they are states of minimum en-
ergy, all relaxed states are stable against perturbations
that leave helicity invariant. This includes all ideal mag-
netohydrodynamic perturbations.

The stability of the relaxed states was verified directly
(Taylor, 1974b; see also Schmidt, 1966; Kruger,
1976a,1976b) by considering the second variation of mag-

Confinement region

Coaxial source Entrance

region

-

FIG. 25. Sustained configuration in CTX experiment (from
Jarboe, 1985a,1985b).
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FIG. 26. Experiment with remote helicity injection (from Jar-
boe, 1985a,1985b).

netic energy, produced by a perturbation § A about the
equilibrium relaxed state,

5W2=%f(VXSA)ZdT—%f(SA-VXBAdT. (7.1)

If we use the normalization
+ [ (vx8A)dr=1 (7.2)

and the boundary condition § A =0, then the minimizing
perturbation satisfies

VXVXSA—(—I%VXSA=O. (7.3)

The corresponding perturbation in energy is
W2 )min="5 [ (Vx8AVd7. (7.4)

Comparing Eq. (7.3) with the eigenvalue equation (4.2),
we see that g >0 if u< the lowest eigenvalue for the
problem—as is the case for all minimum-energy relaxed
states—so that 6§ W, > 0.

Since this discussion does not require the fluid displace-
ment £ to be finite, it applies to resistive tearing modes as
well as ideal modes (Taylor, 1976; Rosenbluth and Bus-
sac, 1979). Consequently relaxed states are also stable to
resistive tearing modes. This is illustrated by the result
obtained (in Sec. III) for the large-aspect-ratio circular-
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cross-section toroidal pinch. The point at which the
lowest-energy state ceases to be the axisymmetric configu-
ration occurs at ua =3.11. This is precisely the point at
which the axisymmetric configuration becomes linearly
unstable to a resistive tearing mode (Whiteman, 1962;
Gibson and Whiteman, 1968). [Ideal magnetohydro-
dynamic instability does not arise until pa =3.18 (Vos-
lamber and Callebaut, 1962).]

As one would expect, therefore, the change from the
symmetric relaxed state to the helical relaxed state corre-
sponds to a bifurcation, in which linear stability is
transferred from one relaxed state to the other. However,
it is important to realize that the theory of relaxed states
goes beyond the linear theory. The helical deformation
that occurs is fully determined (by K /4?), and in this
respect the present theory provides a nonlinear description
of the resistive tearing mode (Martin and Taylor, 1974).

VIll. SUMMARY AND CONCLUSIONS

In this paper we have described the concept of plasma
relaxation by reconnection of magnetic lines of force.
This is brought about by plasma turbulence in the pres-
ence of small resistivity and leads to a unique lowest-
energy relaxed state. In this process magnetic helicity
plays a vital role as a unique invariant. We should em-
phasize that, because it is driven by turbulence, this relax-
ation occurs on a much shorter time scale than normal
resistive diffusion, and it is only on this shorter time scale
that the magnetic helicity K is invariant. On the longer
resistive time scale, energy and helicity will both decay
unless deliberately sustained. Resistive decay usually
causes the configuration to evolve away from the fully re-
laxed state, and in that event periodic or continuous
secondary relaxations occur to maintain the profile close
to a relaxed configuration. Similar minor relaxations
must occur when the discharge is sustained by helicity in-
jection. Another feature that should be emphasized is
that relaxation is not a passive decay process. It involves
the self-generation of fields and currents by plasma tur-
bulence.

We have also described the calculation of the relaxed
state in various systems. In all cases it satisfies Eq. (1.8),
but the interpretation of this equation and the manner in
which the appropriate solution is selected depend on the
topology of the system and on the boundary conditions.
Consequently there are several different types of relaxed
state, each with its own distinct characteristics.

In parallel with the theoretical discussion, we have re-
viewed some of the experimental evidence for relaxed
states. Configurations close to those predicted are almost
universally observed in toroidal pinches, in the mul-
tipinch, in spheromaks, and in flux-core systems. [In
tokamaks the disruption phenomena are also an example
of relaxation, in which the theory correctly predicts the
negative voltage spike. A well-known model of sawtooth
oscillations in tokamaks (Kadomtsev, 1975,1977) is also
closely related to relaxation. However, apart from disrup-
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tion and sawtooth oscillation, relaxation does not appear
to play a dominant role in tokamaks. This is presumably
due to the strong toroidal magnetic field and the care tak-
en to avoid instability and turbulence.]

The experiments provide quantitative verification of
the distinct characteristics of the different types of re-
laxed state. These include such features as field reversal
and current saturation in the toroidal pinch, and in a dif-
ferent form in the multipinch, as well as flux annihilation
and generation in the spheromak and flux-core systems.

The remarkable success of the theory gives added im-
petus to investigations of the precise mechanism of relax-
ation and of the associated flux generation—sometimes
called dynamo action. (The mechanism may be different
in different circumstances—only the final state is unique.)
This problem is, of course, part of the notoriously diffi-
cult problem of plasma turbulence. In addition to the nu-
merical simulations referred to in Sec. I.C, several models
of plasma turbulence have been discussed in the literature,
and in some cases these lead to the relaxed state, but the
subject is far from complete. The reader should consult,
for example, Frisch et al. (1975), Moffatt (1978),
Montgomery et al. (1978), Mattheus and Montgomery

(1980a,1980b), Riyopoulos et al. (1982), Turner (1983), _

Ting et al. (1986).

A related question is that of deviations from the fully
relaxed profile. We have mentioned that in the RFP
pu=j-B/B? (which is uniform in a fully relaxed state) falls
off in the vicinity of the wall. This is presumably due to
the high plasma resistivity near the wall, which the relax-
ation mechanism, or dynamo process, is unable fully to
overcome. In investigating this, experiments of the flux-
core-spheromak type seem particularly useful, since one
can control the relaxed state and change from one relaxed
state to another by injecting helicity. Furthermore, by
having two pairs of electrodes instead of a single pair of
polar caps one could maintain a partially relaxed state.
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APPENDIX A: GENERAL THEORY OF RELAXED
STATES

1. Toroidal systems

The theory of relaxed states in a general toroidal system
is similar to that for the large-aspect-ratio system
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described in Sec. III. The general theory has been dis-
cussed by Jensen and Chu (1984), whose description is fol-
lowed in this section, but with some additional new
features. A more mathematical view of some aspects of
this problem can be found in Faber et al. (1982,1985).
In a general toroidal system the relaxed state is found
by minimizing
W=+ [ (VXAPdr (A1)

over all variations 8A of the vector potential that leave
the helicity

Ko= [ A-VXAdr (A2)
invariant. Introducing a Lagrange multiplier leads to

8I= [ BA{(VXVXA—pVxA)dr

-dsS . (A3)

+Psax lvxa— LA

We assume that at the plasma-wall boundary the normal
magnetic field (n-V X A) vanishes. This ensures that the
helicity is gauge invariant (Sec. I.C) and that &8I is also
gauge invariant (i.e., 8I=0 if 8 A=V¢g). If the wall is
perfectly conducting, the condition Ej(wall)=0 implies
that at the boundary 8A, is the gradient of a scalar.
Writing 8A=8A* + Vg where A vanishes at the boun-
dary, we find that the minimization (A3) leads to the
Euler equation

VXVXA—puVxA=0. (A4)

The specification of the relaxed state is completed by the
boundary conditions n-V X A=0 and the given values of
the loop integrals ¢ A-dl and ¢ A-ds.

If we assume that the eigenfunctions of the associated
eigenvalue problem

V><V><a,~=7k,-V><a,- ) (AS)

with boundary condition a; =0, form a complete set then,
following Jensen and Chu (1984), we may write

A=Ap+ > a;a; , (A6)

where A, represents a toroidal vacuum field satisfying
the boundary conditions of the original problem. Note
that an eigenfunction carries no toroidal flux, and in an
axisymmetric system the vacuum toroidal field will also
be axisymmetric.

The eigenfunctions are orthogonal in the sense that

(Ai—2;) [ a;-Vxa;=0 (A7)
and
M [ a-Vxa= [ (Vxa)?>0, - (A8)

so that the appropriate normalization is

Ai
, A'1' |

f a,-~V><aj==faj-V><a,-= Sij . (A9)
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Then, so long as p is not equal to an eigenvalue, the
coefficients a; are given by

,=___Ji___-|_}fi i A10

a; o) M I, ( )
where

L= [ a,-Vx A (A11)

and the important invariant quantity K /¢* can be ex-
pressed as

I?
I

K 1 Ai
—=— | ApVXAp+
NER) f 0 0 2 [ A |

)\’2
—— 1.
(}\i“ﬂ)z ]
(A12)

This expression depends only on the shape of the toroidal
container. It constitutes a relation between K /4* and the
parameter . Note that K /¢? diverges when u—A; un-
less T;=0.

At this point, we depart from Jensen and Chu to recog-
nize that many eigenfunctions may not appear in the ex-
pansion (A6). For example, in an axisymmetric system all
nonaxisymmetric eigenfunctions [ ~exp(ing) with n=£0]
are absent, since for them I;=0. Similarly in the mul-
tipinch, I; also vanishes even for axisymmetric eigenfunc-
tions when these are antisymmetric about the midplane of
the cross section. The eigenfunctions for which I; =0
will be termed decoupled.

With this in mind, we see that in axisymmetric systems
the solution

Ai
A=Ap+> —FE——"1a

Al
Ga—p) 1] (ALY

i

(where 3’ denotes a sum over coupled eigenfunctions
only) represents a solution analogous to the m =0,k =0,
type-(i) solution in the circular-cross-section torus. For
this solution u is determined, through Eq. (A12), by the
value of K /¢? such a solution can always be found for
some value of u in the range A;” <u <A;, where A; is the
largest negative eigenvalue and A;" is the smallest positive
eigenvalue. For a system that has mirror symmetry about
any plane, the eigenvalues occur in pairs, *A;; conse-
quently it is often sufficient to discuss only positive eigen-
values.

When p is equal to one of the decoupled eigenvalues A,
an arbitrary multiple of the corresponding decoupled
eigenfunction can be added to Eq. (A13), and it will
remain a solution of Eq. (A4) satisfying the boundary
conditions. Thus another solution is given by

[ A ] (A —Ay) (A9

A=A+
iskj

I,-a,~ +33.J ’

where the sum is again over coupled eigenfunctions only.
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This solution is valid only for u=A;, and K /¢%, now
given by

;K7= ﬁ [ (AgVx Agdr
}\," Ii2 20 —A; [3)2 A
+ Zi LM BT A

determines the coefficient B. These solutions are analo-
gous to the type-(ii) mixed solutions of the circular plas-
ma.

Noting that the lowest-energy solution is that with the

smallest | | (see below), we can now summarize the gen-
eral relaxed states of axisymmetric systems as follows.

(For simplicity, we consider that u and K are positive and
the expression “lowest eigenfunction” means the one with
the smallest positive eigenvalue.)

If the lowest eigenfunction is decoupled, then there are
two candidates for the lowest-energy relaxed state. The
first exists for a continuous range of u, from zero to the
lowest eigenvalue A,. It is the appropriate solution when
K /4? is small and p is then determined by, and increases
with, K /1/?. The second candidate is a superposition of
the first solution and the lowest eigenfunction. It exists
only for u=A, and is the appropriate solution when
K /¢* is such that u would exceed A, in the first solution.
In this event u is fixed at Ay and is no longer determined
by K /v? instead K /1? determines the amplitude of the
eigenfunction component. In this solution the toroidal
current, at fixed toroidal flux, is independent of volt-
seconds.

As we have noted, in axisymmetric systems the lowest
eigenfunction is usually decoupled and the above descrip-
tion applies. If the lowest eigenfunction is not decoupled,
then only the first solution exists and p is elways deter-
mined by K /1/?>. However, as the lowest eigenvalue is ap-
proached K /1#*— w0, so that even in this situation u can
never exceed the lowest eigenvalue (Jensen and Chu,
1984). In this regard, therefore, there is little distinction
between the behavior of systems whose lowest eigenfunc-
tion is decoupled and those in which it is coupled—
especially if the coupling is weak.

2. Spherical systems

For a general (topologically) spherical system whose
boundary is a flux surface, the relaxed state is again given
by Eq. (A4). However, a spherical system is singly con-
nected, and all loop integrals A-ds are zero. Apart
from a gauge transformation, this is equivalent to A=0
on the boundary, so that the only relaxed states in spheri-
cal systems are the eigenfunctions. The lowest-energy re-
laxed state is just the lowest eigenfunction. Consequently,
as noted in Sec. VI, p and the field profiles are deter-
mined by the shape of the container alone. The invariant
K determines only the magnitude of the field, and there is
no invariant toroidal flux.
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APPENDIX B: LOWEST-ENERGY STATE VERSUS p

In determining the lowest-energy relaxed state there is a
useful relation between the difference in energy of two
states of given helicity and the difference in u for the two
states (Martin and Taylor, 1974; Taylor, 1975; Reimann,
1980,1981; Faber et al., 1982).

Suppose we have two solutions A; and A, (corre-
sponding to w; and u,) of Eq. (A4), which have the same
helicity K and satisfy the same boundary conditions.
Then, apart from a gauge transformation, A;= A, on the
boundary, and one can verify the following identities:

JIVX(A = ADP=(uy+p) [ (A;—A)VXA,,
(B1)
J (VXA — [(Vx A
=(pa—p1) [ (A,—A)DVXA,. (B2

Consequently, if W, and W, denote the energy of the
two solutions,

M f (B,—B,)*

w,—w (B3)
2 YT ot 2
or
2 2
- (B, —By)
Wy—W, = K2 .u\z f 2 1 (B4)
(pa+p1) 2

Hence, if there are two possible relaxed states [i.e., two
solutions of Eq. (A4) with correct helicity], then the
lower-energy one is that with the smaller |pu |.

REFERENCES

Antoni, V., S. Martini, S. Ortolani, and R. Paccagnella, 1983, in
Mirror Based and Field Reversed Approaches to Magnetic
Fusion, proceedings of the International School of Physics
Workshop, edited by R. Post, D. E. Baldwin, and D. D. Ryu-
tov [International School of Plasma Physics, Varenna (Como),
Italy], p. 107.

Aydemir, A. Y., and D. C. Barnes, 1984, Phys. Rev. Lett. 52,
930.

Aydemir, A. Y., D. C. Barnes, E. J. Caramana, A. A. Mirin, R.
A. Nebel, D. D. Schnack, and A. G. Sgro, 1985, Phys. Fluids
28, 898.

Barnes, C. W., H. W. Hoida, 1. Henins, J. C. Fernandez, T. R.
Jarboe, S. O. Knox, G. J. Marklin, and R. M. Mayo, 1985,
Bull. Am. Phys. Soc. 30, 1453.

Berger, M. A., and G. B. Field, 1984, J. Fluid Mech. 147, 133.

Bevir, M., and J. Gray, 1980, in Proceedings of the Reverse Field
Pinch Theory Workshop, edited by H. R. Lewis and R. A.
Gerwin (Los Alamos National Laboratory, Los Alamos, New
Mexico), Session III, paper A-3.

Bhattacharjee, A., and R. L. Dewar, 1982, Phys. Fluids 25, 887.

Bhattacharjee, A., R. L. Dewar, and D. Monticello, 1980, Phys.
Rev. Lett. 45, 347.

Bodin, H. A. B., 1984, in Proceedings of the International
Conference on Plasma Physics, Lausanne, edited by M. Q. Tran
and R. J. Verbeek (EEC, Brussels), Vol. I, p. 417.

Rev. Mod. Phys.; Vol. 58, No. 3, July 1986

Bodin, H. A. B,, and A. A. Newton, 1980, Nucl. Fusion 20,
1255.

Bondeson, A., G. Marklin, Z. G. An, H. H. Chen, Y. C. Lee,
and C. S. Liu, 1981, Phys. Fluids 24, 1682.

Bruhns, H., C. Chin-Fatt, Y. P. Chong, A. W. DeSilva, G. C.
Goldenbaum, H. R. Griem, G. W. Hart, R. A. Hess, J. H.
Irby, and R. S. Shaw, 1983, Phys. Fluids 26, 1616.

Bruhns, H., G. Raupp, K. Sobel, J. Steiger, and A. Weichelt,
1984, in Proceedings of the 6th U.S. Symposium on Compact
Toroid Research, edited by M. Yamada and R. Ellis, Jr.
(Princeton Plasma Physics Laboratory, Princeton, N.J.), p. 25.

Butt, E. P., C. W. Gowers, A. Mohri, A. A. Newton, D. C. Ro-
binson, A. J. L. Verhage, M. R. C. Watts, Li Yin-An, and H.
A. B. Bodin, 1975, Proceedings of the 7th European Conference
on Controlled Fusion and Plasma Physics, Lausanne (Centre de
Recherches en Physique des Plasmas, Lausanne), Vol. I, p. 39.

Caramana, E. J., R. A. Nebel, and D. D. Schnack, 1983, Phys.
Fluids 26, 1305.

Chandrasekhar, S., and P. C. Kendall, 1957, Astrophys. J. 126,
457. )

DiMarco, J. N., 1983, in Mirror Based and Field Reversed Ap-
proaches to Magnetic Fusion, proceedings of the International
School of Plasma Physics Course, edited by R. F. Post, D. E.
Baldwin, and D. D. Ryutov [International School of Plasma
Physics, Varenna (Como), Italy], Vol. I, p. 681.

Edenstrasse, J. W., and W. Schuurman, 1983, Phys. Fluids 26,
500. .

Faber, V., A. B. White, and G. M. Wing, 1982, J. Math. Phys.
23, 1524.

Faber, V., A. B. White, and G. M. Wing, 1985, Plasma Phys.
Cont. Fusion 27, 509.

Finn, J. M., W. M. Mannheimer, and E. Ott, 1981, Phys. Fluids
24, 1336.

Frisch, U., A. Pouquet, J. Léorat, and A. Mazure, 1975, J. Fluid
Mechn. 68, 769.

Furth, H., 1981, J. Vac. Sci. Technol. 18, 1073.

Furth, H., 1985, Phys. Fluids 28, 1595.

Furth, H., J. Killeen, and M. N. Rosenbluth, 1963, Phys. Fluids
6, 459.

Gibson, R. D, and K. Whiteman, 1968, Plasma Phys. 10, 1101.

Goldenbaum, G. C., 1982, Phys. Scr. T2/2, 359.

Goldenbaum, G. C,, J. H. Irby, Y. P. Chong, and G. W. Hart,
1980, Phys. Rev. Lett. 44, 393.

Hameiri, E., and J. H. Hammer, 1982, Phys. Fluids 25, 1855.

Hart, G. W., A. Janos, D. D. Meyerhofer, and M. Yamada,
1985, Phys. Fluids (in press).

Hasegawa, A., 1985, Adv. Phys. 34, 1.

Heyvaerts, J., and E. R. Priest, 1984, Astron. Astrophys. 137,
63.

Janos, A., G. W. Hart, C. H. Nam, and M. Yamada, 1985b,
Phys. Fluids 28, 3667.

Janos, A., G. W. Hart, and M. Yamada, 1985a, Phys. Rev. Lett.
55, 2868.

Jarboe, T. R., 1985a, Comments Plasma Phys. 9, 161.

Jarboe, T. R., 1985b, Bull. Am. Phys. Soc. 30, 1408.

Jarboe, T. R., Cris W. Barnes, 1. Henins, H. W. Hoida, S. O.
Knox, R. K. Linford, and A. R. Sherwood, 1984, Phys. Fluids
27, 13.

Jarboe, T. R., I. Henins, H. W. Hoida, R. K. Linford, J.
Marshall, D. A. Platts, and A. R. Sherwood, 1980, Phys. Rev.
Lett. 45, 1264.

Jarboe, T. R., I. Henins, A. R. Sherwood, Cris W. Barnes, and
H. W. Hoida, 1983, Phys. Rev. Lett. 51, 39.

Jensen, T., and M. S. Chu, 1981, J. Plasma Phys. 25, 459.



762 J. B. Taylor: Relaxation and magnetic reconnection

Jensen, T., and M. S. Chu, 1983, in Proceedings of the 5th Sym-
posium on Physics and Technology of Compact Toroids, edited
by A. L. Hoffman and R. D. Milroy (Mathematical Sciences
Northwest Inc.), pp. 174—177.

Jensen, T., and M. S. Chu, 1984, Phys. Fluids 27, 2881.

Kadomtsev, B. B., 1975, Fiz. Plazmy 1, 710 [Sov. J. Plasma
Phys. 1, 389 (1975)].

Kadomtsev, B. B., 1977, Plasma Physics and Controlled Nuclear
Fusion Research 1976, Proceedings of the 6th International
Conference, Berchtesgaden, 1976 (IAEA, Vienna), Vol. I, p.
555. :

Katsurai et al., 1984, Proceedings of the 6th US-Japan Compact
Toroid Symposium (Hiroshima University, Hiroshima, Japan).
Kawai, K., and A. A. Pietrzyk, 1981, Bull. Am. Phys. Soc. 26,

905.

Kondoh, Y., 1981, Nucl. Fusion 21, 1607.

Konigl, A., and A. R. Choudhuri, 1985, Astrophys. J. 289, 173.

Kruger, J., 19764, J. Plasma Phys. 15, 15.

Kriger, J., 1976b, J. Plasma Phys. 15, 31.

Kruskal, M. D., and R. M. Kulsrud, 1958, Phys. Fluids 1, 265.

La Haye, R. J., T. H. Jensen, P. S. C. Lee, R. W. Moore, and T.
Ohkawa, 1986, Nucl. Fusion 26, 255.

La Haye, R. J,, P. S. C. Lee, R. W. Moore, and T. Ohkawa,
1984, Bull. Am. Phys. Soc. 29, 1331.

Mannheimer, W., 1981, Phys. Fluids 24, 986.

Martin, T. J., and J. B. Taylor, 1974, “Helically Deformed
States in Toroidal Pinches,” Culham Laboratory report (un-
published).

Mattheus, W. H., and D. C. Montgomery, 1980a, in Proceedings
of the Reverse Field Pinch Theory Workshop, edited by H. R.
Lewis and R. A. Gerwin (Los Alamos National Laboratory,
Los Alamos, New Mexico), Session V, paper A-5.

Mattheus, W. H., and D. C. Montgomery, 1980b, Ann. N.Y.
Acad. Sci. 357, 203.

Moffatt, H. K., 1978, Magnetic Field Generation in Electri-
cally Conducting Fluids (Cambridge University Press,
Cambridge/London/New York).

Montgomery, D., L. Turner, and G. Vahala, 1978, Phys. Fluids
21, 757.

Nagata, M., Y. Honda, K. Ikegami, M. Nishikawa, A. Ozaki,
N. Satomi, T. Uyama, and K. Watanabe, 1985, Plasma Physics
and Controlled Nuclear Fusion Research, 1984, Proceedings of
‘the 10th International Conference, London, 1984 (IAEA, Vien-
na), Vol. II, p. 655.

Newton, A. A., 1985, private communication.

Nogi, Y., H. Ogura, Y. Osanai, K. Saito, S. Shiina, and H.
Yoshimura, 1980, J. Phys. Soc. Jpn. 49, 710.

Ohkawa, T., M. Chu, C. Chu, and M. Schaffer, 1980, Nucl.
Fusion 20, 1464.

Ortolani, S., 1984, in Twenty Years of Plasma Physics, Proceed-
ings of the ICTP Trieste Meeting, edited by B. McNamara
(World Scientific, Philadelphia/Singapore), p. 75.

Ortolani, S., and G. Rostagni, 1983, Nucl. Instrum. Methods
207, 35.

Parker, E. N., 1957, J. Geophys. Res. 62, 509.

Petschek, H. E., 1965, in AAS-NASA Symposium on the Physics
of Solar Flares, edited by W. N. Hess (NASA, Washington,
D.C.), NASA SP-50, p. 425.

Platts, D. A., J. C. Fernandez, T. R. Jarboe, and B. L. Wright,
1985, Bull. Am. Phys. Soc. 30, 1454.

Reiman, A., 1980, Phys. Fluids 23, 230.

Reiman, A., 1981, Phys. Fluids 24, 956.

Riyopoulos, S., A. Bondeson, and D. Montgomery, 1982, Phys.
Fluids 25, 107.

Rev. Mod. Phys., Vol. 58, No. 3, July 1986

Rosenbluth, M. N;, and M. N. Bussac, 1979, Nucl. Fusion 19,
489.

Rusbridge, M. G., 1977, Plasma Phys. 19, 499.

Rusbridge, M. G., 1982, Nucl. Fusion 22, 1291.

Sato, T., and K. Kusano, 1985, Plasma Physics and Controlled
Nuclear Fusion Research 1984, Proceedings of the 10th Inter-
national Conference, London, 1984 (IAEA, Vienna), Vol. II, p-
461.

Schmidt, G., 1966, Physics of High Temperature Plasmas
(Academic, New York).

Sweet, P. A., 1958, in Electromagnetic Phenomena in Cosmical
Physics, IAU Symposium No. 6, edited by B. Lehnert (Cam-
bridge University Press, Cambridge), p. 123.

Sykes, A., and J. A. Wesson, 1977, Proceedings of the 8th Euro-
pean Conference on Controlled Fusion and Plasma Physics,
Prague (Czechoslovak Academy of Sciences, Prague), Vol. 1, p.
80.

Tamano, T., T. Carlstrom, C. Chu, R. Goforth, G. Jackson, R.
La Haye, T. Ohkawa, M. Schaffer, and P. Taylor, 1983, in
Mirror Based and Field Reversed Approaches to Magnetic
Fusion, proceedings of the International School of Plasma
Physics Course, edited by R. F. Post, D. E. Baldwin, and D.
D. Ryutov [International School of Plasma Physics, Varenna
(Como), Italy], Vol. II, p. 653.

Tamaru, T., K. Sugisaki, K. Hayase, T. Shimada, Y. Hirano, Y.
Maejima, K. Ogawa, K. Hirano, S. Kitagawa, K. Sato, M.
Wakatani, S. Yamada, H. Arimoto, Y. Kita, S. Yamaguchi, A.
Nagata, S. Ido, and I. Kawakami, 1979, Plasma Physics and
Controlled Nuclear Fusion Research, 1978, Proceedings of the
7th International Conference, Innsbruck, 1978 (IAEA, Vienna),
Vol. II, pp. 55—68.

Taylor, J. B., 1974a, Phys. Rev. Lett. 33, 1139.

Taylor, J. B., 1974b, unpublished.

Taylor, J. B., 1975, Plasma Physics and Controlled Nuclear
Fusion Research, 1974, Proceedings of the 5th International
Conference, Tokyo, 1974 (IAEA, Vienna), Vol. I, p. 161.

Taylor, J. B., 1976, in Pulsed High Beta Plasmas, Proceedings of
the Third Topical Conference, Abingdon, 1975, edited by D. E.
Evans (Pergamon, Oxford/New York), p. 59.

Taylor, J. B., 1980, in Proceedings of the Reverse Field Pinch
Theory Workshop, edited by H. R. Lewis and R. A. Gerwin
(Los Alamos National Laboratory, Los Alamos, New Mexico),
Session V, paper A-1.

Taylor, J. B., and M. F. Turner, 1985, unpublished.

Ting, A. C., W. H. Matthews, and D. Montgomery, 1986, Phys.
Fluids (in press).

Toyama, H., N. Asakura, K. Hattori, N. Inoue, S. Ishida, S.
Matsuzuka, K. Miyamoto, J. Morikawa, Y. Nagayama, H.
Nihei, S. Shinohara, Y. Ueda, K. Yamagishi, and Z. Yoshida,
1985, in Proceedings of the 12th European Conference on Con-
trolled Fusion and Plasma Physics, Budapest, edited by L. Pocs
and A. Montvai (European Physical Society, Geneva), Vol. I,
p. 602.

Turner, L., 1983, Ann. Phys. (N.Y.) 149, 58.

Turner, L., 1984, Phys. Fluids 27, 1677.

Turner, L., and J. P. Christiansen, 1981, Phys. Fluids 24, 893.

Turner, W. C., G. C. Goldenbaum, E. H. A. Granneman, J. H.
Hammer, C. W. Hartman, D. S. Prono, and J. Taska, 1983,
Phys. Fluids 26, 1965.

Turner, W. C,, E. H. A. Granneman, C. W. Hartman, D. S.
Prono, J. Taska, and A. C. Smith, Jr., 1981, J. Appl. Phys. 52,
175.

Vasyliunas, V. M., 1975, Rev. Geophys. Space Phys. 13, 303.

Verhage, A. J. L., A. S. Furzer, and D. C. Robinson, 1978,



J. B. Taylor: Relaxation and magnetic reconnection 763

Nucl. Fusion 18, 457.

Voslamber, D., and D. K. Callebaut, 1962, Phys. Rev. 128,
2016.

Watt, R. G., and R. A. Nebel, 1983, Phys. Fluids 26, 1168.

Watt, R. G., J. A. Phillips, and A. A. Newton, 1985, private
communication.

Wells, D. R, and J. Norwood, 1969, J. Plasma Phys. 3, 21.

White, R. B., 1983, Handbook of Plasma Physics (North-
Holland, Amsterdam).

Whiteman, K., 1962, Plasma Phys. 7, 293.

Woltjer, L., 1958, Proc. Natl. Acad. Sci. U.S.A. 44, 489.

Rev. Mod. Phys., Vol. 58, No. 3, July 1986

Wright, B. L., J. C. Fernandez, T. R. Jarboe, and D. A. Platts,
1985, Bull. Am. Phys. Soc. 30, 1454.

Yamada, M., R. Ellis, Jr.,, H. P. Furth, G. Hart, A. Janos, S.
Jardin, F. Levinton, D. Meyerhofer, M. Mimura, C. H. Nam,
S. Paul, A. Sperduti, S. Von Goeler, F. Wysocki, and P.
Young, 1985, Plasma Physics and Controlled Nuclear Fusion
Research, 1984, Proceedings of the 10th International Confer-
ence, London, 1984 (IAEA, Vienna), Vol. 2., p. 535.

Yamada, M., H. P. Furth, W. Hsu, A. Janos, S. Jardin, M. Oka-
bayashi, J. Sinnis, T. H. Stix, and K. Yamazaki, 1981, Phys.
Rev. Lett. 46, 188.



