(a)

$$
\begin{aligned}
& \Delta u_{g}=m g\left(y_{2}-y_{1}\right)=m g \Delta y \\
& \Rightarrow \Delta y=\frac{\Delta U_{g}}{m g}=\frac{500}{2 \cdot(9.8)}=26 \mathrm{~m} \\
& \Rightarrow \text { height }=26+20=46 \mathrm{~m}
\end{aligned}
$$

(2)

$$
\begin{aligned}
& U_{1}+K_{1}=U_{2}+K_{2} \\
& \left.u_{1}=u_{1}\right)=10 J \\
& K_{1}=\frac{1}{2} m v^{2}=\frac{1}{2}(0.2) 25=2.5 \mathrm{~J} \\
& u_{2}=u_{01}=0 \\
& A K_{2}=U_{1}+K_{1}=12.5 \\
& \Rightarrow v_{2}=\sqrt{\frac{2(12.5)}{0.2}}=11 \mathrm{~m} / \mathrm{s}
\end{aligned}
$$

(3)

$$
\begin{aligned}
& l l_{1}+K_{1}=U_{2}+K_{2} \\
& m g y_{1}+K_{1}=m g y_{2}+0 \\
& \rightarrow K_{1}=m g\left(y_{2}-y_{1}\right)=m g h
\end{aligned}
$$

(9)

$$
\begin{aligned}
u_{1}+K_{1} & =u_{2}+K_{2} \\
m y_{1}+0 & =m y_{2}+\frac{1}{2} V_{2}^{2} \\
\Rightarrow V_{2} & =\sqrt{2 g\left(y_{1}-y_{2}\right)} \\
& =\sqrt{2(q .8) 1.85}=6 \mathrm{~m} / \mathrm{s}
\end{aligned}
$$

(5)

$$
\begin{aligned}
u_{1}+k_{1} & =u_{2}+k_{2} \\
i^{1} h x^{2}+0 & =0+k_{2} \\
-1 K_{2} & =\frac{1}{2}(20)(0.07)^{2}=4.4 \times 100 \gamma
\end{aligned}
$$

(6)

$$
\begin{aligned}
& U_{1}+K_{1}+W_{0} \text { ther }=U_{2}+K_{\lambda} \\
& m y g_{1}+0-\mathcal{F h s}^{\prime}=m g_{2}+K_{2} \\
& \triangle \Delta E=-\mathcal{F} h s=-\mu h N_{s} \\
& =-\mu h(m y \cos \theta) s \\
& =-0.25(2.2(y .8) \cos 25)_{2}=-9.8 \mathrm{~g}
\end{aligned}
$$

(7)

$$
\begin{aligned}
u_{1}+k_{1} & =u_{2}+k_{2} \\
\frac{1}{2} h x_{1}^{2}+0 & =\frac{1}{2} k x_{2}^{2}+\frac{1}{2} m v_{2}^{2} \\
\Rightarrow v_{2} & =\sqrt{\frac{h\left(x_{1}^{2}-x_{2}^{2}\right)}{m}}
\end{aligned}
$$

(8)

$$
\begin{aligned}
& \Longrightarrow \quad v_{2}=V \frac{u\left(x_{1}-x_{2}\right)}{m} \\
& =\sqrt{\frac{10\left(0.051^{2}-(0.01)^{2}\right)}{0.006}} \\
& =2 \frac{m}{s} \\
& a_{1}+k_{1}=U_{2}+k_{2} \\
& 1=\text { bottom } \\
& 2=\operatorname{top} \\
& \text { At top } \quad F_{c}=m g \\
& \Rightarrow \frac{m \nu_{2}^{2}}{R}=m y+{v_{2}^{2}}^{2}=g R \\
& m g y_{1}+\frac{1}{2} m v_{1}^{2}=m g y_{2}+\frac{1}{2} m v_{2}{ }^{2} \\
& \Rightarrow u_{1}=\sqrt{2 g\left(y z-y_{1}\right)+v_{2}^{2}} \\
& =\sqrt{2 g}(2 R)+g R=\sqrt{5 g R}
\end{aligned}
$$

