Q 1 revolution $=2 \pi \mathrm{rad}$

$$
s t=\frac{2 \pi}{3}=2.15
$$

(2) $\left|\alpha_{a v}\right|=\left|\frac{\omega_{2}-w_{1}}{t_{2}-t_{1}}\right|=\left|\frac{0-12(2 \pi)}{6}\right|=4 \pi \frac{\mathrm{rab}}{s^{2}}$
(3)

$$
\begin{aligned}
& \alpha=\frac{d \omega}{d t}=0.64-5.4 t \\
& \Rightarrow \alpha(2)=0.64-5.4(2)=-10 \frac{\mathrm{rad}}{\mathrm{~s}^{2}}
\end{aligned}
$$

(4) $\omega^{2}=\omega_{0}^{2}+2 \alpha\left(\theta-\theta_{0}\right)=\omega_{0}^{2}+2 \alpha \Delta \theta$

$$
x \Delta \theta=\frac{\omega^{2}-\omega_{0}^{2}}{2 \alpha}=\frac{0-(c 8)^{2}}{2(-2)}=81 \mathrm{rad}
$$

(5) Parallel axis theorem

$$
I=I+M R^{2}=\frac{1}{2} M R^{2}+M K^{2}
$$

$$
=\frac{3}{2} \pi K^{2}
$$

(6)

$$
T=m a
$$

$$
\begin{aligned}
& \tau=I \alpha=\frac{I a}{R_{2}} \\
& \Rightarrow F R_{1}-T R_{2}=I a / R_{2} \\
& F R_{1}-m a R_{2}=\frac{I a}{R_{2}} \\
& \Rightarrow a=\frac{F R_{1} R_{2}}{I+m R_{2}^{2}}
\end{aligned}
$$

θ

$$
\begin{aligned}
& W=\frac{1}{2} I w f^{2}-\frac{1}{2} I w_{i}^{2} \\
& w_{c}^{\prime}=0 \\
& \omega f=w_{i}+\alpha t=2 \cdot 5=10 \mathrm{rad} \\
& \rightarrow W=\frac{1}{i}(6)(10)^{2}=300 \mathrm{f}
\end{aligned}
$$

(S)

$$
\begin{aligned}
\omega & =\tau\left(\theta_{f}-\theta_{i}\right) \\
& =260(25.2 \pi)=4.1 \times \omega^{4} \gamma
\end{aligned}
$$

