(1) Conservation of momentum
\rightarrow center of mans remains stationary

$$
\begin{aligned}
x_{c m} & =\frac{m h x h+m b x b}{m h+m b}=\frac{w h \times h+w b \times b}{w h+w b} \\
& =\frac{20.3200}{3200+640}=16.7 \mathrm{~m}
\end{aligned}
$$

\Rightarrow Bear will move $20-16.77=33 \mathrm{~m}$
(2) 1

From symmetry, it hastobe B
(3) Conservation of moment am in x-direction

$$
\begin{aligned}
& \Omega m_{b} V_{b x}+m_{w} V_{w x}=\text { constant }=0 \\
& \Omega V_{w x}=-\frac{m b}{m_{w}} U_{b x}=-\frac{5}{c s} b=-3 \mathrm{~m} / \mathrm{s}
\end{aligned}
$$

(4)

$$
\begin{aligned}
& V=v_{0}+g t=g t \\
& \Rightarrow p=m v=m g t=q \delta \frac{\lg m}{s}
\end{aligned}
$$

(5) For collision, $\hat{p}=$ conserved

$$
m=\text { muss of bullet }
$$

$$
M=\text { mass of bloch }
$$

$v=$ velority of butfer
$\tilde{v}=$ velority of bloch + balley

$$
\text { I } m v=(m+M) \widetilde{v}
$$

Consercation of eneryy

$$
\begin{aligned}
& \frac{1}{2}(m+M) \tilde{v}^{2}=(m+M) g h \\
& \widetilde{v}=\sqrt{2 g h} \\
\rightarrow & v=\frac{m+M}{m} \tilde{v}=\frac{m+M}{m} \sqrt{2 g h}
\end{aligned}
$$

$$
=\delta o \delta \mathrm{~m} / \mathrm{s}
$$

(6) Conservetion of monentun

$$
\begin{aligned}
& m_{r} v_{r}=\left(m_{r}+m_{c}\right) v \\
& m_{v}=\frac{m_{r}}{m_{r}+m_{c}} v_{r}=\frac{2000}{500+2000} \cdot 3
\end{aligned}
$$

$\theta \quad p_{i}=p t$

$$
\begin{aligned}
& \Rightarrow m_{A} V_{A}-m_{B} V_{B}=\left(m_{A}+m_{B}\right) V \\
& \Rightarrow V=\frac{m_{A} V_{A}+m_{B} V_{B}}{m_{A}+m_{B}}=0 \frac{m}{\mathrm{~s}}
\end{aligned}
$$

Eneryy lort:

$$
\begin{aligned}
K_{c}-K+ & =\frac{1}{2} m_{A} l_{B}^{2}+\frac{1}{2} m_{A} \cup_{A}^{2} \\
& -\frac{1}{2}\left(m_{A}+m_{B}\right) U^{2} \\
& =K_{i}=3750 \mathrm{M}
\end{aligned}
$$

(f) Genter otmussor con hoe cannot move sone

$$
\bar{F}_{n_{0}} t=0
$$

Before

$$
\begin{aligned}
x_{c m}=\frac{m_{c} x_{c}+m_{w} x_{w}}{m_{c}+m_{w}} & =\frac{60(2.5)+45 / 4)}{105} \\
= & 3.14 \mathrm{~m}
\end{aligned}
$$

After

$$
\tilde{x}_{c m}=\frac{m_{c} \widetilde{x_{c}}+m_{w} \tilde{x_{w}}}{m_{c}+m_{w}}=3.14 \mathrm{~m}
$$

Also $\quad \tilde{x}_{c}-\tilde{x}_{\omega}=1.5 m+\tilde{x}_{\omega}=\tilde{x}_{c}-1.5$

$$
\begin{aligned}
& \Rightarrow m_{c} \tilde{x}_{c}+m_{\omega}\left(\tilde{x}_{c}-1.5\right)=\left(m_{c}+m_{\omega}\right) 3.14 \\
& \Longrightarrow \tilde{x}_{c}=\frac{\left(m_{c}+m_{\omega}\right) 3.14+1.5 \mathrm{~m} \mathrm{\omega}}{m c+m_{\omega}} \\
& =3.14+0.64=3.78 \mathrm{~m}
\end{aligned}
$$

A Lave han moved 3.78-2.5

$$
=1.28 \mathrm{~m}
$$

