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Chapter 8 
 

 

1. THINK A compressed spring stores potential energy. This exercise explores the 

relationship between the energy stored and the spring constant.   

 

EXPRESS The potential energy stored by the spring is given by 2 / 2,U kx  where k is 

the spring constant and x is the displacement of the end of the spring from its position 

when the spring is in equilibrium. Thus, the spring constant is 22 /k U x . 

 

ANALYZE Substituting 25 JU   and 7.5 m 0.075 cmx    into the above 

expression, we find the spring constant to be 

 

 3

2 2

2 2(25 J)
8.9 10 N/m.

(0.075 m)

U
k

x
     

 

LEARN The spring constant k has units N/m. The quantity provides a measure of 

stiffness of the spring, for a given x, the greater the value of k, the greater the potential 

energy U.   

 

2. We use Eq. 7-12 for Wg and Eq. 8-9 for U. 

 

(a) The displacement between the initial point and A is horizontal, so  = 90.0° and 

0gW  (since cos 90.0° = 0). 

 

(b) The displacement between the initial point and B has a vertical component of h/2 

downward (same direction as 

Fg ), so we obtain  

 

 2 51 1
(825 kg)(9.80 m/s )(42.0 m) 1.70 10  J

2 2
g gW F d mgh      . 

 

(c) The displacement between the initial point and C has a vertical component of h 

downward (same direction as 

Fg ), so we obtain  

 
2 5(825 kg)(9.80 m/s )(42.0 m) 3.40 10  Jg gW F d mgh      . 

 

(d) With the reference position at C, we obtain  

 

2 51 1
(825 kg)(9.80 m/s )(42.0 m) 1.70 10  J

2 2
BU mgh    . 
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(e) Similarly, we find  

 
2 5(825 kg)(9.80 m/s )(42.0 m) 3.40 10  JAU mgh    . 

 

(f) All the answers are proportional to the mass of the object. If the mass is doubled, all 

answers are doubled. 

 

3. (a) Noting that the vertical displacement is 10.0 m – 1.50 m = 8.50 m downward (same 

direction as 

Fg ), Eq. 7-12 yields  

 

 2cos (2.00 kg)(9.80 m/s )(8.50 m)cos0 167 J.gW mgd      

 

(b) One approach (which is fairly trivial) is to use Eq. 8-1, but we feel it is instructive to 

instead calculate this as U where U = mgy (with upward understood to be the +y 

direction). The result is  

 
2( ) (2.00 kg)(9.80 m/s )(1.50 m 10.0 m) 167 J.f iU mg y y        

 

(c) In part (b) we used the fact that Ui = mgyi =196 J. 

 

(d) In part (b), we also used the fact Uf = mgyf = 29 J. 

 

(e) The computation of Wg does not use the new information (that U = 100 J at the 

ground), so we again obtain Wg = 167 J. 

 

(f) As a result of Eq. 8-1, we must again find U = –Wg = –167 J. 

 

(g) With this new information (that U0 = 100 J where y = 0) we have  

 

Ui = mgyi + U0 = 296 J. 

 

(h) With this new information (that U0 = 100 J where y = 0) we have  

 

Uf = mgyf + U0 = 129 J. 

 

We can check part (f) by subtracting the new Ui from this result. 

 

4. (a) The only force that does work on the ball is the force of gravity; the force of the rod 

is perpendicular to the path of the ball and so does no work. In going from its initial 

position to the lowest point on its path, the ball moves vertically through a distance equal 

to the length L of the rod, so the work done by the force of gravity is  

 

 2(0.341 kg)(9.80 m/s )(0.452 m) 1.51 JW mgL   . 
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(b) In going from its initial position to the highest point on its path, the ball moves 

vertically through a distance equal to L, but this time the displacement is upward, 

opposite the direction of the force of gravity. The work done by the force of gravity is  

 
2(0.341 kg)(9.80 m/s )(0.452 m) 1.51 J.W mgL       

 

(c) The final position of the ball is at the same height as its initial position. The 

displacement is horizontal, perpendicular to the force of gravity. The force of gravity 

does no work during this displacement. 

 

(d) The force of gravity is conservative. The change in the gravitational potential energy 

of the ball-Earth system is the negative of the work done by gravity:  

 
2(0.341 kg)(9.80 m/s )(0.452 m) 1.51 JU mgL        

 

as the ball goes to the lowest point. 

 

(e) Continuing this line of reasoning, we find  

 
2(0.341 kg)(9.80 m/s )(0.452 m) 1.51 JU mgL      

 

as it goes to the highest point. 

 

(f) Continuing this line of reasoning, we have U = 0 as it goes to the point at the same 

height. 

 

(g) The change in the gravitational potential energy depends only on the initial and final 

positions of the ball, not on its speed anywhere. The change in the potential energy is the 

same since the initial and final positions are the same. 

 

5. THINK As the ice flake slides down the frictionless bowl, its potential energy changes 

due to the work done by the gravitational force.     

 

EXPRESS The force of gravity is constant, so the work it does is given by W F d 
 

, 

where 

F is the force and 


d  is the displacement. The force is vertically downward and 

has magnitude mg, where m is the mass of the flake, so this reduces to W = mgh, where h 

is the height from which the flake falls. The force of gravity is conservative, so the 

change in gravitational potential energy of the flake-Earth system is the negative of the 

work done: U = –W. 

 

ANALYZE (a) The ice flake falls a distance 22.0 cm 0.22 m.h r    Therefore, the 

work done by gravity is  

 

W mgr       ( . ) ( .2 00 10 22 0 103 2 kg) (9.8 m s m) 4.31 10 J.2 3  
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(b) The change in gravitational potential energy is U = –W = – 4.31  10
–3

 J. 

 

(c) The potential energy when the flake is at the top is greater than when it is at the 

bottom by |U|. If U = 0 at the bottom, then U = + 4.31  10
–3

 J at the top. 

 

(d) If U = 0 at the top, then U = – 4.31  10
–3

 J at the bottom. 

 

(e) All the answers are proportional to the mass of the flake. If the mass is doubled, all 

answers are doubled. 

 

LEARN While the potential energy depends on the reference point (location where 

0U  ), the change in potential energy, U, does not. In both (c) and (d), we find 
34.31 10  J.U      

  

6. We use Eq. 7-12 for Wg and Eq. 8-9 for U. 

 

(a) The displacement between the initial point and Q has a vertical component of h – R 

downward (same direction as 

Fg ), so (with h = 5R) we obtain  

 
2 24 4(3.20 10  kg)(9.80 m/s )(0.12 m) 0.15 Jg gW F d mgR       . 

 

(b) The displacement between the initial point and the top of the loop has a vertical 

component of h – 2R downward (same direction as 

Fg ), so (with h = 5R) we obtain  

 
2 23 3(3.20 10  kg)(9.80 m/s )(0.12 m) 0.11 Jg gW F d mgR       . 

 

(c) With y = h = 5R, at P we find  

 
2 25 5(3.20 10  kg)(9.80 m/s )(0.12 m) 0.19 JU mgR     . 

 

(d) With y = R, at Q we have 

 
2 2(3.20 10  kg)(9.80 m/s )(0.12 m) 0.038 JU mgR     . 

 

(e) With y = 2R, at the top of the loop, we find 

 
2 22 2(3.20 10  kg)(9.80 m/s )(0.12 m) 0.075 JU mgR     . 

 

(f) The new information ( )vi  0  is not involved in any of the preceding computations; 

the above results are unchanged. 

 

7. The main challenge for students in this type of problem seems to be working out the 

trigonometry in order to obtain the height of the ball (relative to the low point of the 
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swing) h = L – L cos  (for angle  measured from vertical as shown in Fig. 8-34). Once 

this relation (which we will not derive here since we have found this to be most easily 

illustrated at the blackboard) is established, then the principal results of this problem 

follow from Eq. 7-12 (for Wg ) and Eq. 8-9 (for U ). 

 

(a) The vertical component of the displacement vector is downward with magnitude h, so 

we obtain 

2

(1 cos )

(5.00 kg)(9.80 m/s )(2.00 m)(1 cos30 ) 13.1 J.

g gW F d mgh mgL     

   
 

 

(b) From Eq. 8-1, we have U = –Wg = –mgL(1 – cos ) = –13.1 J. 

 

(c) With y = h, Eq. 8-9 yields U = mgL(1 – cos ) = 13.1 J. 

 

(d) As the angle increases, we intuitively see that the height h increases (and, less 

obviously, from the mathematics, we see that cos  decreases so that 1 – cos  increases), 

so the answers to parts (a) and (c) increase, and the absolute value of the answer to part (b) 

also increases. 

 

8. (a) The force of gravity is constant, so the work it does is given by W F d 
 

, where 
F  is the force and 


d  is the displacement. The force is vertically downward and has 

magnitude mg, where m is the mass of the snowball. The expression for the work reduces 

to W = mgh, where h is the height through which the snowball drops. Thus 

 

 2(1.50 kg)(9.80 m/s )(12.5 m) 184 JW mgh   . 

 

(b) The force of gravity is conservative, so the change in the potential energy of the 

snowball-Earth system is the negative of the work it does: U = –W = –184 J. 

 

(c) The potential energy when it reaches the ground is less than the potential energy when 

it is fired by |U|, so U = –184 J when the snowball hits the ground. 

 

9. We use Eq. 8-17, representing the conservation of mechanical energy (which neglects 

friction and other dissipative effects). 

 

(a) In Problem 9-2, we found UA = mgh (with the reference position at C). Referring 

again to Fig. 8-29, we see that this is the same as U0, which implies that KA = K0 and thus 

that  

vA = v0 = 17.0 m/s. 

 

(b) In the solution to Problem 9-2, we also found U mghB  2.  In this case, we have 
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        K U K U

mv mgh mv mg
h

B B

B

0 0

0

2 21

2

1

2 2

  

  
F
HG
I
KJ

 

which leads to  

 

 2 2 2

0 (17.0 m/s) (9.80 m/s )(42.0 m) 26.5 m/s.Bv v gh      

 

(c) Similarly, 2 2 2

0 2 (17.0 m/s) 2(9.80 m/s )(42.0 m) 33.4 m/s.Cv v gh      

 

(d) To find the “final” height, we set Kf = 0. In this case, we have 

 

         K U K U

mv mgh mgh

f f

f

0 0

0

21

2
0

  

  
 

 

which yields 
2 2

0

2

(17.0 m/s)
42.0 m 56.7 m.

2 2(9.80 m/s )
f

v
h h

g
      

 

(e) It is evident that the above results do not depend on mass. Thus, a different mass for 

the coaster must lead to the same results. 

 

10. We use Eq. 8-17, representing the conservation of mechanical energy (which neglects 

friction and other dissipative effects). 

 

(a) In the solution to Problem 9-3 (to which this problem refers), we found Ui = mgyi = 

196 J and Uf  = mgyf  = 29.0 J (assuming the reference position is at the ground). Since 

Ki = 0 in this case, we have 

 0 196 J 29.0 JfK    

 

which gives 167 JfK   and thus leads to 
2 2(167 J)

12.9 m/s.
2.00 kg

fK
v

m
    

 

(b) If we proceed algebraically through the calculation in part (a), we find Kf = – U = 

mgh where h = yi – yf and is positive-valued. Thus, 

 

2
2

fK
v gh

m
   

 

as we might also have derived from the equations of Table 2-1 (particularly Eq. 2-16). 

The fact that the answer is independent of mass means that the answer to part (b) is 

identical to that of part (a), that is, 12.9 m/sv  . 
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(c) If Ki  0 , then we find Kf = mgh + Ki (where Ki is necessarily positive-valued). This 

represents a larger value for Kf than in the previous parts, and thus leads to a larger value 

for v. 

 

11. THINK As the ice flake slides down the frictionless bowl, its potential energy 

decreases (discussed in Problem 8-5). By conservation of mechanical energy, its kinetic 

energy must increase.  

 

EXPRESS If Ki is the kinetic energy of the flake at the edge of the bowl, Kf is its kinetic 

energy at the bottom, Ui is the gravitational potential energy of the flake-Earth system 

with the flake at the top, and Uf is the gravitational potential energy with it at the bottom, 

then  

 
f f i iK U K U   . 

 

Taking the potential energy to be zero at the bottom of the bowl, then the potential energy 

at the top is Ui = mgr where r = 0.220 m is the radius of the bowl and m is the mass of the 

flake. Ki = 0 since the flake starts from rest. Since the problem asks for the speed at the 

bottom, we write 2 / 2fK mv .  

 

ANALYZE (a) Energy conservation leads to 

 

21
0 0

2
f f i iK U K U mv mgr       . 

 

The speed is 2 2.08 m/sv gr  . 
 

 

(b) Since the expression for speed is 2v gr , which does not contain the mass of the 

flake, the speed would be the same, 2.08 m/s, regardless of the mass of the flake. 

 

(c) The final kinetic energy is given by .f i i fK K U U    If Ki is greater than before, 

then Kf will also be greater. This means the final speed of the flake is greater. 

 

LEARN The mechanical energy conservation principle can also be expressed as 

mech 0E K U     , which implies ,K U    i.e., the increase in kinetic energy 

is equal to the negative of the change in potential energy. 

 

12. We use Eq. 8-18, representing the conservation of mechanical energy. We choose the 

reference position for computing U to be at the ground below the cliff; it is also regarded 

as the “final” position in our calculations. 

 

(a) Using Eq. 8-9, the initial potential energy is given by Ui = mgh where h = 12.5 m and 

1.50 kgm  . Thus, we have 
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1

2

K U K U

mv mgh mv

i i f f

i

  

  
1

2
02 2

 

 

which leads to the speed of the snowball at the instant before striking the ground: 

 

v
m

mv mgh v ghi i 
F
HG

I
KJ  

2 1

2
22 2    

 

where vi = 14.0 m/s is the magnitude of its initial velocity (not just one component of it). 

Thus we find v = 21.0 m/s. 

 

(b) As noted above, vi is the magnitude of its initial velocity and not just one component 

of it; therefore, there is no dependence on launch angle. The answer is again 21.0 m/s. 

 

(c) It is evident that the result for v in part (a) does not depend on mass. Thus, changing 

the mass of the snowball does not change the result for v. 

 

13. THINK As the marble moves vertically upward, its gravitational potential energy 

increases. This energy comes from the release of elastic potential energy stored in the 

spring.   

 

EXPRESS We take the reference point for gravitational potential energy to be at the 

position of the marble when the spring is compressed. The gravitational potential energy 

when the marble is at the top of its motion is gU mgh . On the other had, the energy 

stored in the spring is 2 / 2sU kx . Applying mechanical energy conservation principle 

allows us to solve the problem. 

 

ANALYZE (a) The height of the highest point is h = 20 m. With initial gravitational 

potential energy set to zero, we find  

 
3 2(5.0 10 kg)(9.8 m/s )(20 m) 0.98 J.gU mgh       

 

(b) Since the kinetic energy is zero at the release point and at the highest point, then 

conservation of mechanical energy implies Ug + Us = 0, where Us is the change in 

the spring's elastic potential energy. Therefore, Us = –Ug = –0.98 J. 

 

(c) We take the spring potential energy to be zero when the spring is relaxed. Then, our 

result in the previous part implies that its initial potential energy is Us = 0.98 J. This must 

be 1
2

2kx , where k is the spring constant and x is the initial compression. Consequently, 

 

2

2 2

2 0.98 J
3.1 10 N/m 3.1 N/cm.

(0.080 m)

sU
k

x
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LEARN In general, the marble has both kinetic and potential energies: 

 

2 21 1

2 2
kx mv mgy   

At the maximum height 
max ,y h  0v   and 2 / 2mgh kx , or 

2

2

kx
h

mg
 .  

 

14. We use Eq. 8-18, representing the conservation of mechanical energy (which neglects 

friction and other dissipative effects). 

 

(a) The change in potential energy is U = mgL as it goes to the highest point. Thus, we 

have 

          

top

 K U

K K mgL

 

  

0

00

 

 

which, upon requiring Ktop = 0, gives K0 = mgL and thus leads to 

 

 20
0

2
2 2(9.80 m/s )(0.452 m) 2.98 m/s

K
v gL

m
    . 

 

(b) We also found in Problem 9-4 that the potential energy change is U = –mgL in going 

from the initial point to the lowest point (the bottom). Thus, 

 
              

bottom

 K U

K K mgL

 

  

0

00

 

 

which, with K0 = mgL, leads to Kbottom = 2mgL. Therefore, 

 

 2bottom
bottom

2
4 4(9.80 m/s )(0.452 m) 4.21 m/s

K
v gL

m
    . 

 

(c) Since there is no change in height (going from initial point to the rightmost point), 

then U = 0, which implies K = 0. Consequently, the speed is the same as what it was 

initially, 

right 0 2.98 m/sv v  . 

 

(d) It is evident from the above manipulations that the results do not depend on mass. 

Thus, a different mass for the ball must lead to the same results. 

 

15. THINK The truck with failed brakes is moving up an escape ramp. In order for it to 

come to a complete stop, all of its kinetic energy must be converted into gravitational 

potential energy.  
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EXPRESS We ignore any work done by friction. In SI units, the initial speed of the truck 

just before entering the escape ramp is vi = 130(1000/3600) = 36.1 m/s. When the truck 

comes to a stop, its kinetic and potential energies are Kf = 0 and Uf = mgh. We apply 

mechanical energy conservation to solve the problem.     

 

ANALYZE (a) Energy conservation implies 
f f i iK U K U   . With Ui = 0, and 

21

2
i iK mv , we obtain 

2 2
2

2

1 (36.1m/s)
0 0 66.5 m.

2 2 2(9.8 m/s )

i
i

v
mv mgh h

g
        

 

If L is the minimum length of the ramp, then sinL h  , or L sin 15° = 66.5 m so that 

(66.5 m) / sin15 257 m.L     That is, the ramp must be about 2.610
2
 m long if 

friction is negligible. 

 

(b) The minimum length is 
2

sin 2 sin

ivh
L

g 
   which does not depend on the mass of 

the truck. Thus, the answer remains the same if the mass is reduced. 

 

(c) If the speed is decreased, then h and L both decrease (note that h is proportional to the 

square of the speed and that L is proportional to h). 

 

LEARN The greater the speed of the truck, the longer the ramp required. This length can 

be shortened considerably if the friction between the tires and the ramp surface is 

factored in.  

 

16. We place the reference position for evaluating gravitational potential energy at the 

relaxed position of the spring. We use x for the spring's compression, measured positively 

downward (so x > 0 means it is compressed). 

 

(a) With x = 0.190 m, Eq. 7-26 gives  

21
7.22 J 7.2 J

2
sW kx       

 

for the work done by the spring force. Using Newton's third law, we see that the work 

done on the spring is 7.2 J. 

 

(b) As noted above, Ws = –7.2 J. 

 

(c) Energy conservation leads to 

 

2

0

1
0

2
i i f fK U K U mgh kx mgx        
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which (with m = 0.70 kg) yields h0 = 0.86 m. 

 

(d) With a new value for the height   h h0 02 172. m , we solve for a new value of x 

using the quadratic formula (taking its positive root so that x > 0). 

 

mgh mgx kx x
mg mg mgkh

k
     

  
0

2

2

01

2

2b g
 

 

which yields x = 0.26 m. 

 

17. (a) At Q the block (which is in circular motion at that point) experiences a centripetal 

acceleration v
2
/R leftward. We find v

2
 from energy conservation: 

 

K U K U

mgh mv mgR

P P Q Q  

  0
1

2

2
 

 

Using the fact that h = 5R, we find mv
2
 = 8mgR. Thus, the horizontal component of the 

net force on the block at Q is  

 

F = mv
2
/R = 8mg=8(0.032 kg)(9.8 m/s

2
)= 2.5 N. 

 

The direction is to the left (in the same direction as 

a ). 

 

(b) The downward component of the net force on the block at Q is the downward force of 

gravity  

F = mg =(0.032 kg)(9.8 m/s
2
)= 0.31 N. 

 

(c) To barely make the top of the loop, the centripetal force there must equal the force of 

gravity: 
2

2t
t

mv
mg mv mgR

R
   . 

 

This requires a different value of h than what was used above. 

 

21
0

2

1
( ) (2 )

2

P P t t

t t

K U K U

mgh mv mgh

mgh mgR mg R

  

  

 

 

 

Consequently, h = 2.5R = (2.5)(0.12 m) = 0.30 m. 
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(d) The normal force FN, for speeds vt greater than gR  (which are the only 

possibilities for nonzero FN — see the solution in the previous part), obeys 

 

 
2

t
N

mv
F mg

R
   

 

from Newton's second law. Since 2

tv  is related to h by energy conservation 

K U K U gh v gRP P t t t      
1

2
22

 
 

then the normal force, as a function for h (so long as h  2.5R — see the solution in the 

previous part), becomes 

2
5N

mgh
F mg

R
  . 

 

Thus, the graph for h  2.5R = 0.30 m consists of a straight line of positive slope 2mg/R 

(which can be set to some convenient values for graphing purposes). Note that for h  

2.5R, the normal force is zero.  

 

 
 

18. We use Eq. 8-18, representing the conservation of mechanical energy. The reference 

position for computing U is the lowest point of the swing; it is also regarded as the 

“final” position in our calculations. 

 

(a) The potential energy is U = mgL(1 – cos ) at the position shown in Fig. 8-34 (which 

we consider to be the initial position). Thus, we have 

 

                  K U K U

mgL mv

i i f f  

   0 1
1

2
02( cos )

 

which leads to 

v
mgL

m
gL


 

2 1
2 1

( cos )
( cos ).


  

 



  CHAPTER 8 

 

350 

Plugging in L = 2.00 m and  = 30.0° we find v = 2.29 m/s. 

 

(b) It is evident that the result for v does not depend on mass. Thus, a different mass for 

the ball must not change the result. 

 

19. We convert to SI units and choose upward as the +y direction. Also, the relaxed 

position of the top end of the spring is the origin, so the initial compression of the spring 

(defining an equilibrium situation between the spring force and the force of gravity) is y0 

= –0.100 m and the additional compression brings it to the position y1 = –0.400 m. 

 

(a) When the stone is in the equilibrium (a = 0) position, Newton's second law becomes 

 

                                 

                      

net

spring


F ma

F mg

k



 

   

0

0100 8 00 9 8 0( . ) ( . ) ( . )

 

 

where Hooke's law (Eq. 7-21) has been used. This leads to a spring constant equal to 

784 N/mk  .  

 

(b) With the additional compression (and release) the acceleration is no longer zero, and 

the stone will start moving upward, turning some of its elastic potential energy (stored in 

the spring) into kinetic energy. The amount of elastic potential energy at the moment of 

release is, using Eq. 8-11, 

 2 2

1

1 1
(784 N/m)( 0.400) 62.7 J

2 2
U ky    . 

 

(c) Its maximum height y2 is beyond the point that the stone separates from the spring 

(entering free-fall motion). As usual, it is characterized by having (momentarily) zero 

speed. If we choose the y1 position as the reference position in computing the 

gravitational potential energy, then 

  K U K U

ky mgh

1 1 2 2

1

20
1

2
0

  

  
 

 

where h = y2 – y1 is the height above the release point. Thus, mgh (the gravitational 

potential energy) is seen to be equal to the previous answer, 62.7 J, and we proceed with 

the solution in the next part. 

 

(d) We find 2

1 2 0.800 mh ky mg  , or 80.0 cm. 

 

20. (a) We take the reference point for gravitational energy to be at the lowest point of the 

swing. Let  be the angle measured from vertical. Then the height y of the pendulum 

“bob” (the object at the end of the pendulum, which in this problem is the stone) is given 

by L(1 – cos) = y . Hence, the gravitational potential energy is  
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mg y = mgL(1 – cos). 
 

When  = 0º (the string at its lowest point) we are told that its speed is 8.0 m/s; its kinetic 

energy there is therefore 64 J (using Eq. 7-1). At  = 60º its mechanical energy is 

 

Emech = 
1

2
 mv

2
 + mgL(1 – cos) . 

 

Energy conservation (since there is no friction) requires that this be equal to 64 J.  

Solving for the speed, we find v = 5.0 m/s. 

 

(b) We now set the above expression again equal to 64 J (with  being the unknown) but 

with zero speed (which gives the condition for the maximum point, or “turning point” 

that it reaches). This leads to max = 79. 

 

(c) As observed in our solution to part (a), the total mechanical energy is 64 J. 

 

21. We use Eq. 8-18, representing the conservation of mechanical energy (which neglects 

friction and other dissipative effects). The reference position for computing U (and height 

h) is the lowest point of the swing; it is also regarded as the “final” position in our 

calculations. 

 

(a) Careful examination of the figure leads to the trigonometric relation h = L – L cos  

when the angle is measured from vertical as shown. Thus, the gravitational potential 

energy is U = mgL(1 – cos 0) at the position shown in Fig. 8-34 (the initial position). 

Thus, we have 

                         

 

K U K U

mv mgL mv

f f0 0

0

2

0

21

2
1

1

2
0

  

   cosb g  

which leads to 

 

2 2

0 0 0 0

2 2

2 1
(1 cos ) 2 (1 cos )

2

(8.00 m/s) 2(9.80 m/s )(1.25 m)(1 cos 40 ) 8.35 m/s.

v mv mgL v gL
m

 
 

      
 

    

 

 

(b) We look for the initial speed required to barely reach the horizontal position — 

described by vh = 0 and  = 90° (or  = –90°, if one prefers, but since cos(–) = cos , the 

sign of the angle is not a concern). 

                         

 

K U K U

mv mgL mgL

h h0 0

0

2

0

1

2
1 0

  

   cosb g  

which yields  
2

0 02 cos 2(9.80 m/s )(1.25 m)cos40 4.33 m/s.v gL      
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(c) For the cord to remain straight, then the centripetal force (at the top) must be (at least) 

equal to gravitational force: 

mv

r
mg mv mgLt

t

2
2    

 

where we recognize that r = L. We plug this into the expression for the kinetic energy (at 

the top, where  = 180°). 

                         

 
1

2

 
1

2

K U K U

mv mgL mv mg

mv mgL mgL mg L

t t

t

0 0

0

2

0

2

0

2

0

1

2
1 1 180

1

2
1 2

  

     

   

cos cos

cos ( ) ( )





b g b g

b g

 

which leads to  

 
2

0 0(3 2cos ) (9.80 m/s )(1.25 m)(3 2cos40 ) 7.45 m/s.v gL        

 

(d) The more initial potential energy there is, the less initial kinetic energy there needs to 

be, in order to reach the positions described in parts (b) and (c). Increasing 0 amounts to 

increasing U0, so we see that a greater value of 0 leads to smaller results for v0 in parts (b) 

and (c). 

 

22. From Chapter 4, we know the height h of the skier's jump can be found from 

v v ghy y

2

0

20 2    where v0 y = v0 sin 28° is the upward component of the skier's “launch 

velocity.” To find v0 we use energy conservation. 

 

(a) The skier starts at rest y = 20 m above the point of “launch” so energy conservation 

leads to 

mgy mv v gy   
1

2
m s2 2 20  

 

which becomes the initial speed v0 for the launch. Hence, the above equation relating h to 

v0 yields 

h
v

g





0

2

sin 28
4.4 m

2b g
.  

 

(b) We see that all reference to mass cancels from the above computations, so a new 

value for the mass will yield the same result as before. 

 

23. (a) As the string reaches its lowest point, its original potential energy U = mgL 

(measured relative to the lowest point) is converted into kinetic energy. Thus, 
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mgL mv v gL  
1

2
22 .  

 

With L = 1.20 m we obtain 22 2(9.80 m/s )(1.20 m) 4.85 m/sv gL   . 

 

(b) In this case, the total mechanical energy is shared between kinetic 1
2

2mvb  and 

potential mgyb. We note that yb = 2r where r = L – d = 0.450 m. Energy conservation 

leads to 

mgL mv mgyb b 
1

2

2  

 

which yields v gL g rb   2 2 2.42 m s2b g .  

 

24. We denote m as the mass of the block, h = 0.40 m as the height from which it dropped 

(measured from the relaxed position of the spring), and x as the compression of the spring 

(measured downward so that it yields a positive value). Our reference point for the 

gravitational potential energy is the initial position of the block. The block drops a total 

distance h + x, and the final gravitational potential energy is –mg(h + x). The spring 

potential energy is 1
2

2kx  in the final situation, and the kinetic energy is zero both at the 

beginning and end. Since energy is conserved 

 

K U K U

mg h x kx

i i f f  

              
1

2
0 2( )

 

which is a second degree equation in x. Using the quadratic formula, its solution is 

 

x
mg mg mghk

k


 b g2 2
.  

 

Now mg = 19.6 N, h = 0.40 m, and k 1960 N m , and we choose the positive root so 

that x > 0. 

x 
 


19.6 19.6 2 19.6 0.40 1960

0.10 m .

2 b gb gb g
1960

 

 

25. Since time does not directly enter into the energy formulations, we return to Chapter 

4 (or Table 2-1 in Chapter 2) to find the change of height during this t = 6.0 s flight. 

 

y v t gt
y

 0

21

2
 

 

This leads to y  32 m . Therefore 2318 J 3.2 10  JU mg y         . 
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26. (a) With energy in joules and length in meters, we have 

 

U U x U x dx
x

      zb g b g b g0 6 12
0

. 

 

Therefore, with U (0) = 27 J, we obtain U(x) (written simply as U) by integrating and 

rearranging: 

U x x  27 12 3 2 .  

 

(b) We can maximize the above function by working through the / 0dU dx  condition, 

or we can treat this as a force equilibrium situation — which is the approach we show. 

 

F xeq   0 6 12 0  

 

Thus, xeq = 2.0 m, and the above expression for the potential energy becomes U = 39 J. 

 

(c) Using the quadratic formula or using the polynomial solver on an appropriate 

calculator, we find the negative value of x for which U = 0 to be x = –1.6 m. 

 

(d) Similarly, we find the positive value of x for which U = 0 to be x = 5.6 m. 

 

27. (a) To find out whether or not the vine breaks, it is sufficient to examine it at the 

moment Tarzan swings through the lowest point, which is when the vine — if it didn't 

break — would have the greatest tension. Choosing upward positive, Newton's second 

law leads to 

T mg m
v

r
 

2

 

 

where r = 18.0 m and m W g  688 98 702. . kg . We find the v
2
 from energy 

conservation (where the reference position for the potential energy is at the lowest point). 

 

 2 21
2

2
mgh mv v gh    

 

where h = 3.20 m. Combining these results, we have 

 

T mg m
gh

r
mg

h

r
   

F
HG
I
KJ

2
1

2
 

 

which yields 933 N. Thus, the vine does not break.  

 

(b) Rounding to an appropriate number of significant figures, we see the maximum 

tension is roughly 9.310
2
 N. 
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28. From the slope of the graph, we find the spring constant 

 

k
F

x
  



010 10. .N cm N m  

 

(a) Equating the potential energy of the compressed spring to the kinetic energy of the 

cork at the moment of release, we have 

1

2

1

2

2 2kx mv v x
k

m
    

 

which yields v = 2.8 m/s for m = 0.0038 kg and x = 0.055 m. 

 

(b) The new scenario involves some potential energy at the moment of release. With d = 

0.015 m, energy conservation becomes 

1

2

1

2

1

2

2 2 2 2 2kx mv kd v
k

m
x d    c h  

 

which yields v = 2.7 m/s. 

 

29. THINK As the block slides down the inclined plane, it compresses the spring, then 

stops momentarily before sliding back up again.  

 

EXPRESS We refer to its starting point as A, the point where it first comes into contact 

with the spring as B, and the point where the spring is compressed by 0 0.055 mx   as 

C (see the figure below). Point C is our reference point for computing gravitational 

potential energy. Elastic potential energy (of the spring) is zero when the spring is 

relaxed. 

 
 

Information given in the second sentence allows us to compute the spring constant. From 

Hooke's law, we find 

k
F

x
   

270 N

0.02 m
1.35 10 N m4 .  
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The distance between points A and B is 
0l  and we note that the total sliding distance  

0 0l x  is related to the initial height hA of the block (measured relative to C) by 

0 0

sin Ah

l x
 


, where the incline angle  is 30°.  

 

ANALYZE (a) Mechanical energy conservation leads to 

 

2

0

1
0

2
A A C C AK U K U mgh kx       

which yields 
2 4 2

0

2

(1.35 10 N/m)(0.055 m)
0.174 m.

2 2(12 kg)(9.8 m/s )
A

kx
h

mg


    

 

Therefore, the total distance traveled by the block before coming to a stop is 

 

0 0

0.174 m
0.347 m 0.35 m.

sin30 sin30

Ah
l x    

 
 

  

(b) From this result, we find 0 0 0.347 m 0.055 m 0.292 m,l x     which means 

that the block has descended a vertical distance 

 

0| | sin (0.292 m)sin30 0.146 mA By h h l         

 

in sliding from point A to point B. Thus, using Eq. 8-18, we have 

 

 2 21 1
0 | |

2 2
A B B Bmgh mv mgh mv mg y       

 

which yields 22 | | 2(9.8 m/s )(0.146 m) 1.69 m/s 1.7 m/sBv g y     . 

 

LEARN Energy is conserved in the process. The total energy of the block at position B is  

 

2 2 21 1
(12 kg)(1.69 m/s) (12 kg)(9.8 m/s )(0.028 m) 20.4 J,

2 2
B B BE mv mgh      

 

which is equal to the elastic potential energy in the spring: 

 

2 4 2

0

1 1
(1.35 10 N/m)(0.055 m) 20.4 J

2 2
kx    . 
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30. We take the original height of the box to be the y = 0 reference level and observe that, 

in general, the height of the box (when the box has moved a distance d downhill) is 

sin 40y d   . 

 

(a) Using the conservation of energy, we have 

 

K U K U mv mgy kdi i       0 0
1

2

1

2

2 2 . 

 

Therefore, with d = 0.10 m, we obtain v = 0.81 m/s. 

 

(b) We look for a value of d   0 such that K = 0. 

 

K U K U mgy kdi i       0 0 0
1

2

2 . 

 

Thus, we obtain mgd kdsin40 1
2

2   and find d = 0.21 m. 

 

(c) The uphill force is caused by the spring (Hooke's law) and has magnitude kd = 25.2 N. 

The downhill force is the component of gravity sin 40mg = 12.6 N. Thus, the net force 

on the box is (25.2 – 12.6) N = 12.6 N uphill, with  

 

a = F/m =(12.6 N)/(2.0 kg) = 6.3 m/s
2
. 

 

(d) The acceleration is up the incline. 

 

31. The reference point for the gravitational potential energy Ug (and height h) is at the 

block when the spring is maximally compressed. When the block is moving to its highest 

point, it is first accelerated by the spring; later, it separates from the spring and finally 

reaches a point where its speed vf is (momentarily) zero. The x axis is along the incline, 

pointing uphill (so x0 for the initial compression is negative-valued); its origin is at the 

relaxed position of the spring. We use SI units, so k = 1960 N/m and x0 = –0.200 m. 

 

(a) The elastic potential energy is 1
2 0

2 39 2kx  .  J . 

 

(b) Since initially Ug = 0, the change in Ug is the same as its final value mgh where m = 

2.00 kg. That this must equal the result in part (a) is made clear in the steps shown in the 

next part. Thus, Ug = Ug = 39.2 J. 

 

(c) The principle of mechanical energy conservation leads to 

 

 K U K U

kx mgh

f f0 0

0

20
1

2
0
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which yields h = 2.00 m. The problem asks for the distance along the incline, so we have 

d = h/sin 30° = 4.00 m. 

 

32. The work required is the change in the gravitational potential energy as a result of the 

chain being pulled onto the table. Dividing the hanging chain into a large number of 

infinitesimal segments, each of length dy, we note that the mass of a segment is (m/L) dy 

and the change in potential energy of a segment when it is a distance |y| below the table 

top is  

dU = (m/L)g|y| dy = –(m/L)gy dy 

 

since y is negative-valued (we have +y upward and the origin is at the tabletop). The total 

potential energy change is 

 

U
mg

L
y dy

mg

L
L mgL

L
   

z  
1

2
4 322

4

0

( ) .
/

 

 

The work required to pull the chain onto the table is therefore  

 

W = U = mgL/32 = (0.012 kg)(9.8 m/s
2
)(0.28 m)/32 = 0.0010 J. 

 

33. All heights h are measured from the lower end of the incline (which is our reference 

position for computing gravitational potential energy mgh). Our x axis is along the incline, 

with +x being uphill (so spring compression corresponds to x > 0) and its origin being at 

the relaxed end of the spring. The height that corresponds to the canister's initial position 

(with spring compressed amount x = 0.200 m) is given by 1 ( )sinh D x   , where 

37   . 

 

(a) Energy conservation leads to 

 

 2 2

1 1 2 2 2

1 1
0 ( )sin sin

2 2
K U K U mg D x kx mv mgD           

 

which yields, using the data m = 2.00 kg and k = 170 N/m, 

 

v gx kx m2

22 2 40  sin . m s .  

 

(b) In this case, energy conservation leads to 

 

1 1 3 3

2 2

3

1 1
0 ( )sin 0

2 2

K U K U

mg D x kx mv

  

    
 

 

which yields 2

3 2 ( )sin / 4.19 m/s.v g D x kx m     
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34. Let
NF  be the normal force of the ice on him and m is his mass. The net inward force 

is mg cos  – FN and, according to Newton's second law, this must be equal to mv
2
/R, 

where v is the speed of the boy. At the point where the boy leaves the ice FN = 0, so g cos 

 = v
2
/R. We wish to find his speed. If the gravitational potential energy is taken to be 

zero when he is at the top of the ice mound, then his potential energy at the time shown is  

 

U = –mgR(1 – cos ). 
 

He starts from rest and his kinetic energy at the time shown is 1
2

2mv . Thus conservation 

of energy gives 

0 11
2

2  mv mgR( cos ) , 

 

or v
2
 = 2gR(1 – cos ). We substitute this expression into the equation developed from 

the second law to obtain g cos  = 2g(1 – cos ). This gives cos  = 2/3. The height of 

the boy above the bottom of the mound is  

 

 
2 2

cos (13.8 m) 9.20 m
3 3

h R R    . 

 

35. (a) The (final) elastic potential energy is  

 

U = 
1

2
 kx

2
 = 

1

2
 (431 N/m)(0.210 m)

2
 = 9.50 J. 

 

Ultimately this must come from the original (gravitational) energy in the system mgy 

(where we are measuring y from the lowest “elevation” reached by the block, so  

 

y = (d + x)sin(30º). 

Thus,  

   mg(d + x)sin(30º) = 9.50 J       d = 0.396 m. 

 

(b) The block is still accelerating (due to the component of gravity along the incline, 

mgsin(30º)) for a few moments after coming into contact with the spring (which exerts 

the Hooke’s law force kx), until the Hooke’s law force is strong enough to cause the 

block to begin decelerating. This point is reached when  

 

kx = mg sin30º 

 

which leads to x = 0.0364 m = 3.64 cm; this is long before the block finally stops (36.0 

cm before it stops). 

 

36. The distance the marble travels is determined by its initial speed (and the methods of 

Chapter 4), and the initial speed is determined (using energy conservation) by the original 

compression of the spring. We denote h as the height of the table, and x as the horizontal 
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distance to the point where the marble lands. Then x = v0 t and h gt 1
2

2  (since the 

vertical component of the marble's “launch velocity” is zero). From these we find 

x v h g 0 2 . We note from this that the distance to the landing point is directly 

proportional to the initial speed. We denote v01 be the initial speed of the first shot and D1 

= (2.20 – 0.27) m = 1.93 m be the horizontal distance to its landing point; similarly, v02 is 

the initial speed of the second shot and D = 2.20 m is the horizontal distance to its 

landing spot. Then 

 02
02 01

01 1 1

    
v D D

v v
v D D

    

 

When the spring is compressed an amount  , the elastic potential energy is 1
2

2k . When 

the marble leaves the spring its kinetic energy is 1
2 0

2mv . Mechanical energy is conserved: 

1
2 0

2 1
2

2mv k  , and we see that the initial speed of the marble is directly proportional to 

the original compression of the spring. If  1 is the compression for the first shot and  2 

is the compression for the second, then v v02 2 1 01  b g . Relating this to the previous 

result, we obtain 

2 1

1

2.20 m
(1.10 cm) 1.25 cm

1.93 m

D

D

 
   

 
. 

 

37. Consider a differential element of length dx at a distance x from one end (the end that 

remains stuck) of the cord. As the cord turns vertical, its change in potential energy is 

given by 

( )dU dx gx   

 

where /m h   is the mass/unit length and the negative sign indicates that the potential 

energy decreases. Integrating over the entire length, we obtain the total change in the 

potential energy: 

 2

0

1 1

2 2

h

U dU gxdx gh mgh          . 

  

With m = 15 g and h = 25 cm, we have 0.018 JU   . 

 

38. In this problem, the mechanical energy (the sum of K and U) remains constant as the 

particle moves. 

 

(a) Since mechanical energy is conserved, B B A AU K U K   , the kinetic energy of the 

particle in region A ( 3.00 m 4.00 mx  ) is  

 

12.0 J 9.00 J 4.00 J 7.00 JA B A BK U U K       . 

 

With 2 / 2,A AK mv  the speed of the particle at 3.5 mx  (within region A) is  
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2 2(7.00 J)

8.37 m/s.
0.200 kg

A
A

K
v

m
    

 

(b) At 6.5 m,x  0U   and 12.0 J 4.00 J 16.0 JB BK U K     by mechanical 

energy conservation. Therefore, the speed at this point is  

 

2 2(16.0 J)
12.6 m/s.

0.200 kg

K
v

m
    

 

(c) At the turning point, the speed of the particle is zero. Let 

the position of the right turning point be .Rx  From the figure 

shown on the right, we find 
Rx  to be 

  

16.00 J 0 24.00 J 16.00 J
7.67 m.

7.00 m 8.00 m
R

R R

x
x x

 
  

 
 

 
 

 

(d) Let the position of the left turning point be .Lx  From the 

figure shown, we find Lx  to be  

 

 
16.00 J 20.00 J 9.00 J 16.00 J

1.73 m.
1.00 m 3.00 m

L

L L

x
x x

 
  

 
 

 
 

39. From the figure, we see that at x = 4.5 m, the potential energy is U1 = 15 J. If the 

speed is v = 7.0 m/s, then the kinetic energy is  

 

K1 = mv
2
/2 = (0.90 kg)(7.0 m/s)

2
/2 = 22 J. 

 

The total energy is E1 = U 1+ K1 = (15 + 22) J = 37 J. 

 

(a) At x = 1.0 m, the potential energy is U2 = 35 J. By energy conservation, we have K2 = 

2.0 J > 0. This means that the particle can reach there with a corresponding speed  

 

 2
2

2 2(2.0 J)
2.1 m/s.

0.90 kg

K
v

m
    

 

(b) The force acting on the particle is related to the potential energy by the negative of the 

slope:  
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x

U
F

x


 


 

 

From the figure we have
35 J 15 J

10 N
2 m 4 m

xF


   


. 

 

(c) Since the magnitude 0xF  , the force points in the +x direction. 

 

(d) At x = 7.0 m, the potential energy is U3 = 45 J, which exceeds the initial total energy 

E1. Thus, the particle can never reach there. At the turning point, the kinetic energy is 

zero. Between x = 5 and 6 m, the potential energy is given by 

 

 ( ) 15 30( 5),     5 6.U x x x      

 

Thus, the turning point is found by solving 37 15 30( 5)x   , which yields x = 5.7 m.  

 

(e) At x = 5.0 m, the force acting on the particle is  

 

(45 15) J
30 N

(6 5) m
x

U
F

x

 
     

 
. 

The magnitude is | | 30 NxF  . 

 

(f) The fact that 0xF  indicated that the force points in the –x direction. 

 

40. (a) The force at the equilibrium position r = req is 

 

 
13 7

eq eq eq

12 6
0 0

dU A B
F

r rdr r r
      


 

 

which leads to the result 

r
A

B

A

B
eq  
F
HG
I
KJ 

F
HG
I
KJ

2
112

1
6

1
6

. .  

 

(b) This defines a minimum in the potential energy curve (as can be verified either by a 

graph or by taking another derivative and verifying that it is concave upward at this 

point), which means that for values of r slightly smaller than req the slope of the curve is 

negative (so the force is positive, repulsive). 

 

(c) And for values of r slightly larger than req the slope of the curve must be positive (so 

the force is negative, attractive). 

 

41. (a) The energy at x = 5.0 m is E = K + U = 2.0 J – 5.7 J = –3.7 J. 
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(b) A plot of the potential energy curve (SI units understood) and the energy E (the 

horizontal line) is shown for 0  x  10 m. 

 

 
 

(c) The problem asks for a graphical determination of the turning points, which are the 

points on the curve corresponding to the total energy computed in part (a). The result for 

the smallest turning point (determined, to be honest, by more careful means) is x = 1.3 m. 

 

(d) And the result for the largest turning point is x = 9.1 m. 

 

(e) Since K = E – U, then maximizing K involves finding the minimum of U. A graphical 

determination suggests that this occurs at x = 4.0 m, which plugs into the expression  

E – U = –3.7 – (–4xe
–x/4

) to give 2.16 J  2.2 JK   . Alternatively, one can measure 

from the graph from the minimum of the U curve up to the level representing the total 

energy E and thereby obtain an estimate of K at that point. 

 

(f) As mentioned in the previous part, the minimum of the U curve occurs at x = 4.0 m. 

 

(g) The force (understood to be in newtons) follows from the potential energy, using Eq. 

8-20 (and Appendix E if students are unfamiliar with such derivatives). 

 

F
dU

dx
x e x   4 4b g /  

 

(h) This revisits the considerations of parts (d) and (e) (since we are returning to the 

minimum of U(x)) — but now with the advantage of having the analytic result of part (g). 

We see that the location that produces F = 0 is exactly x = 4.0 m. 

 

42. Since the velocity is constant, 

a  0  and the horizontal component of the worker's 

push F cos  (where  = 32°) must equal the friction force magnitude fk = k FN. Also, the 

vertical forces must cancel, implying 

 

 applied (8.0N)(0.70m) 5.6 JW    

 

which is solved to find F = 71 N. 
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(a) The work done on the block by the worker is, using Eq. 7-7, 

 

W Fd   cos . 71 56 102 N 9.2 m cos32 J .b gb g  

 

(b) Since fk = k (mg + F sin ), we find 2

th (60N)(9.2m) 5.6 10 J.kE f d      

 

43. (a) Using Eq. 7-8, we have applied (8.0N)(0.70m) 5.6 J.W    

 

(b) Using Eq. 8-31, the thermal energy generated is th (5.0N)(0.70m) 3.5 J.kE f d     

 

44. (a) The work is W = Fd = (35.0 N)(3.00 m) = 105 J. 

 

(b) The total amount of energy that has gone to thermal forms is (see Eq. 8-31 and Eq. 

6-2) 

Eth = k mgd = (0.600)(4.00 kg)(9.80 m/s
2
)(3.00 m) = 70.6 J. 

 

If 40.0 J has gone to the block then (70.6 – 40.0) J = 30.6 J has gone to the floor. 

 

(c) Much of the work (105 J) has been “wasted” due to the 70.6 J of thermal energy 

generated, but there still remains (105 – 70.6 ) J = 34.4 J that has gone into increasing the 

kinetic energy of the block.  (It has not gone into increasing the potential energy of the 

block because the floor is presumed to be horizontal.) 

 

45. THINK Work is done against friction while pulling a block along the floor at a 

constant speed.   

 

EXPRESS Place the x-axis along the path of the block and the y-axis normal to the floor. 

The free-body diagram is shown below. The x and the y component of Newton's second 

law are 

                    x:      F cos  – f  = 0 

     y:  FN + F sin  – mg = 0, 

 

where m is the mass of the block, F is the force exerted by the rope, f is the magnitude of 

the kinetic friction force, and  is the angle between that force and the horizontal. 
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The work done on the block by the force in the rope is cosW Fd  . Similarly, the 

increase in thermal energy of the block-floor system due to the frictional force is given by 

Eq. 8-29, th .E fd   

 

ANALYZE (a) Substituting the values given, we find the work done on the block by the 

rope’s force to be  

cos (7.68N)(4.06m)cos15.0 30.1 J.W Fd      

 

(b) The increase in thermal energy is th (7.42N)(4.06m) 30.1 J.E fd     

 

(c) We can use Newton's second law of motion to obtain the frictional and normal forces, 

then use k = f/FN to obtain the coefficient of friction. The x-component of Newton’s law 

gives  

f = F cos  = (7.68 N) cos15.0= 7.42 N. 

 

Similarly, the y-component yields  

 

FN = mg – F sin  = (3.57 kg)(9.8 m/s
2
) – (7.68 N)sin15.0= 33.0 N. 

 

Thus, the coefficient of kinetic friction is 

 

 
7.42 N

0.225.
33.0 N

k

N

f

F
     

 

LEARN In this problem, the block moves at a constant speed so that 0K  , i.e., no 

change in kinetic energy. The work done by the external force is converted into thermal 

energy of the system, thW E  . 

  

46. We work this using English units (with g = 32 ft/s), but for consistency we convert 

the weight to pounds 

1 1b
(9.0)oz 0.56lb

16oz
mg

 
  

   
 

which implies 20.018 lb s /ftm   (which can be phrased as 0.018 slug as explained in 

Appendix D). And we convert the initial speed to feet-per-second 

 

vi 
F
HG

I
KJ ( .818

3600
120mi h) 

5280 ft mi

 s h
ft s  

 

or a more “direct” conversion from Appendix D can be used. Equation 8-30 provides 

Eth = –Emec for the energy “lost” in the sense of this problem. Thus, 
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2 2 2 2

th

1 1
( ) ( ) (0.018)(120 110 ) 0 20 ft lb.

2 2
i f i fE m v v mg y y           

 

47. We use SI units so m = 0.075 kg. Equation 8-33 provides Eth = –Emec for the 

energy “lost” in the sense of this problem. Thus, 

 

2 2

th

2 2 2

1
( ) ( )

2
1

(0.075 kg)[(12 m/s) (10.5 m/s) ] (0.075 kg)(9.8 m/s )(1.1 m 2.1 m)
2
0.53 J.

i f i fE m v v mg y y    

   



 

 

48. We use Eq. 8-31 to obtain th (10N)(5.0m) 50 JkE f d    , and Eq. 7-8 to get 

 

(2.0N)(5.0m) 10 J.W Fd    

Similarly, Eq. 8-31 gives 

W K U E

U

  

  

  



th

10 35 50
 

 

which yields U = –75 J. By Eq. 8-1, then, the work done by gravity is W = –U = 75 J. 

 

49. THINK As the bear slides down the tree, its gravitational potential energy is 

converted into both kinetic energy and thermal energy.    

 

EXPRESS We take the initial gravitational potential energy to be Ui = mgL, where L is 

the length of the tree, and final gravitational potential energy at the bottom to be Uf = 0. 

To solve this problem, we note that the changes in the mechanical and thermal energies 

must sum to zero. 

 

ANALYZE (a) Substituting the values given, the change in gravitational potential energy 

is 

 2 3(25 kg)(9.8 m/s )(12 m) 2.9 10  J.f iU U U mgL           

 

(b) The final speed is 5.6 m/sfv  . Therefore, the kinetic energy is 

 

2 2 21 1
(25 kg)(5.6 m/s) 3.9 10  J.

2 2
f fK mv     

 

(c) The change in thermal energy is Eth = fL, where f is the magnitude of the average 

frictional force; therefore, from th 0E K U    , we find f to be   

 

 
2 3

23.9 10  J 2.9 10  J
2.1 10  N.

12 m

K U
f

L
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LEARN In this problem, no external work is done to the bear. Therefore, 

 

th mech th 0,W E E E K U         

 

which implies thK U E U fL       . Thus, thE fL   can be interpreted as 

the additional change (decrease) in kinetic energy due to frictional force.    

 

50. Equation 8-33 provides Eth = –Emec for the energy “lost” in the sense of this 

problem. Thus, 

 

2 2

th

2 2 2

4

1
( ) ( )

2
1

(60 kg)[(24 m/s) (22 m/s) ] (60 kg)(9.8 m/s )(14 m)
2
1.1 10  J.

i f i fE m v v mg y y    

  

 

 

 

That the angle of 25° is nowhere used in this calculation is indicative of the fact that 

energy is a scalar quantity. 

 

51. (a) The initial potential energy is 

 

U mgyi i   (520 1 kg) 9.8m s  (300 m) .53 10  J
2 6d i  

 

where +y is upward and y = 0 at the bottom (so that Uf = 0). 

 

(b) Since fk = k FN = k mg cos we have th cosk kE f d mgd     from Eq. 8-31. 

Now, the hillside surface (of length d = 500 m) is treated as an hypotenuse of a 3-4-5 

triangle, so cos  = x/d where x = 400 m. Therefore, 

 

E mgd
x

d
mgxk kth  J .      ( . ) ( ) ( . ) ( ) .0 25 520 9 8 400 51 105  

 

(c) Using Eq. 8-31 (with W = 0) we find 

 

 6 6 6

th 0 (1.53 10  J) 0 (5.1 10  J) 1.02 10  Jf i i fK K U U E            . 

 

(d) From 2 / 2,fK mv  we obtain v = 63 m/s. 

 

52. (a) An appropriate picture (once friction is included) for this problem is Figure 8-3 in 

the textbook. We apply Eq. 8-31, Eth = fk d, and relate initial kinetic energy Ki to the 

"resting" potential energy Ur: 

Ki + Ui  = fkd + Kr + Ur    20.0 J + 0 = fkd + 0 + 
1

2
kd

2
 



  CHAPTER 8 

 

368 

 

where fk = 10.0 N and k = 400 N/m. We solve the equation for d using the quadratic 

formula or by using the polynomial solver on an appropriate calculator, with d = 0.292 m 

being the only positive root. 

 

(b) We apply Eq. 8-31 again and relate Ur to the "second" kinetic energy Ks it has at the 

unstretched position. 

Kr + Ur = fkd + Ks + Us     
1

2
kd

2
 = fkd + Ks + 0 

 

Using the result from part (a), this yields Ks = 14.2 J. 

 

53. (a) The vertical forces acting on the block are the normal force, upward, and the force 

of gravity, downward. Since the vertical component of the block's acceleration is zero, 

Newton's second law requires FN = mg, where m is the mass of the block. Thus f = k FN 

= k mg. The increase in thermal energy is given by Eth = fd = k mgD, where D is the 

distance the block moves before coming to rest. Using Eq. 8-29, we have 

 

Eth kg m s m J 0 25 35 9 8 7 8 67
2

. . . . .b gb gd ib g  

 

(b) The block has its maximum kinetic energy Kmax just as it leaves the spring and enters 

the region where friction acts. Therefore, the maximum kinetic energy equals the thermal 

energy generated in bringing the block back to rest, 67 J. 

 

(c) The energy that appears as kinetic energy is originally in the form of potential energy 

in the compressed spring. Thus, K U kximax  
1

2

2 , where k is the spring constant and x is 

the compression. Thus, 

x
K

k
  

2 2 67

640
0 46max . .

J

N m
m

b g
 

 

54. (a) Using the force analysis shown in Chapter 6, we find the normal force 

cosNF mg   (where mg = 267 N) which means  

 

fk = k NF =k mg cos . 

Thus, Eq. 8-31 yields 

 

E f d mgdk kth J     cos . . cos . .010 267 61 20 15 102b gb gb g  

 

(b) The potential energy change is  

 

U = mg(–d sin ) = (267 N)(– 6.1 m) sin 20° = –5.6  10
2
 J. 
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The initial kinetic energy is 

2 2

2

1 1 267 N
(0.457m/s ) 2.8 J.

2 2 9.8m/s
i iK mv

 
   

 
 

 

Therefore, using Eq. 8-33 (with W = 0), the final kinetic energy is 

 

K K U Ef i            th J2 8 56 10 15 10 41 102 2 2. . . . .c h  

 

Consequently, the final speed is v K mf f 2 55.  m s . 

 

55. (a) With x = 0.075 m and k  320N m,  Eq. 7-26 yields W kxs    1
2

2 0 90.  J.  For 

later reference, this is equal to the negative of U. 

 

(b) Analyzing forces, we find FN = mg, which means k k N kf F mg   . With d = x, Eq. 

8-31 yields 
E f d mgxk kth  J    ( . ) ( . ) ( . ) ( . ) . .025 25 98 0075 046  

 

(c) Equation 8-33 (with W = 0) indicates that the initial kinetic energy is 

 

K U Ei       th  J090 046 136. . .  

 

which leads to v K mi i 2 10.  m s.  

 

56. Energy conservation, as expressed by Eq. 8-33 (with W = 0) leads to 

 

2

th

2 2

1
0 0 0

2

1
(200 N/m)(0.15m) (2.0kg)(9.8m/s )(0.75m) 2.25 J

2

i f i f k

k k

E K K U U f d kx

mgd 

         

   

 

 

which yields k = 0.15 as the coefficient of kinetic friction. 

 

57. Since the valley is frictionless, the only reason for the speed being less when it 

reaches the higher level is the gain in potential energy U = mgh where h = 1.1 m. 

Sliding along the rough surface of the higher level, the block finally stops since its 

remaining kinetic energy has turned to thermal energy E f d mgdkth    , where 

0.60  . Thus, Eq. 8-33 (with W = 0) provides us with an equation to solve for the 

distance d: 

K U E mg h di      th b g  
 

where 2 / 2i iK mv  and vi = 6.0 m/s. Dividing by mass and rearranging, we obtain 
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d
v

g

hi  
2

2
12

 
. m.  

 

58. This can be worked entirely by the methods of Chapters 2–6, but we will use energy 

methods in as many steps as possible. 

 

(a) By a force analysis of the style done in Chapter 6, we find the normal force has 

magnitude FN = mg cos  (where  = 40°), which means fk = k NF  = k mg cos  where 

k = 0.15. Thus, Eq. 8-31 yields  

Eth = fk d = k mgd cos . 

 

Also, elementary trigonometry leads us to conclude that U = mgd sin . Eq. 8-33 (with 

W = 0 and Kf = 0) provides an equation for determining d: 

 

K U E

mv mgd

i

i k

 

 

  th

1

2

2 sin cos  b g  

 

where vi 14. .m s  Dividing by mass and rearranging, we obtain 

 
2

0.13m.
2 (sin cos )

i

k

v
d

g   
 


 

 

(b) Now that we know where on the incline it stops (d' = 0.13 + 0.55 = 0.68 m from the 

bottom), we can use Eq. 8-33 again (with W = 0 and now with Ki = 0) to describe the 

final kinetic energy (at the bottom): 

 

K U E

mv mgd

f

k

  

  

  th

1

2

2 sin cos  b g  

 

which — after dividing by the mass and rearranging — yields 

 

v gd k   2 2 7sin cos . .  b g m s  

 

(c) In part (a) it is clear that d increases if k decreases — both mathematically (since it is 

a positive term in the denominator) and intuitively (less friction — less energy “lost”). In 

part (b), there are two terms in the expression for v that imply that it should increase if k 

were smaller: the increased value of d' = d0 + d and that last factor sin  – k cos  which 

indicates that less is being subtracted from sin  when k is less (so the factor itself 

increases in value). 
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59. (a) The maximum height reached is h. The thermal energy generated by air resistance 

as the stone rises to this height is Eth = fh by Eq. 8-31. We use energy conservation in 

the form of Eq. 8-33 (with W = 0): 

 

K U E K Uf f i i    th  

 

and we take the potential energy to be zero at the throwing point (ground level). The 

initial kinetic energy is K mvi 
1

2
0

2 , the initial potential energy is Ui = 0, the final kinetic 

energy is Kf = 0, and the final potential energy is Uf = wh, where w = mg is the weight of 

the stone. Thus, wh fh mv 
1

2
0

2 , and we solve for the height: 

2 2

0 0

2( ) 2 (1 / )

mv v
h

w f g f w
 

 
. 

 

Numerically, we have, with m = (5.29 N)/(9.80 m/s
2
) = 0.54 kg,  

 

 
2

2

(20.0 m/s)
19.4 m

2(9.80 m/s )(1 0.265/5.29)
h  


. 

 

(b) We notice that the force of the air is downward on the trip up and upward on the trip 

down, since it is opposite to the direction of motion. Over the entire trip the increase in 

thermal energy is Eth = 2fh. The final kinetic energy is K mvf 
1

2

2 , where v is the 

speed of the stone just before it hits the ground. The final potential energy is Uf = 0. Thus, 

using Eq. 8-31 (with W = 0), we find 

 

1

2
2

1

2

2

0

2mv fh mv  .  

 

We substitute the expression found for h to obtain 

 
2

2 20
0

2 1 1

2 (1 / ) 2 2

fv
mv mv

g f w
 


 

which leads to 

 
2 2

2 2 2 2 20 0
0 0 0 0

2 2 2
1

(1 / ) (1 / )

fv fv f w f
v v v v v

mg f w w f w w f w f

  
       

    
 

 

where w was substituted for mg and some algebraic manipulations were carried out. 

Therefore, 
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0

5.29 N 0.265 N
(20.0 m/s) 19.0 m/s

5.29 N 0.265 N

w f
v v

w f

 
  

 
. 

 

60. We look for the distance along the incline d, which is related to the height ascended 

by h = d sin . By a force analysis of the style done in Chapter 6, we find the normal 

force has magnitude FN = mg cos which means fk = k mg cos. Thus, Eq. 8-33 (with W 

= 0) leads to 

0

0

   

   

K K U E

K mgd mgd

f i

i k

  th

sin cos  
 

which leads to 

d
K

mg

i

k





 


sin cos . . sin . cos

. .
  b g b gb gb g

128

4 0 9 8 30 0 30 30
4 3m  

 

61. Before the launch, the mechanical energy is mech,0 0E  . At the maximum height h 

where the speed of the beetle vanishes, the mechanical energy is mech,1E mgh  . The 

change of the mechanical energy is related to the external force by 

 

mech mech,1 mech,0 cosavgE E E mgh F d       , 

 

where Favg is the average magnitude of the external force on the beetle.  

 

(a) From the above equation, we have  

 

 
6 2

2

4 

(4.0 10  kg)(9.80 m/s )(0.30 m)
1.5 10  N.

cos (7.7 10 m)(cos 0 ) 
avg

mgh
F

d 







   

 
 

 

(b) Dividing the above result by the mass of the beetle, we obtain 

 

2

4 

(0.30 m)
  3.8 10 .

cos (7.7 10 m)(cos 0 ) 

avgF h
a g g g

m d  
    

 
 

 

62. We will refer to the point where it first encounters the “rough region” as point C (this 

is the point at a height h above the reference level). From Eq. 8-17, we find the speed it 

has at point C to be 

 

vC = vA
2
  2gh = (8.0)

2
  2(9.8)(2.0) = 4.980  5.0 m/s. 

 

Thus, we see that its kinetic energy right at the beginning of its “rough slide” (heading 

uphill towards B) is  

KC = 
1

2
 m(4.980 m/s)

2
 = 12.4m 
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(with SI units understood). Note that we “carry along” the mass (as if it were a known 

quantity); as we will see, it will cancel out, shortly. Using Eq. 8-37 (and Eq. 6-2 with FN 

= mg cos) and siny d  , we note that if d < L (the block does not reach point B), this 

kinetic energy will turn entirely into thermal (and potential) energy 

 

       KC = mgy + fk d     12.4m = mgd sin  + k mgd cos 



With k = 0.40 and = 30º, we find d = 1.49 m, which is greater than L (given in the 

problem as 0.75 m), so our assumption that d < L is incorrect.  What is its kinetic energy 

as it reaches point B?  The calculation is similar to the above, but with d replaced by L 

and the final v
2
 term being the unknown (instead of assumed zero): 

 
1

2
 m v

2
 = KC  (mgL sin + k mgL cos) . 

 

This determines the speed with which it arrives at point B:   

 

 

2

2 2

2 (sin cos )

(4.98 m/s) 2(9.80 m/s )(0.75 m)(sin30 0.4cos30 ) 3.5 m/s.

B C kv v gL     

    
 

 

63. We observe that the last line of the problem indicates that static friction is not to be 

considered a factor in this problem. The friction force of magnitude f = 4400 N 

mentioned in the problem is kinetic friction and (as mentioned) is constant (and directed 

upward), and the thermal energy change associated with it is Eth = fd (Eq. 8-31) where d 

= 3.7 m in part (a) (but will be replaced by x, the spring compression, in part (b)). 

 

(a) With W = 0 and the reference level for computing U = mgy set at the top of the 

(relaxed) spring, Eq. 8-33 leads to 

U K E v d g
f

m
i     

F
HG
I
KJ th 2  

 

which yields v  7 4. m s  for m = 1800 kg. 

 

(b) We again utilize Eq. 8-33 (with W = 0), now relating its kinetic energy at the moment 

it makes contact with the spring to the system energy at the bottom-most point. Using the 

same reference level for computing U = mgy as we did in part (a), we end up with 

gravitational potential energy equal to mg(–x) at that bottom-most point, where the spring 

(with spring constant k  15 105. N m ) is fully compressed. 

 

K mg x kx fx   b g 1

2

2  
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where K mv  
1

2
4 9 102 4. J using the speed found in part (a). Using the abbreviation  

= mg – f = 1.3  10
4
 N, the quadratic formula yields 

 

x
kK

k


 


 2 2
0 90. m  

 

where we have taken the positive root. 

 

(c) We relate the energy at the bottom-most point to that of the highest point of rebound 

(a distance d' above the relaxed position of the spring). We assume d' > x. We now use 

the bottom-most point as the reference level for computing gravitational potential energy. 

 

1

2 2
2 82

2

kx mgd fd d
kx

mg d
      


b g . m. 

 

(d) The non-conservative force (§8-1) is friction, and the energy term associated with it is 

the one that keeps track of the total distance traveled (whereas the potential energy terms, 

coming as they do from conservative forces, depend on positions — but not on the paths 

that led to them). We assume the elevator comes to final rest at the equilibrium position 

of the spring, with the spring compressed an amount deq given by 

 

eq eq 0.12m.
mg

mg kd d
k

     

 

In this part, we use that final-rest point as the reference level for computing gravitational 

potential energy, so the original U = mgy becomes mg(deq + d). In that final position, then, 

the gravitational energy is zero and the spring energy is 2

eq / 2kd . Thus, Eq. 8-33 becomes 

mg d d kd fd

d

eq eq

2

total

total

  

   

d i
b gb gb g c hb g b g

1

2

1800 9 8 012 37
1

2
15 10 012 44005 2

. . . . .

 

 

which yields dtotal = 15 m. 

 

64. In the absence of friction, we have a simple conversion (as it moves along the 

inclined ramps) of energy between the kinetic form (Eq. 7-1) and the potential form (Eq. 

8-9).  Along the horizontal plateaus, however, there is friction that causes some of the 

kinetic energy to dissipate in accordance with Eq. 8-31 (along with Eq. 6-2 where k = 

0.50 and FN = mg in this situation).  Thus, after it slides down a (vertical) distance d it 

has gained 21
2

,K mv mgd  some of which (Eth = k mgd) is dissipated, so that the 

value of kinetic energy at the end of the first plateau (just before it starts descending 

towards the lowest plateau) is  
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1

2
kK mgd mgd mgd   . 

 

In its descent to the lowest plateau, it gains mgd/2 more kinetic energy, but as it slides 

across it “loses” k mgd/2 of it.  Therefore, as it starts its climb up the right ramp, it has 

kinetic energy equal to  

1 1 1 3

2 2 2 4
kK mgd mgd mgd mgd    . 

 

Setting this equal to Eq. 8-9 (to find the height to which it climbs) we get H = ¾d.  Thus, 

the block (momentarily) stops on the inclined ramp at the right, at a height of  

 

H = 0.75d = 0.75 ( 40 cm) = 30 cm 

 

measured from the lowest plateau. 

 

65. The initial and final kinetic energies are zero, and we set up energy conservation in 

the form of Eq. 8-33 (with W = 0) according to our assumptions. Certainly, it can only 

come to a permanent stop somewhere in the flat part, but the question is whether this 

occurs during its first pass through (going rightward) or its second pass through (going 

leftward) or its third pass through (going rightward again), and so on. If it occurs during 

its first pass through, then the thermal energy generated is Eth = fkd where d  L 

and k kf mg . If it occurs during its second pass through, then the total thermal energy 

is Eth = k mg(L + d) where we again use the symbol d for how far through the level area 

it goes during that last pass (so 0  d  L). Generalizing to the n
th

 pass through, we see 

that  

Eth = k mg[(n – 1)L + d]. 

 

In this way, we have  

mgh mg n L dk   1b gc h  
 

which simplifies (when h = L/2 is inserted) to 

 

d

L
n

k

  1
1

2
. 

 

The first two terms give 1 1 2 35 k . , so that the requirement 0 1 d L  demands 

that n = 3. We arrive at the conclusion that d L 
1

2
, or 

 
1 1

(40 cm) 20 cm
2 2

d L    

 

and that this occurs on its third pass through the flat region. 
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66. (a) Equation 8-9 gives U = mgh = (3.2 kg)(9.8 m/s
2
)(3.0 m) = 94 J. 

 

(b) The mechanical energy is conserved, so K = 94 J. 

 

(c) The speed (from solving Eq. 7-1) is  

 

v = 2 / 2(94 J) /(32 kg)K m  = 7.7 m/s. 

 

67. THINK As the block is projected up the inclined plane, its kinetic energy is 

converted into gravitational potential energy and elastic potential energy of the spring. 

The block compresses the spring, stopping momentarily before sliding back down again.  

 

EXPRESS Let A be the starting point and the reference point for computing gravitational 

potential energy ( 0AU  ). The block first comes into contact with the spring at B. The 

spring is compressed by an additional amount x  at C, as shown in the figure below.  

 

 
 

By energy conservation, A A B B C CK U K U K U     . Note that  

 

21

2
g sU U U mgy kx    , 

 

i.e., the total potential energy is the sum of gravitational potential energy and elastic 

potential energy of the spring.  

 

ANALYZE (a) At the instant when 0.20 mCx  , the vertical height is 

  

( )sin (0.60 m 0.20 m)sin 40 0.514 m.C Cy d x        

 

Applying energy conservation principle gives  

 

21
16 J 0

2
A A C C C C CK U K U K mgy kx         

from which we obtain  
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2

2 2

1

2
1

16 J (1.0 kg)(9.8 m/s )(0.514 m) (200 N/m)(0.20 m) 6.96 J 7.0 J.
2

C A C CK K mgy kx  

    

 

 

(b) At the instant when 0.40 mCx  , the vertical height is 

 

( )sin (0.60 m 0.40 m)sin 40 0.64 m.C Cy d x         

 

Applying energy conservation principle, we have A A C CK U K U      . Since 0AU   , the 

initial kinetic energy that gives 0CK    is  

 

2

2 2

1

2
1

(1.0 kg)(9.8 m/s )(0.64 m) (200 N/m)(0.40 m)
2

22 J.

A C C CK U mgy kx     

 



 

 

LEARN Comparing the results found in (a) and (b), we see that more kinetic energy is 

required to move the block higher in the inclined plane to achieve a greater spring 

compression.    

 

68. (a) At the point of maximum height, where y = 140 m, the vertical component of 

velocity vanishes but the horizontal component remains what it was when it was 

launched (if we neglect air friction). Its kinetic energy at that moment is 

 

K vx
1

2
055 2. .kgb g  

 

Also, its potential energy (with the reference level chosen at the level of the cliff edge) at 

that moment is U = mgy = 755 J. Thus, by mechanical energy conservation, 

 

K K U vi x     


1550 755
2 1550 755

055

b g
.

= 54 m/s. 

 

(b) As mentioned, vx = vix so that the initial kinetic energy 

 

 2 21

2
i i x i yK m v v   

 

can be used to find vi y. We obtain vi y  52 m s . 

 

(c) Applying Eq. 2-16 to the vertical direction (with +y upward), we have 
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2 2 2 2 22 (65 m/s) (52 m/s) 2(9.8 m/s )y i yv v g y y        

 

which yields y  76 m . The minus sign tells us it is below its launch point. 

 

69. THINK The two blocks are connected by a cord. As block B falls, block A moves up 

the incline. 

 

EXPRESS If the larger mass (block B, mB = 2.0 kg) falls a vertical distance 0.25 md  , 

then the smaller mass (blocks A, mA = 1.0 kg) must increase its height by sin30 .h d   

The change in gravitational potential energy is 

 

B AU m gd m gh    . 

 

By mechanical energy conservation, mech 0,E K U      the change in kinetic 

energy of the system is K U   . 

 

ANALYZE Since the initial kinetic energy is zero, the final kinetic energy is   

 

 2

sin

( sin ) [2.0 kg (1.0 kg)sin 30 ](9.8 m/s )(0.25 m)

3.7 J.

f B A B A

B A

K K m gd m gh m gd m gd

m m gd





     

    



 

 

LEARN From the above expression, we see that in the special case where 

sinB Am m  , the two-block system would remain stationary. On the other hand, if 

sin ,A Bm m   block A will slide down the incline, with block B moving vertically 

upward.    

 

70. We use conservation of mechanical energy: the mechanical energy must be the same 

at the top of the swing as it is initially. Newton's second law is used to find the speed, and 

hence the kinetic energy, at the top. There the tension force T of the string and the force 

of gravity are both downward, toward the center of the circle. We notice that the radius of 

the circle is r = L – d, so the law can be written  

 

T mg mv L d  2 b g , 
 

where v is the speed and m is the mass of the ball. When the ball passes the highest point 

with the least possible speed, the tension is zero. Then 

 

mg m
v

L d
v g L d


  

2

b g .  
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We take the gravitational potential energy of the ball-Earth system to be zero when the 

ball is at the bottom of its swing. Then the initial potential energy is mgL. The initial 

kinetic energy is zero since the ball starts from rest. The final potential energy, at the top 

of the swing, is 2mg(L – d) and the final kinetic energy is 1
2

2 1
2

mv mg L d b g  using the 

above result for v. Conservation of energy yields 

 

mgL mg L d mg L d d L     2
1

2
3 5b g b g .  

 

With L = 1.20 m, we have d = 0.60(1.20 m) = 0.72 m. 

 

Notice that if d is greater than this value, so the highest point is lower, then the speed of 

the ball is greater as it reaches that point and the ball passes the point. If d is less, the ball 

cannot go around. Thus the value we found for d is a lower limit. 

 

71. THINK As the block slides down the frictionless incline, its gravitational potential 

energy is converted to kinetic energy, so the speed of the block increases. 

 

EXPRESS By energy conservation, .A A B BK U K U    Thus, the change in kinetic 

energy as the block moves from points A to B is 

 

( ).B A B AK K K U U U         

 

In both circumstances, we have the same potential energy change. Thus, 1 2K K   .  

 

ANALYZE With 1 2K K   , the speed of the block at B the second time is given by 

 

 2 2 2 2

,1 ,1 ,2 ,2

1 1 1 1

2 2 2 2
B A B Amv mv mv mv   

or 
2 2 2 2 2 2

,2 ,1 ,1 ,2 (2.60 m/s) (2.00 m/s) (4.00 m/s) 4.33 m/sB B A Av v v v       . 

     

LEARN The speed of the block at A is greater the second time, ,2 ,1A Av v .  This can 

happen if the block slides down from a higher position with greater initial gravitational 

potential energy.   

 

72. (a) We take the gravitational potential energy of the skier-Earth system to be zero 

when the skier is at the bottom of the peaks. The initial potential energy is Ui = mgH, 

where m is the mass of the skier, and H is the height of the higher peak. The final 

potential energy is Uf = mgh, where h is the height of the lower peak. The skier initially 

has a kinetic energy of Ki = 0, and the final kinetic energy is 
21

2
,fK mv  where v is the 

speed of the skier at the top of the lower peak. The normal force of the slope on the skier 

does no work and friction is negligible, so mechanical energy is conserved: 
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 21

2
i i f fU K U K mgH mgh mv      . 

Thus, 

 22 ( ) 2(9.8 m/s )(850 m 750 m) 44 m/sv g H h     . 

 

(b) We recall from analyzing objects sliding down inclined planes that the normal force 

of the slope on the skier is given by FN = mg cos , where  is the angle of the slope from 

the horizontal, 30° for each of the slopes shown. The magnitude of the force of friction is 

given by f = k FN = k mg cos . The thermal energy generated by the force of friction is 

fd = k mgd cos , where d is the total distance along the path. Since the skier gets to the 

top of the lower peak with no kinetic energy, the increase in thermal energy is equal to 

the decrease in potential energy. That is, k mgd cos  = mg(H – h). Consequently, 

 

 
3

(850 m 750 m)
0.036

cos (3.2 10  m)cos30
k

H h

d




 
  

 
. 

 

73. THINK As the cube is pushed across the floor, both the thermal energies of floor and 

the cube increase because of friction.   

 

EXPRESS By law of conservation of energy, we have mech thW E E    for the 

floor-cube system. Since the speed is constant, K = 0, Eq. 8-33 (an application of the 

energy conservation concept) implies 

 

mech th th th (cube) th (floor)W E E E E E        . 

 

ANALYZE With W = (15 N)(3.0 m) = 45 J, and we are told that Eth (cube) = 20 J, then 

we conclude that Eth (floor) = 25 J. 

 

LEARN The applied work here has all been converted into thermal energies of the floor 

and the cube. The amount of thermal energy transferred to a material depends on its 

thermal properties, as we shall discuss in Chapter 18.     

 

74. We take her original elevation to be the y = 0 reference level and observe that the top 

of the hill must consequently have yA = R(1 – cos 20°) = 1.2 m, where R is the radius of 

the hill. The mass of the skier is 2(600 N) /(9.8 m/s ) 61kgm   .  

 

(a) Applying energy conservation, Eq. 8-17, we have 

 

0 .B B A A B A AK U K U K K mgy        

 

Using KB  1
2

2
61 8 0kg m sb gb g. , we obtain KA = 1.2  10

3
 J. Thus, we find the speed at 

the hilltop is  
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32 2(1.2 10  J)

6.4 m/s
61 kg

A
A

K
v

m


   . 

 

Note: One might wish to check that the skier stays in contact with the hill — which is 

indeed the case here. For instance, at A we find v
2
/r  2 m/s

2
, which is considerably less 

than g. 

 

(b) With KA = 0, we have 

 

K U K U K mgyB B A A B A      0 0  

 

which yields KB = 724 J, and the corresponding speed is 

 

2 2(724 J)
4.9 m/s

61kg

B
B

K
v

m
   . 

 

(c) Expressed in terms of mass, we have 

 

K U K U

mv mgy mv mgy

B B A A

B B A A

   

  
1

2

1

2

2 2 .
 

 

Thus, the mass m cancels, and we observe that solving for speed does not depend on the 

value of mass (or weight). 

 

75. THINK This problem deals with pendulum motion. The kinetic and potential 

energies of the ball attached to the rod change with position, but the mechanical energy 

remains conserved throughout the process.  

 

EXPRESS Let L be the length of the pendulum. The connection between angle  

(measured from vertical) and height h (measured from the lowest point, which is our 

choice of reference position in computing the gravitational potential energy mgh) is given 

by h = L(1 – cos ).  

 
The free-body diagram is shown above. The initial height is at h1 = 2L, and at the lowest 

point, we have h2 = 0. The total mechanical energy is conserved throughout. 
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ANALYZE (a) Initially the ball is at h1 = 2L with
1 0K   and 1 1 (2 )U mgh mg L  . At  

the lowest point h2 = 0, we have 2

2 2

1

2
K mv   and 

2 0.U   Using energy conservation 

in the form of Eq. 8-17 leads to 

2

1 1 2 2 2

1
0 2 0

2
K U K U mgL mv        

  

This leads to 
2 2v gL . With L = 0.62 m, we have  

 

2

2 2 (9.8 m/s )(0.62 m) 4.9 m/s.v    

 

(b) At the lowest point, the ball is in circular motion with the center of the circle above it, 

so 

a v r 2 /  upward, where r = L. Newton's second law leads to 

 

T mg m
v

r
T m g

gL

L
mg    

F
HG

I
KJ 

2 4
5 .  

 

With m = 0.092 kg, the tension is T = 4.5 N. 

 

(c) The pendulum is now started (with zero speed) at 90i   (that is, hi = L), and we 

look for an angle  such that T = mg. When the ball is moving through a point at angle , 

as can be seen from the free-body diagram shown above, Newton's second law applied to 

the axis along the rod yields 

 

 
2

cos (1 cos )
mv

T mg mg
r

      

 

which (since r = L) implies v
2
 = gL(1 – cos ) at the position we are looking for. Energy 

conservation leads to 

 

 

 

         (1

K U K U

mgL mv mgL

gL gL gL

i i  

   

   

0
1

2
1

1

2
1

2 ( cos )

( ( cos )) cos )



 

 

 

where we have divided by mass in the last step. Simplifying, we obtain 

 

 1 1
cos 71

3
   
   

 
. 
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(d) Since the angle found in (c) is independent of the mass, the result remains the same if 

the mass of the ball is changed. 

 

LEARN At a given angle   with respect to the vertical, the tension in the rod is 

 
2

cos
v

T m g
r


 

  
 

 

The tangential acceleration, sinta g  , is what causes the speed and, therefore, the 

kinetic energy to change with time. Nonetheless, mechanical energy is conserved. 

 

76. (a) The table shows that the force is +(3.0 N)i
^
 while the displacement is in the +x 

direction ( d 


 = +(3.0 m)i
^
 ), and it is –(3.0 N)i

^
 while the displacement is in the –x 

direction.  Using Eq. 7-8 for each part of the trip, and adding the results, we find the 

work done is 18 J. This is not a conservative force field; if it had been, then the net work 

done would have been zero (since it returned to where it started). 

 

(b) This, however, is a conservative force field, as can be easily verified by calculating 

that the net work done here is zero. 

 

(c) The two integrations that need to be performed are each of the form  


  2x dx so that 

we are adding two equivalent terms, where each equals x
2
 (evaluated at x = 4, minus its 

value at x = 1). Thus, the work done is 2(4
2
 – 1

2
) = 30 J. 

 

(d) This is another conservative force field, as can be easily verified by calculating that 

the net work done here is zero. 

 

(e) The forces in (b) and (d) are conservative. 

 

77. THINK This problem involves graphical analyses. From the graph of potential 

energy as a function of position, the conservative force can de deduced.   

 

EXPRESS The connection between the potential energy function ( )U x  and the 

conservative force ( )F x  is given by Eq. 8-22: ( ) / .F x dU dx   A positive slope of 

( )U x  at a point means that ( )F x  is negative, and vice versa.  

 

ANALYZE (a) The force at x = 2.0 m is 

 

( 4 m) ( 1 m) (17.5 J) ( 2.8 J)
4.9 N.

4.0 m 1.0 m 4.0 m 1.0 m

dU U U x U x
F

dx x

      
        

  
 

 

(b) Since the slope of ( )U x  at x = 2.0 m is negative, the force points in the +x direction 

(but there is some uncertainty in reading the graph which makes the last digit not very 

significant). 
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(c) At x = 2.0 m, we estimate the potential energy to be 

  

( 2.0 m) ( 1.0 m) ( 4.9 J/m)(1.0 m) 7.7 JU x U x        

 

Thus, the total mechanical energy is 

 

 2 21 1
(2.0 kg)( 1.5 m/s) ( 7.7 J) 5.5 J.

2 2
E K U mv U           

 

Again, there is some uncertainty in reading the graph which makes the last digit not very 

significant. At that level (–5.5 J) on the graph, we find two points where the potential 

energy curve has that value — at x  1.5 m and x  13.5 m. Therefore, the particle 

remains in the region 1.5 < x < 13.5 m. The left boundary is at x = 1.5 m.  

 

(d) From the above results, the right boundary is at x = 13.5 m.   

 

(e) At x = 7.0 m, we read U  –17.5 J. Thus, if its total energy (calculated in the previous 

part) is E  –5.5 J, then we find 

 

1

2
12

2
352mv E U v

m
E U       J  m s( ) .  

 

where there is certainly room for disagreement on that last digit for the reasons cited 

above. 

 

LEARN Since the total mechanical energy is negative, the particle is bounded by the 

potential, with its motion confined to the region 1.5 m < x < 13.5 m. At the turning points 

(1.5 m and 13.5 m), kinetic energy is zero and the particle is momentarily at rest.  

 

78. (a) Since the speed of the crate of mass m increases from 0 to 1.20 m/s relative to the 

factory ground, the kinetic energy supplied to it is 

 

2 21 1
(300kg)(120m/s) 216 J.

2 2
K mv    

 

(b) The magnitude of the kinetic frictional force is 

 
2 3(0.400)(300kg)(9.8m/s ) 1.18 10 N.Nf F mg     

 
 

(c) Let the distance the crate moved relative to the conveyor belt before it stops slipping 

be d. Then from Eq. 2-16 (v
2
 = 2ad = 2(f / m)d) we find 

 

E fd mv Kth   
1

2

2 .  
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Thus, the total energy that must be supplied by the motor is 

 

th 2 (2)(216J) J.W K E K       

 

(d) The energy supplied by the motor is the work W it does on the system, and must be 

greater than the kinetic energy gained by the crate computed in part (b). This is due to the 

fact that part of the energy supplied by the motor is being used to compensate for the 

energy dissipated Eth while it was slipping.  

 

79. THINK As the car slides down the incline, due to the presence of frictional force, 

some of its mechanical energy is converted into thermal energy.   

 

EXPRESS The incline angle is 5.0 .    Thus, the change in height between the car's 

highest and lowest points is y = (50 m) sin  =  4.4 m. We take the lowest point (the 

car's final reported location) to correspond to the y = 0 reference level. The change in 

potential energy is given by .U mg y    

 

As for the kinetic energy, we first convert the speeds to SI units, v0 8 3 . m s  and 

v 111. m s . The change in kinetic energy is 2 21
( )

2
f iK m v v   .  The total change in 

mechanical energy is mech .E K U     

 

ANALYZE (a) Substituting the values given, we find mechE  to be 

 

2 2

mech

2 2 2

4

1
( )

2
1

(1500 kg) (11.1 m/s) (8.3 m/s) (1500 kg)(9.8 m/s )( 4.4 m)
2

23940 J 2.4 10  J

f iE K U m v v mg y       

     

    

 

 

That is, the mechanical energy decreases (due to friction) by 2.4  10
4
 J. 

 

(b) Using Eq. 8-31 and Eq. 8-33, we find th mech .kE f d E     With d = 50 m, we 

solve for fk and obtain  
4

2mech ( 2.4 10  J)
4.8 10 N.

50 m
k

E
f

d

   
     

 

LEARN The amount of mechanical energy lost is proportional to the frictional force; in 

the absence of friction, mechanical energy would have been conserved.    

 

80. We note that in one second, the block slides d = 1.34 m up the incline, which means 

its height increase is h = d sin  where 
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F
HG
I
KJ  tan .1 30

40
37  

 

We also note that the force of kinetic friction in this inclined plane problem is 

cosk kf mg  , where k = 0.40 and m = 1400 kg. Thus, using Eq. 8-31 and Eq. 8-33, 

we find 

W mgh f d mgdk k   sin cos  b g  
 

or W = 1.69  10
4
 J for this one-second interval. Thus, the power associated with this is 

 

 
4

4 41.69 10  J
1.69 10  W 1.7 10  W

1 s
P


     . 

 

81. (a) The remark in the problem statement that the forces can be associated with 

potential energies is illustrated as follows: the work from x = 3.00 m to x = 2.00 m is  

 

W = F2 x =(5.00 N)(–1.00 m) = –5.00 J, 

 

so the potential energy at x = 2.00 m is U2 = +5.00 J.   

 

(b) Now, it is evident from the problem statement that Emax = 14.0 J, so the kinetic energy 

at x = 2.00 m is  

K2 = Emax – U2 = 14.0 – 5.00 = 9.00 J. 

 

(c) The work from x = 2.00 m to x = 0 is W = F1 x =(3.00 N)(–2.00 m) = – 6.00 J, so the 

potential energy at x = 0 is  

 

U0 = 6.00 J + U2 = (6.00 + 5.00) J = 11.0 J. 

 

(d) Similar reasoning to that presented in part (a) then gives  

 

K0 = Emax – U0 = (14.0 – 11.0) J = 3.00 J. 

 

(e) The work from x = 8.00 m to x = 11.0 m is W = F3 x =(– 4.00 N)(3.00 m) = –12.0 J, 

so the potential energy at x = 11.0 m is U11 = 12.0 J.   

 

(f) The kinetic energy at x = 11.0 m is therefore  

 

K11 = Emax – U11 = (14.0 – 12.0) J = 2.00 J. 

 

(g) Now we have W = F4 x =(–1.00 N)(1.00 m) = –1.00 J, so the potential energy at 

12.0 mx  is  

U12 = 1.00 J + U11 = (1.00 + 12.0) J = 13.0 J. 

 

(h) Thus, the kinetic energy at x = 12.0 m is  
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K12 = Emax – U12 = (14.0 – 13.0) = 1.00 J. 

 

(i) There is no work done in this interval (from x = 12.0 m to x = 13.0 m) so the answers 

are the same as in part (g): U12 = 13.0 J. 

 

(j) There is no work done in this interval (from x = 12.0 m to x = 13.0 m) so the answers 

are the same as in part (h): K12 = 1.00 J. 

 

(k) Although the plot is not shown here, it would look like a “potential well” with 

piecewise-sloping sides: from x = 0 to x = 2 (SI units understood) the graph of U is a 

decreasing line segment from 11 to 5, and from x = 2 to x = 3, it then heads down to zero, 

where it stays until x = 8, where it starts increasing to a value of 12 (at x = 11), and then 

in another positive-slope line segment it increases to a value of 13 (at x = 12).  For 

12x   its value does not change (this is the “top of the well”). 

 

(l) The particle can be thought of as “falling” down the 0 < x < 3 slopes of the well, 

gaining kinetic energy as it does so, and certainly is able to reach x = 5. Since U = 0 at x 

= 5, then its initial potential energy (11 J) has completely converted to kinetic: now 

11.0 JK  . 

 

(m) This is not sufficient to climb up and out of the well on the large x side (x > 8), but 

does allow it to reach a “height” of 11 at x = 10.8 m. As discussed in section 8-5, this is a 

“turning point” of the motion. 

 

(n) Next it “falls” back down and rises back up the small x slope until it comes back to its 

original position. Stating this more carefully, when it is (momentarily) stopped at x = 10.8 

m it is accelerated to the left by the force 3F ; it gains enough speed as a result that it 

eventually is able to return to x = 0, where it stops again. 

 

82. (a) At x = 5.00 m the potential energy is zero, and the kinetic energy is  

 

K = 
1

2
 mv

2 
= 

1

2
 (2.00 kg)(3.45 m/s)

2
 = 11.9 J. 

 

The total energy, therefore, is great enough to reach the point x = 0 where U = 11.0 J, 

with a little “left over” (11.9 J – 11.0 J  = 0.9025 J).  This is the kinetic energy at x = 0, 

which means the speed there is  

 

v = 2(0.9025 J)/(2 kg) = 0.950 m/s. 

 

It has now come to a stop, therefore, so it has not encountered a turning point. 

 

(b) The total energy (11.9 J) is equal to the potential energy (in the scenario where it is 

initially moving rightward) at x = 10.9756  11.0 m.  This point may be found by 

interpolation or simply by using the work-kinetic energy theorem:  
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Kf = Ki + W = 0    11.9025 + (–4)d = 0      d = 2.9756  2.98 

 

(which when added to x = 8.00 [the point where F3 begins to act] gives the correct result).  

This provides a turning point for the particle’s motion. 

 

83. THINK Energy is transferred from an external agent to the block so that its speed 

continues to increase.  

 

EXPRESS According to Eq. 8-25, the work done by the external force is 

mech .W E K U      When there is no change in potential energy, 0U  , the 

expression simplifies to 

2 2

mech

1
( )

2
f iW E K m v v      . 

The average power, or average rate of work done, is given by avg /P W t  . 

 

ANALYZE (a) Substituting the values given, the change in mechanical energy is  

 

2 2 2 2 3

mech

1 1
( ) (15 kg)[(30 m/s) (10 m/s) ] 6000 J 6.0 10  J

2 2
f iE K m v v           

 

(b) From the above, we have W = 6.0  10
3
 J. Also, from Chapter 2, we know that 

 t v a 10 s . Thus, using Eq. 7-42, the average rate at which energy is transferred to 

the block is 
3

avg

6.0 10  J
600 W

10.0 s

W
P

t


  


. 

 

(c) and (d) The constant applied force is F = ma = 30 N and clearly in the direction of 

motion, so Eq. 7-48 provides the results for instantaneous power: 

 

P F v
v

v
  





RST
  300 10

900 30

W for m s

W for m s
 

 

LEARN The average of these two values found in (c) and (d) agrees with the result in 

part (b). Note that the expression for the instantaneous rate used above can be derived 

from:  

 21

2

dW d dv
P mv mv mv a F v

dt dt dt

 
        

 
 

 

84. (a) To stretch the spring an external force, equal in magnitude to the force of the 

spring but opposite to its direction, is applied. Since a spring stretched in the positive x 

direction exerts a force in the negative x direction, the applied force must be 
252.8 38.4F x x  , in the +x direction. The work it does is 
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1.00 1.00

2 2 3

0.500.50

52.8 38.4
(52.8 38.4 ) 31.0 J.

2 3
W x x dx x x

 
     

 
  

 

(b) The spring does 31.0 J of work and this must be the increase in the kinetic energy of 

the particle. Its speed is then 

 

v
K

m
  

2 2 310

217
535

.

.
. .

J

kg
m s

b g
 

 

(c) The force is conservative since the work it does as the particle goes from any point x1 

to any other point x2 depends only on x1 and x2, not on details of the motion between x1 

and x2. 

 

85. THINK This problem deals with the concept of hydroelectric generator – kinetic 

energy of water can be converted into electrical energy.  

 

EXPRESS By energy conservation, the change in kinetic energy of water in one second 

is  

 3 3 3 2 9(10 kg / m )(1200m )(9.8m/s )(100m) 1.176 10  JK U mgh Vgh         

 

Only 3/4 of this amount is transferred to electrical energy.  

 

ANALYZE The power generation (assumed constant, so average power is the same as 

instantaneous power) is 
9

8

avg

(3/ 4) (3/ 4)(1.176 10  J)
8.82 10  W.

1.0s

K
P

t

 
     

 

LEARN Hydroelectricity is the most widely used renewable energy; it accounts for 

almost 20% of the world’s electricity supply.  

 

86. (a) At B the speed is (from Eq. 8-17)  

 
2 2 2

0 12 (7.0 m/s) 2(9.8 m/s )(6.0 m) 13 m/s.v v gh      

 

(a) Here what matters is the difference in heights (between A and C): 

 
2 2 2

0 1 22 ( ) (7.0 m/s) 2(9.8 m/s )(4.0 m) 11.29 m/s 11m/s.v v g h h         

 

(c) Using the result from part (b), we see that its kinetic energy right at the beginning of 

its “rough slide” (heading horizontally toward D) is 
1

2
 m(11.29 m/s)

2
 = 63.7m (with SI 

units understood).  Note that we “carry along” the mass (as if it were a known quantity); 
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as we will see, it will cancel out, shortly. Using Eq. 8-31 (and Eq. 6-2 with FN = mg) we 

note that this kinetic energy will turn entirely into thermal energy 

 

63.7m = k mgd 

 

if d < L.  With k = 0.70, we find d = 9.3 m, which is indeed less than L (given in the 

problem as 12 m).  We conclude that the block stops before passing out of the “rough” 

region (and thus does not arrive at point D). 

 

87. THINK We have a ball attached to a rod that moves in a vertical circle. The total 

mechanical energy of the system is conserved. 

 

EXPRESS Let position A be the reference point for potential energy, 0AU  . The total 

mechanical energies at A, B and C are: 

 

 

2 2

0

2 2

2

1 1

2 2
1 1

2 2
1

2

A A A

B B B B

D D D

E mv U mv

E mv U mv mgL

E mv U mgL

  

   

  

 

 

where 0.Dv   The problem can be analyzed by applying energy conservation: 

A B DE E E  . 

 

ANALYZE (a) The condition A DE E  gives 

2

0 0

1
2

2
mv mgL v gL    

 

(b) To find the tension in the rod when the ball passes through B, we first calculate the 

speed at B. Using ,B DE E  we find  

21

2
Bmv mgL mgL   

 

or 4Bv gL . The direction of the centripetal acceleration is upward (at that moment), 

as is the tension force.  Thus, Newton’s second law gives 

 

 
2 (4 )

4Bmv m gL
T mg mg

r L
     

or T = 5mg. 

 

(c) The difference in height between C and D is L, so the “loss” of mechanical energy 

(which goes into thermal energy) is –mgL. 
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(d) The difference in height between B and D is 2L, so the total “loss” of mechanical 

energy (which all goes into thermal energy) is –2mgL.  

 

LEARN An alternative way to calculate the energy loss in (d) is to note that 

 

21
0

2
B B BE mv U mgL mgL        

which gives  

2 .B AE E E mgL mgL mgL         

 

88. (a) The initial kinetic energy is Ki  1
2

2
15 3 6 75. .b gb g J . 

 

(b) The work of gravity is the negative of its change in potential energy. At the highest 

point, all of Ki has converted into U (if we neglect air friction) so we conclude the work 

of gravity is –6.75 J. 

 

(c) And we conclude that U  6 75. J . 

 

(d) The potential energy there is U U Uf i   6 75. J . 

 

(e) If Uf = 0, then U U Ui f    675. J . 

 

(f) Since mg y U   , we obtain 0.459 my  . 

 

89. (a) By mechanical energy conversation, the kinetic energy as it reaches the floor 

(which we choose to be the U = 0 level) is the sum of the initial kinetic and potential 

energies:   

K = Ki + Ui = 
1

2
 (2.50 kg)(3.00 m/s)

2
 + (2.50 kg)(9.80 m/s

2
)(4.00 m) = 109 J. 

 

For later use, we note that the speed with which it reaches the ground is  

 

v = 2K/m  = 9.35 m/s. 

 

(b) When the drop in height is 2.00 m instead of 4.00 m, the kinetic energy is  

 

K = 
1

2
 (2.50 kg)(3.00 m/s)

2
 + (2.50 kg)(9.80 m/s

2
)(2.00 m) = 60.3 J. 

 

(c) A simple way to approach this is to imagine the can being launched from the ground 

at 0t   with a speed 9.35 m/s (see above) and calculate the height and speed at t = 

0.200 s, using Eq. 2-15 and Eq. 2-11:   
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 y = (9.35 m/s)(0.200 s) – 
1

2
 (9.80 m/s

2
)(0.200 s)

2
 = 1.67 m, 

 

             v = 9.35 m/s – (9.80 m/s
2
)(0.200 s) = 7.39 m/s. 

 

The kinetic energy is K = 
1

2
 (2.50 kg) (7.39 m/s)

2
 = 68.2 J. 

 

(d) The gravitational potential energy is 

 

U = mgy = (2.5 kg)(9.8 m/s
2
)(1.67 m) = 41.0 J . 

 

90. The free-body diagram for the trunk is shown below. The x and y applications of 

Newton's second law provide two equations:  

 

  F1 cos  – fk – mg sin   = ma 
 

FN – F1 sin  – mg cos   = 0. 

 

 
 

(a) The trunk is moving up the incline at constant velocity, so a = 0. Using fk = k FN, we 

solve for the push-force F1 and obtain 

 

F
mg k

k

1






sin cos

cos sin
.

  

  

b g
 

 

The work done by the push-force 

F1  as the trunk is pushed through a distance   up the 

inclined plane is therefore 

 

  

       
 

1 1

k

2

3

cos sin cos
cos

cos sin

50 kg 9.8 m s 6.0 m cos30 sin 30 0.20 cos30

cos30 0.20 sin 30

2.2 10 J.

kmg
W F

   


  


 



  


 

 

 

 

(b) The increase in the gravitational potential energy of the trunk is 
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2 3sin (50kg)(9.8m/s )(6.0m)sin30 1.5 10 J.U mg        

 

Since the speed (and, therefore, the kinetic energy) of the trunk is unchanged, Eq. 8-33 

leads to 

W U E1    th.  

 

Thus, using more precise numbers than are shown above, the increase in thermal energy 

(generated by the kinetic friction) is 2.24  10
3
 J – 1.47  10

3
 J = 7.7  10

2
 J. An alternate 

way to this result is to use E f kth    (Eq. 8-31). 

 

91. The initial height of the 2M block, shown in Fig. 8-69, is the y = 0 level in our 

computations of its value of Ug.  As that block drops, the spring stretches accordingly.  

Also, the kinetic energy Ksys is evaluated for the system, that is, for a total moving mass 

of 3M. 

 

(a) The conservation of energy, Eq. 8-17, leads to 

Ki + Ui = Ksys + Usys      0 + 0 = Ksys + (2M)g(–0.090) + 
1

2
 k(0.090)

2
 . 

 

Thus, with M = 2.0 kg, we obtain Ksys = 2.7 J. 

 

(b) The kinetic energy of the 2M block represents a fraction of the total kinetic energy: 

 

 
2

2

2

(2 ) / 2 2

(3 ) / 2 3

M

sys

K M v

K M v
  . 

Therefore, K2M = 
2

3
(2.7 J) = 1.8 J. 

 

(c) Here we let y = –d and solve for d. 

 

Ki + Ui = Ksys + Usys     0 + 0 = 0 + (2M)g(–d) + 
1

2
 kd

2
 . 

 

Thus, with M = 2.0 kg, we obtain d = 0.39 m. 

 

92. By energy conservation, 2 / 2mgh mv , the speed of the volcanic ash is given by 

2 .v gh  In our present problem, the height is related to the distance (on the  = 10º 

slope) d = 920 m by the trigonometric relation h = d sin. Thus,  

 

 22(9.8 m/s )(920 m)sin10 56 m/s.v     

 

93. (a) The assumption is that the slope of the bottom of the slide is horizontal, like the 

ground. A useful analogy is that of the pendulum of length R = 12 m that is pulled 
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leftward to an angle  (corresponding to being at the top of the slide at height h = 4.0 m) 

and released so that the pendulum swings to the lowest point (zero height) gaining speed 

v 6 2. .m s  Exactly as we would analyze the trigonometric relations in the pendulum 

problem, we find 

h R
h

R
    

F
HG
I
KJ  1 1 481cos cos b g  

 

or 0.84 radians. The slide, representing a circular arc of length s = R, is therefore (12 

m)(0.84) = 10 m long. 

 

(b) To find the magnitude f of the frictional force, we use Eq. 8-31 (with W = 0): 

 

0

1

2

2

  

  

  K U E

mv mgh fs

th

 

 

so that (with m = 25 kg) we obtain f = 49 N. 

 

(c) The assumption is no longer that the slope of the bottom of the slide is horizontal, but 

rather that the slope of the top of the slide is vertical (and 12 m to the left of the center of 

curvature). Returning to the pendulum analogy, this corresponds to releasing the 

pendulum from horizontal (at 1 = 90° measured from vertical) and taking a snapshot of 

its motion a few moments later when it is at angle 2 with speed v = 6.2 m/s. The 

difference in height between these two positions is (just as we would figure for the 

pendulum of length R) 

h R R R     1 12 1 2cos cos cos  b g b g  

 

where we have used the fact that cos 1 = 0. Thus, with h = –4.0 m, we obtain 2 = 

70.5° which means the arc subtends an angle of || = 19.5° or 0.34 radians. Multiplying 

this by the radius gives a slide length of s' = 4.1 m. 

 

(d) We again find the magnitude f ' of the frictional force by using Eq. 8-31 (with W = 0): 

 

0

1

2

2

  

    

  K U E

mv mgh f s

th

 

so that we obtain f ' = 1.2  10
2
 N. 

 

94. We use P = Fv to compute the force: 

 

F
P

v
 



F
HG

I
KJ
F
HG

I
KJ
 

92 10

32 5 1852
1000

3600

55 10
6

6W

knot
km h

knot

m km

s h

N.

. .

.

b g
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95. This can be worked entirely by the methods of Chapters 2–6, but we will use energy 

methods in as many steps as possible. 

 

(a) By a force analysis in the style of Chapter 6, we find the normal force has magnitude 

FN = mg cos  (where  = 39°), which means fk = k mg cos  where k = 0.28. Thus, Eq. 

8-31 yields 

Eth = fk d = k mgd cos . 

 

Also, elementary trigonometry leads us to conclude that U = –mgd sin  where 

3.7 md  . Since Ki = 0, Eq. 8-33 (with W = 0) indicates that the final kinetic energy is 

 

K U E mgdf k      th  (sin cos )    

 

which leads to the speed at the bottom of the ramp 

 

v
K

m
gd

f

k   
2

2 55  m s.sin cos .  b g  

 

(b) This speed begins its horizontal motion, where fk = k mg and U = 0. It slides a 

distance d' before it stops. According to Eq. 8-31 (with W = 0), 

 

0

0
1

2
0

1

2
2

2

  

    

    

 K U E

mv mgd

gd gd

k

k k

 th

  

   



   sin cosb gc h

 

 

where we have divided by mass and substituted from part (a) in the last step. Therefore, 

 

 


d
d k

k

sin cos
. .

  



b g
54 m  

 

(c) We see from the algebraic form of the results, above, that the answers do not depend 

on mass. A 90 kg crate should have the same speed at the bottom and sliding distance 

across the floor, to the extent that the friction relations in Chapter 6 are accurate. 

Interestingly, since g does not appear in the relation for d', the sliding distance would 

seem to be the same if the experiment were performed on Mars! 

 

96. (a) The loss of the initial K = 
1

2
 mv

2
 = 

1

2
 (70 kg)(10 m/s)

2
 is 3500 J, or 3.5 kJ. 

 

(b) This is dissipated as thermal energy; Eth = 3500 J = 3.5 kJ.  
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97. Eq. 8-33 gives 
thf i imgy K mgy E   , or 

 

 (0.50 kg)(9.8 m/s
2
)(0.80 m) = 

1

2
 (0.50 kg)(4.00 /s)

2
 + (0.50 kg)(9.8 m/s

2
)(0) – Eth 

 

which yields Eth = 4.00 J – 3.92 J = 0.080 J. 

 

98. Since the period T is (2.5 rev/s)
1

 = 0.40 s, then Eq. 4-33 leads to v = 3.14 m/s.  The 

frictional force has magnitude (using Eq. 6-2)   

 

f = k FN = (0.320)(180 N) = 57.6 N. 

 

The power dissipated by the friction must equal that supplied by the motor, so Eq. 7-48 

gives P = (57.6 N)(3.14 m/s) = 181 W. 

 

99. To swim at constant velocity the swimmer must push back against the water with a 

force of 110 N. Relative to him the water is going at 0.22 m/s toward his rear, in the same 

direction as his force. Using Eq. 7-48, his power output is obtained: 

 

P F v Fv    
 

110 022 24N m s W.b gb g.  

 

100. The initial kinetic energy of the automobile of mass m moving at speed vi is 

K mvi i
1

2

2 , where m = 16400/9.8 = 1673 kg. Using Eq. 8-31 and Eq. 8-33, this relates to 

the effect of friction force f in stopping the auto over a distance d by K fdi  , where the 

road is assumed level (so U = 0). With 

 

   113 km/h 113 km/h (1000 m/km)(1 h/3600 s) 31.4 m/s,iv     

 

we obtain 

 

 

22 1673kg (31.4 m/s)
100m.

2 2 8230 N

i iK mv
d

f f
     

 

101. With the potential energy reference level set at the point of throwing, we have (with 

SI units understood) 

E mgh mv m   
F
HG

I
KJ

1

2
9 8 81

1

2
140

2 2
. .b gb g b g  

 

which yields E = –12 J for m = 0.63 kg. This “loss” of mechanical energy is presumably 

due to air friction. 

 

102. (a) The (internal) energy the climber must convert to gravitational potential energy 

is 
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   2 690 kg 9.80 m/s 8850 m 7.8 10 J.U mgh      

 

(b) The number of candy bars this corresponds to is 

 
6

6

7.8 10 J
6.2bars.

1.25 10 J bar
N


 


 

 

103. (a) The acceleration of the sprinter is (using Eq. 2-15) 

 

a
x

t
  

2 2 7 0

16
547

2 2

2 b gb g
b g

.

.
. .

m

s
m s  

 

Consequently, the speed at t = 1.6s is v at  547 16 88. . . .m s s m s2c hb g  Alternatively, 

Eq. 2-17 could be used. 

 

(b) The kinetic energy of the sprinter (of weight w and mass m = w/g) is 

 

  
22 2 2 31 1 1

670 N/(9.8 m/s ) 8.8 m/s 2.6 10 J.
2 2 2

w
K mv v

g

 
     

 
 

 

(c) The average power is 
3

3

avg

2.6 10 J
1.6 10 W.

1.6 s

K
P

t

 
   


 

 

104. From Eq. 8-6, we find (with SI units understood) 

 

U x x dx  
b g c h     z 3 5

3

2

5

3

2

0

2 3 .  

 

(a) Using the above formula, we obtain U(2)  19 J. 

 

(b) When its speed is v = 4 m/s, its mechanical energy is 1
2

2 5mv U b g . This must equal 

the energy at the origin: 

1

2
5

1

2
02 2mv U mv U  b g b go  

 

so that the speed at the origin is 

v v
m

U Uo   2 2
5 0b g b gc h.  

 

Thus, with U(5) = 246 J, U(0) = 0 and m = 20 kg, we obtain vo = 6.4 m/s. 
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(c) Our original formula for U is changed to  

 

 2 33 5
( ) 8

2 3
U x x x     

 

in this case. Therefore, U(2) = 11 J. But we still have vo = 6.4 m/s since that calculation 

only depended on the difference of potential energy values (specifically, U(5) – U(0)). 

 

105. (a) Resolving the gravitational force into components and applying Newton’s second 

law (as well as Eq. 6-2), we find  

  

Fmachine – mg sin – k mg cos = ma. 

 

In the situation described in the problem, we have a = 0, so 

 

Fmachine = mg sin+ k mg cos = 372 N. 

 

Thus, the work done by the machine is Fmachined = 744 J = 7.4  10
2 
J. 

 

(b) The thermal energy generated is (k mg cosd = 240 J = 2.4  10
2 
J.  

 

106. (a) At the highest point, the velocity v = vx is purely horizontal and is equal to the 

horizontal component of the launch velocity (see section 4-6): vox = vo cos, where 

30   in this problem. Equation 8-17 relates the kinetic energy at the highest point to 

the launch kinetic energy: 

     Ko  = mg y + 
1

2
 mv

2
 = 

1

2
 mvox

2
 + 

1

2
 mvoy

2
, 

 

with y = 1.83 m. Since the mvox
2
/2 term on the left-hand side cancels the mv

2
/2 term on 

the right-hand side, this yields voy = 2gy  6 m/s. With voy = vo sin, we obtain  

 

vo = 11.98 m/s  12 m/s. 

 

(b) Energy conservation (including now the energy stored elastically in the spring, Eq. 

8-11) also applies to the motion along the muzzle (through a distance d that corresponds 

to a vertical height increase of d sin ): 

 
1

2
 kd

2
 = Ko + mg d sin     d = 0.11 m. 

 

107. The work done by 

F  is the negative of its potential energy change (see Eq. 8-6), 

so UB = UA – 25 = 15 J. 
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108. (a) We assume his mass is between m1 = 50 kg and m2 = 70 kg (corresponding to a 

weight between 110 lb and 154 lb). His increase in gravitational potential energy is 

therefore in the range 

 
5 5

1 2 2 10 3 10m gh U m gh U          

 

in SI units (J), where h = 443 m. 

 

(b) The problem only asks for the amount of internal energy that converts into 

gravitational potential energy, so this result is the same as in part (a). But if we were to 

consider his total internal energy “output” (much of which converts to heat) we can 

expect that external climb is quite different from taking the stairs. 

 

109. (a) We implement Eq. 8-37 as 

 

Kf  = Ki + mgyi – fk d = 0 + (60 kg)(9.8 m/s
2
)(4.0 m) – 0 = 2.35  10

3
 J. 

 

(b) Now it applies with a nonzero thermal term: 

 

Kf = Ki + mgyi – fk d = 0 + (60 kg)(9.8 m/s
2
)(4.0 m) – (500 N)(4.0 m) = 352 J. 

 

110. We take the bottom of the incline to be the y = 0 reference level. The incline angle is 

30   . The distance along the incline d (measured from the bottom) is related to height 

y by the relation y = d sin . 

 

(a) Using the conservation of energy, we have 

 

K U K U mv mgy0 0 0

21

2
0 0      top top  

 

with v0 50 . m s . This yields y = 1.3 m, from which we obtain d = 2.6 m. 

 

(b) An analysis of forces in the manner of Chapter 6 reveals that the magnitude of the 

friction force is fk = kmg cos . Now, we write Eq. 8-33 as 

 

K U K U f d

mv mgy f d

mv mgd mgd

k

k

k

0 0

0

2

0

2

1

2
0 0

1

2

   

   

 

top top

sin cos  

 

 

which — upon canceling the mass and rearranging — provides the result for d: 
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d
v

g k




0

2

2
15

  cos sin
.b g m .  

 

(c) The thermal energy generated by friction is fkd = k mgd cos  = 26 J. 

 

(d) The slide back down, from the height y = 1.5 sin 30º, is also described by Eq. 8-33. 

With Eth  again equal to 26 J, we have 

 

K U K U f d mgy mvktop top bot bot bot        0
1

2
0 262  

 

from which we find vbot m s 21. . 

 

111. Equation 8-8 leads directly to y = 
68000 J

(9.4 kg)(9.8 m/s
2
)
  = 738 m. 

 

112. We assume his initial kinetic energy (when he jumps) is negligible. Then, his initial 

gravitational potential energy measured relative to where he momentarily stops is what 

becomes the elastic potential energy of the stretched net (neglecting air friction). Thus, 

 

U U mghnet grav   

 

where h = 11.0 m + 1.5 m = 12.5 m. With m = 70 kg, we obtain Unet = 8580 J. 

 

113. We use SI units so m = 0.030 kg and d = 0.12 m. 

 

(a) Since there is no change in height (and we assume no changes in elastic potential 

energy), then U = 0 and we have 

 2 3

mech 0

1
3.8 10  J

2
E K mv         

 

where v0 = 500 m/s and the final speed is zero. 

 

(b) By Eq. 8-33 (with W = 0) we have Eth = 3.8  10
3
 J, which implies 

 

f
E

d
  
 th  N31 104.  

 

using Eq. 8-31 with fk replaced by f (effectively generalizing that equation to include a 

greater variety of dissipative forces than just those obeying Eq. 6-2). 

 

114. (a) The kinetic energy K of the automobile of mass m at t = 30 s is 
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K mv 
F
HG

I
KJ

F
HG

I
KJ  

1

2

1

2
1500 72

1000

3600
30 102

2

5kg km h
m km

s h
J .b g b g .  

 

(b) The average power required is 

 

P
K

t
avg

J

s
W. 


 





30 10

30
10 10

5
4.

.  

 

(c) Since the acceleration a is constant, the power is P = Fv = mav = ma(at) = ma
2
t using 

Eq. 2-11. By contrast, from part (b), the average power is P
mv

t
avg 

2

2
, which becomes 

1

2

2ma t  when v = at is again utilized. Thus, the instantaneous power at the end of the 

interval is twice the average power during it:  

 

P P    2 2 10 10 2 0 104 4

avg W W.b gc h. .  

 

115. (a) The initial kinetic energy is 2(1.5 kg)(20 m/s) / 2 300 J.iK    

 

(b) At the point of maximum height, the vertical component of velocity vanishes but the 

horizontal component remains what it was when it was “shot” (if we neglect air friction). 

Its kinetic energy at that moment is 

 

 
21

(1.5 kg) (20 m/s)cos34 206 J.
2

K     

 

Thus,  U = Ki – K = 300 J – 206 J = 93.8 J. 

 

(c) Since  U = mg y, we obtain 
2

94 J
6.38 m

(1.5 kg)(9.8 m/s )
y   . 

 

116. (a) The rate of change of the gravitational potential energy is 

 

dU

dt
mg

dy

dt
mg v       68 9 8 59 39 104b gb gb g. . J s.  

 

Thus, the gravitational energy is being reduced at the rate of 3.9  10
4
 W. 

 

(b) Since the velocity is constant, the rate of change of the kinetic energy is zero. Thus 

the rate at which the mechanical energy is being dissipated is the same as that of the 

gravitational potential energy (3.9  10
4
 W). 

 



  CHAPTER 8 

 

402 

117. (a) The effect of (sliding) friction is described in terms of energy dissipated as 

shown in Eq. 8-31. We have 

 

E K k k f k    
1

2
0 08

1

2
010 0 02

2 2
. . .b g b g b g  

 

where distances are in meters and energies are in joules. With k = 4000 N/m and 

80 N,kf  we obtain K = 5.6 J. 

 

(b) In this case, we have d = 0.10 m. Thus, 

 

E K k f k    0
1

2
010 010

2
. .b g b g  

which leads to K = 12 J. 

 

(c) We can approach this two ways. One way is to examine the dependence of energy on 

the variable d: 

E K k d d kd f dk     
1

2

1

2
0

2

0

2b g  

 

where d0 = 0.10 m, and solving for K as a function of d: 

 

K kd kd d f dk   
1

2

2

0b g . 

In this first approach, we could work through the / ( ) 0dK d d   condition (or with the 

special capabilities of a graphing calculator) to obtain the answer K
k

kd f kmax  
1

2
0

2b g .  

In the second (and perhaps easier) approach, we note that K is maximum where v is 

maximum — which is where a  0  equilibrium of forces. Thus, the second approach 

simply solves for the equilibrium position 

 

F f kxkspring    80. 

 

Thus, with k = 4000 N/m we obtain x = 0.02 m. But x = d0 – d so this corresponds to d = 

0.08 m. Then the methods of part (a) lead to the answer Kmax = 12.8 J  13 J. 

 

118. We work this in SI units and convert to horsepower in the last step. Thus, 

 

v 
F
HG

I
KJ 80

1000

3600
22 2km h

m km

s h
m sb g . .  

 

The force FP needed to propel the car (of weight w and mass m = w/g) is found from 

Newton’s second law: 
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F F F ma
wa

g
Pnet      

 

where F = 300 + 1.8v
2
 in SI units. Therefore, the power required is  

 

 
  

 

 

2 4

4

12000 0.92
300 1.8 22.2 22.2 5.14 10  W

9.8

1 hp
5.14 10  W 69 hp.

746 W

P

wa
P F v F v

g

  
          

   

 
   

 

 

 

119. THINK We apply energy method to analyze the projectile motion of a ball.  

 

EXPRESS We choose the initial position at the window to be our reference point for 

calculating the potential energy. The initial energy of the ball is 2

0 0

1
.

2
E mv  At the top 

of its flight, the vertical component of the velocity is zero, and the horizontal component 

(neglecting air friction) is the same as it was when it was thrown: 0 cosxv v  .  At a 

position h below the window, the energy of the ball is  

 

21

2
E K U mv mgh     

 where v is the speed of the ball. 

 

ANALYZE (a) The kinetic energy of the ball at the top of the flight is 

 

2 2 2

top 0

1 1 1
( cos ) (0.050 kg)[(8.0 m/s)cos30 ] 1.2 J

2 2 2
xK mv m v      . 

 

(b) When the ball is h = 3.0 m below the window, by energy conservation, we have  

 

2 2

0

1 1

2 2
mv mv mgh   

or  

2 2 2

0 2 (8.0 m/s) 2(9.8 m/s )(3.0 m) 11.1m/sv v gh     . 

 

(c) As can be seen from our expression above, 2

0 2 ,v v gh   which is independent of 

the mass m.  

 

(d) Similarly, the speed v is independent of the initial angle .  
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LEARN Our results demonstrate that the quantity v in the kinetic energy formula is the 

magnitude of the velocity vector; it does not depend on direction. In addition, mass 

cancels out in the energy conservation equation, so that v is independent of m.  

 

120. (a) In the initial situation, the elongation was (using Eq. 8-11)   

 

xi = 2(1.44)/3200 = 0.030 m (or 3.0 cm). 

 

In the next situation, the elongation is only 2.0 cm (or 0.020 m), so we now have less 

stored energy (relative to what we had initially). Specifically,  

 

U = 
1

2
 (3200 N/m)(0.020 m)

2
 – 1.44 J = –0.80 J. 

 

(b) The elastic stored energy for |x| = 0.020 m does not depend on whether this represents 

a stretch or a compression. The answer is the same as in part (a), U = –0.80 J. 

 

(c) Now we have |x| = 0.040 m, which is greater than xi, so this represents an increase in 

the potential energy (relative to what we had initially). Specifically,



U = 
1

2
 (3200 N/m)(0.040 m)

2
 – 1.44 J = +1.12 J 1.1 J . 

 

121. (a) With P = 1.5 MW = 1.5  10
6
 W (assumed constant) and t = 6.0 min = 360 s, the 

work-kinetic energy theorem becomes 

 

W Pt K m v vf i   
1

2

2 2d i. 
The mass of the locomotive is then 

 

m
Pt

v vf i








 

2 2 15 10 360

25 10
21 10

2 2

6

2 2

6
b gc hb g
b g b g

.
.

W s

m s m s
kg.  

 

(b) With t arbitrary, we use Pt m v vi 
1

2

2 2c h  to solve for the speed v = v(t) as a 

function of time and obtain 

 

v t v
Pt

m

t
tib g b g b gc h

   



 2 2

6

6

2
10

2 15 10

21 10
100 15

.

.
.  

 

in SI units (v in m/s and t in s). 

 

(c) The force F(t) as a function of time is 
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F t
P

v t t
b g b g 





15 10

100 15

6.

.
 

in SI units (F in N and t in s). 

 

(d) The distance d the train moved is given by 

 

 

360
1/ 2 3/ 2

360
3

0 0

0

3 4 3
( ) 100 100 6.7 10  m.

2 9 2

t

d v t dt t dt t
   

          
   

   

 

122. THINK A shuffleboard disk is accelerated over some distance by an external force, 

but it eventually comes to rest due to the frictional force.  

 

EXPRESS In the presence of frictional force, the work done on a system is 

mech th ,W E E    where mechE K U     and th .kE f d   In our situation, work 

has been done by the cue only to the first 2.0 m, and not to the subsequent 12 m of 

distance traveled.   

 

ANALYZE (a) During the final d = 12 m of motion, 0W   and we use 

 

 
1 1 2 2

21
0 0 0

2

k

k

K U K U f d

mv f d

   

   
 

 

where 0.42 kgm  and v = 4.2 m/s. This gives fk = 0.31 N. Therefore, the thermal 

energy change is th 3.7 J.kE f d    

 

(b) Using fk = 0.31 N for the entire distance dtotal = 14 m, we obtain  

 

th,total total (0.31 N)(14 m) 4.3 JkE f d     

 

for the thermal energy generated by friction. 

 

(c) During the initial d' = 2 m of motion, we have 

 

2

mech th

1
0

2
k kW E E K U f d mv f d             

 

which essentially combines Eq. 8-31 and Eq. 8-33. Thus, the work done on the disk by 

the cue is 

2 21 1
(0.42 kg)(4.2 m/s) (0.31 N)(2.0 m) 4.3 J

2 2
kW mv f d      . 
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LEARN Our answer in (c) is the same as that in (b). This is expected because all the 

work done becomes thermal energy at the end.  

 

123. The water has gained  

 

K = 
1

2
 (10 kg)(13 m/s)

2
 – 

1

2
 (10 kg)(3.2 m/s)

2
 = 794 J 

 

of kinetic energy, and it has lost U = (10 kg)(9.8 m/s
2
)(15 m) = 1470 J . 

 

of potential energy (the lack of agreement between these two values is presumably due to 

transfer of energy into thermal forms).  The ratio of these values is 0.54 = 54%. The 

mass of the water cancels when we take the ratio, so that the assumption (stated at the end 

of the problem: m = 10 kg) is not needed for the final result. 

 

124. (a) The integral (see Eq. 8-6, where the value of U at x =  is required to vanish) is 

straightforward. The result is U(x) = Gm1m2/x. 

 

(b) One approach is to use Eq. 8-5, which means that we are effectively doing the integral 

of part (a) all over again.  Another approach is to use our result from part (a) (and thus 

use Eq. 8-1). Either way, we arrive at 

 

W = 
G m1 m2

 x1
 

G m1 m2

 x1+ d
 = 

G m1 m2 d

 x1(x1 + d)
 . 

 

125. (a) During one second, the decrease in potential energy is 

 

       U mg y( ) ( .55 106  kg) 9.8m s  (50 m) 2.7 10  J
2 9d i  

 

where +y is upward and y = yf – yi. 

 

(b) The information relating mass to volume is not needed in the computation. By Eq.  

8-40 (and the SI relation W = J/s), the result follows:  

 

P = (2.7  10
9
 J)/(1 s) = 2.7  10

9
 W. 

 

(c) One year is equivalent to 24  365.25 = 8766 h which we write as 8.77 kh. Thus, the 

energy supply rate multiplied by the cost and by the time is 

 

( . .2 7 10 2 4 109 10
F
HG

I
KJ  W)(8.77 kh)

1 cent

1 kWh
cents  = $2.4  10

8
. 

 

126. The connection between angle  (measured from vertical) and height h (measured 

from the lowest point, which is our choice of reference position in computing the 
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gravitational potential energy) is given by h = L(1 – cos ) where L is the length of the 

pendulum. 

 

(a) We use energy conservation in the form of Eq. 8-17. 

 

K U K U

mgL mv mgL

1 1 2 2

1 2

2

20 1
1

2
1

  

    cos cos b g b g  

 

With L = 1.4 m, 1 = 30°, and 2 = 20°, we have 

 

v gL2 2 12 14  cos cos . b g m s. 

 

(b) The maximum speed v3 is at the lowest point. Our formula for h gives h3 = 0 when 3 

= 0°, as expected. From 

K U K U

mgL mv

1 1 3 3

1 3

20 1
1

2
0

  

   cosb g  

we obtain v3 19 . m s . 

 

(c) We look for an angle 4 such that the speed there is v v4 3 3 . To be as accurate as 

possible, we proceed algebraically (substituting v gL3

2

12 1  cosb g  at the appropriate 

place) and plug numbers in at the end. Energy conservation leads to 

 

K U K U

mgL mv mgL

mgL m
v

mgL

gL
gL

gL

1 1 4 4

1 4

2

4

1
3

2

4

1

1

4

0 1
1

2
1

1
1

2 9
1

1

2

2 1

9

  

    

   

 




cos cos

cos cos

cos
cos

cos

 

 






b g b g

b g b g
b g

 

 

where in the last step we have subtracted out mgL and then divided by m. Thus, we obtain 

 

 1

4 1

1 8
cos cos 28.2 28 .

9 9
   

      
 

 

 

127. Equating the mechanical energy at his initial position (as he emerges from the canon, 

where we set the reference level for computing potential energy) to his energy as he lands, 

we obtain 
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K K U

K

i f f

f

 

 
1

2
60 16 60 9 8 39

2
kg m s kg m s m2b gb g b gc hb g. .

 

 

which leads to Kf = 5.4  10
3
 J. 

 

128. (a) This part is essentially a free-fall problem, which can be easily done with 

Chapter 2 methods. Instead, choosing energy methods, we take y = 0 to be the ground 

level. 

K U K U mgy mvi i i      0
1

2
02  

 

Therefore v gyi 2 9 2. m s , where yi = 4.3 m. 

 

(b) Eq. 8-29 provides Eth = fkd for thermal energy generated by the kinetic friction force. 

We apply Eq. 8-31: 

 

K U K U mgy mv f di i i k       0
1

2
02 .

.
 

 

With d = yi, m = 70 kg and fk = 500 N, this yields v = 4.8 m/s. 

 

129. We want to convert (at least in theory) the water that falls through h = 500 m into 

electrical energy. The problem indicates that in one year, a volume of water equal to Az 

lands in the form of rain on the country, where A = 8  10
12

 m
2
 and z = 0.75 m. 

Multiplying this volume by the density  = 1000 kg/m
3
 leads to 

 

m A ztotal kg      1000 8 10 0 75 6 1012 15b gc hb g.  

 

for the mass of rainwater. One-third of this “falls” to the ocean, so it is m = 2  10
15

 kg 

that we want to use in computing the gravitational potential energy mgh (which will turn 

into electrical energy during the year). Since a year is equivalent to 3.2  10
7
 s, we obtain 

 

Pavg W.



 

2 10 9 8 500

32 10
31 10

15

7

11
c hb gb g.

.
.  

 

130. The spring is relaxed at y = 0, so the elastic potential energy (Eq. 8-11) is 

U kyel 
1
2

2 . The total energy is conserved, and is zero (determined by evaluating it at its 

initial position). We note that U is the same as U in these manipulations. Thus, we have 

 

0       K U U K U Ug e g e  
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where Ug = mgy = (20 N)y with y in meters (so that the energies are in Joules). We 

arrange the results in a table: 

 

position y –0.05 –0.10 –0.15 –0.20 

K (a) 0.75 (d) 1.0 (g) 0.75 (j) 0 

Ug (b) –1.0 (e) –2.0 (h) –3.0 (k) –4.0 

Ue (c) 0.25 (f) 1.0 (i) 2.25 (l) 4.0 

 

131. Let the amount of stretch of the spring be x. For the object to be in equilibrium 

 

kx mg x mg k   0 .  

 

Thus the gain in elastic potential energy for the spring is 

 

U kx k
mg

k

m g

k
e  

F
HG
I
KJ 

1

2

1

2 2

2

2 2 2

 

 

while the loss in the gravitational potential energy of the system is 

 

  
F
HG
I
KJ U mgx mg

mg

k

m g

k
g

2 2

 

 

which we see (by comparing with the previous expression) is equal to 2Ue. The reason 

why U Ug e   is that, since the object is slowly lowered, an upward external force 

(e.g., due to the hand) must have been exerted on the object during the lowering process, 

preventing it from accelerating downward. This force does negative work on the object, 

reducing the total mechanical energy of the system. 

 

132. (a) The compression is “spring-like” so the maximum force relates to the distance x 

by Hooke's law: 

F kx xx m.  



750

2 5 10
0 0030

5.
.  

 

(b) The work is what produces the “spring-like” potential energy associated with the 

compression. Thus, using Eq. 8-11, 

 

2 5 21 1
(2.5 10 )(0.0030) 1.1J.

2 2
W kx     
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(c) By Newton's third law, the force F exerted by the tooth is equal and opposite to the 

“spring-like” force exerted by the licorice, so the graph of F is a straight line of slope k. 

We plot F (in newtons) versus x (in millimeters); both are taken as positive. 

 

 
 

(d) As mentioned in part (b), the spring potential energy expression is relevant. Now, 

whether or not we can ignore dissipative processes is a deeper question. In other words, it 

seems unlikely that — if the tooth at any moment were to reverse its motion — that the 

licorice could “spring back” to its original shape. Still, to the extent that U kx
1

2

2  

applies, the graph is a parabola (not shown here) which has its vertex at the origin and is 

either concave upward or concave downward depending on how one wishes to define the 

sign of F (the connection being F = –dU/dx). 

 

(e) As a crude estimate, the area under the curve is roughly half the area of the entire 

plotting-area (8000 N by 12 mm). This leads to an approximate work of  

1

2
(8000 N) (0.012 m)  50 J. Estimates in the range 40  W  50 J are acceptable. 

 

(f) Certainly dissipative effects dominate this process, and we cannot assign it a 

meaningful potential energy. 

 

133. (a) The force (SI units understood) from Eq. 8-20 is plotted in the graph below. 

 

 
 

(b) The potential energy U(x) and the kinetic energy K(x) are shown in the next.  The 

potential energy curve begins at 4 and drops (until about x = 2); the kinetic energy curve 

is the one that starts at zero and rises (until about x = 2). 
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134. The style of reasoning used here is presented in Section 8-5. 

 

(a) The horizontal line representing E1 intersects the potential energy curve at a value of r 

 0.07 nm and seems not to intersect the curve at larger r (though this is somewhat 

unclear since U (r) is graphed only up to r = 0.4 nm). Thus, if m were propelled towards 

M from large r with energy E1 it would “turn around” at 0.07 nm and head back in the 

direction from which it came. 

 

(b) The line representing E2 has two intersection points r1  0.16 nm and r2  0.28 nm 

with the U (r) plot. Thus, if m starts in the region r1 < r < r2 with energy E2 it will bounce 

back and forth between these two points, presumably forever. 

 

(c) At r = 0.3 nm, the potential energy is roughly U = –1.1  10
–19

 J. 

 

(d) With M > > m, the kinetic energy is essentially just that of m. Since E = 1  10
–19

 J, its 

kinetic energy is K = E – U  2.1  10
–19

 J. 

 

(e) Since force is related to the slope of the curve, we must (crudely) estimate 

F   1 10 9 N  at this point. The sign of the slope is positive, so by Eq. 8-20, the force is 

negative-valued. This is interpreted to mean that the atoms are attracted to each other. 

 

(f) Recalling our remarks in the previous part, we see that the sign of F is positive 

(meaning it's repulsive) for r < 0.2 nm. 

 

(g) And the sign of F is negative (attractive) for r > 0.2 nm. 

 

(h) At r = 0.2 nm, the slope (hence, F) vanishes. 

 

135. The distance traveled up the incline can be calculated using the kinematic equations 

discussed in Chapter 2: 

v v a x x2

0

2 2 200     m . 

 

This corresponds to an increase in height equal to (200 m)sin 17 m,y    

where 5.0   . We take its initial height to be y = 0. 
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(a) Eq. 8-24 leads to 

W E m v v mgyapp    
1

2

2

0

2c h . 

 

Therefore, E  8 6 103. J . 

 

(b) From the above manipulation, we see Wapp = 8.6  10
3
 J. Also, from Chapter 2, we 

know that  t v a 10 s . Thus, using Eq. 7-42, 

 

P
W

t
avg W 






8 6 10

10
860

3.
 

 

where the answer has been rounded off (from the 856 value that is provided by the 

calculator). 

 

(c) and (d) Taking into account the component of gravity along the incline surface, the 

applied force is ma + mg sin  = 43 N and clearly in the direction of motion, so Eq. 7-48 

provides the results for instantaneous power 

 

P F v
v

v
  





RST
  430 10

1300 30

W for m / s

W for m / s
 

 

where these answers have been rounded off (from 428 and 1284, respectively). We note 

that the average of these two values agrees with the result in part (b). 

 

136. (a) Conservation of mechanical energy leads to 

 

2 2 21 1 1
0 ( )

2 2 2
i i f f i f f i fK U K U ky mv k y y mgy          

 

where 0.25 miy  is the initial depression of the spring, and f iy y  is the displacement 

of the spring from its equilibrium position when the block is at yf . Thus, the kinetic 

energy of the block can be written as 

  

2 2 21 1
( )

2 2
f f i f i fK mv k y y y mgy       . 

 

For 0,fy   the kinetic energy is 0,fK  as expected, since this corresponds to the initial 

release point.  

 

(b) At 0.050 m,fy  we have 
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2 2

2 2

1
( )

2

1
(620 N/m) (0.250 m) (0.050 m 0.250 m) (50 N)(0.050 m) 4.48 J

2

f i f i fK k y y y mgy     

      

 

 

(c) At 0.100 m,fy  we have 

2 2

2 2

1
( )

2

1
(620 N/m) (0.250 m) (0.100 m 0.250 m) (50 N)(0.100 m) 7.40 J

2

f i f i fK k y y y mgy     

      

 

 

(d) Similarly, the kinetic energy at 0.150 mfy  is 

2 2

2 2

1
( )

2

1
(620 N/m) (0.250 m) (0.150 m 0.250 m) (50 N)(0.150 m) 8.78 J

2

f i f i fK k y y y mgy     

      

 

 

(e) At 0.200 m,fy   the kinetic energy of the block is 

2 2

2 2

1
( )

2

1
(620 N/m) (0.250 m) (0.200 m 0.250 m) (50 N)(0.200 m) 8.60 J

2

f i f i fK k y y y mgy     

      

 

 

(f) The spring returns to its uncompressed state once .f iy y  Since the block becomes 

detached from the spring beyond that point, at its maximum height, K = 0, and we have 

 
2 2

2

max max

1 (620 N/m)(0.250 m)
0.388 m

2 2 2(50 N)

i
i

ky
ky mgy y

mg
     . 


