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Chapter 4 
 

 

1. (a) The magnitude of 

r  is 

 
2 2 2| | (5.0 m) ( 3.0 m) (2.0 m) 6.2 m.r       

 

(b) A sketch is shown. The coordinate values are in 

meters. 

 

2. (a) The position vector, according to Eq. 4-1, is ˆ ˆ= ( 5.0 m) i + (8.0 m)jr  . 

 

(b) The magnitude is 2 2 2 2 2 2| |  +  +  ( 5.0 m) (8.0 m) (0 m)  9.4 m.r x y z       

 

(c) Many calculators have polar   rectangular conversion capabilities that make this 

computation more efficient than what is shown below. Noting that the vector lies in the 

xy plane and using Eq. 3-6, we obtain: 

 

1 8.0 m
tan 58   or  122

5.0 m
   
     

 
 

 

where the latter possibility (122° measured counterclockwise from the +x 

direction) is chosen since the signs of the components imply the vector is 

in the second quadrant. 

 

(d) The sketch is shown to the right. The vector is 122° counterclockwise 

from the +x direction.  

 

(e) The displacement is r r r   where 

r  is given in part (a) and 

ˆ (3.0 m)i.r  Therefore, ˆ ˆ(8.0 m)i (8.0 m)jr   . 

 

(f) The magnitude of the displacement is 

 
2 2| | (8.0 m) ( 8.0 m) 11 m.r      

 

(g) The angle for the displacement, using Eq. 3-6, is  

 

1 8.0 m
tan  = 45   or  135

8.0 m

  
   

 
 

 



 CHAPTER 4 124 

where we choose the former possibility (45°, or 45° measured clockwise from +x) since 

the signs of the components imply the vector is in the fourth quadrant. A sketch of r  is 

shown on the right. 

 

3. The initial position vector  

ro  satisfies 

  
r r r o  , which results in 

 

o
ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ(3.0j 4.0k)m (2.0i 3.0j 6.0k)m ( 2.0 m) i (6.0 m) j ( 10 m)kr r r            . 

 

4. We choose a coordinate system with origin at the clock center and +x rightward 

(toward the “3:00” position) and +y upward (toward “12:00”). 

 

(a) In unit-vector notation, we have 
1 2

ˆ ˆ(10 cm)i  and  ( 10 cm)j.r r   Thus, Eq. 4-2 gives 

 

2 1
ˆ ˆ( 10 cm)i ( 10 cm)j.r r r        

 

The magnitude is given by 2 2| | ( 10 cm) ( 10 cm) 14 cm.r       

 

(b) Using Eq. 3-6, the angle is  

 

 1 10 cm
tan 45  or 135 .

10 cm
   
     

 
 

 

We choose 135  since the desired angle is in the third quadrant. In terms of the 

magnitude-angle notation, one may write 

 

2 1
ˆ ˆ( 10 cm)i ( 10 cm)j (14cm 135 ).r r r            

 

(c) In this case, we have
1 2

ˆ ˆ ˆ( 10 cm)j and (10 cm)j, and  (20 cm)j.r r r      Thus, 

| | 20 cm.r   

 

(d) Using Eq. 3-6, the angle is given by 

 

1 20 cm
tan 90 .

0 cm
   
   

 
 

 

(e) In a full-hour sweep, the hand returns to its starting position, and the displacement is 

zero. 

 

(f) The corresponding angle for a full-hour sweep is also zero.  
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5. THINK This problem deals with the motion of a train in two dimensions. The entire 

trip consists of three parts, and we’re interested in the overall average velocity. 

 

EXPRESS The average velocity of the entire trip is given by Eq. 4-8, avg / ,v r t   

where the total displacement 
1 2 3r r r r      is the sum of three displacements (each 

result of a constant velocity during a given time), and 1 2 3t t t t      is the total 

amount of time for the trip. We use a coordinate system with +x for East and +y for North.  

 

ANALYZE (a) In unit-vector notation, the first displacement is given by 

 

1

km 40.0 min ˆ ˆ = 60.0 i = (40.0 km)i.
h 60 min/h

r
   

    
   

 

 

The second displacement has a magnitude of 20.0 minkm
h 60 min/h

(60.0 ) 20.0 km,) (   and its 

direction is 40° north of east. Therefore, 

 

2
ˆ ˆ ˆ ˆ(20.0 km) cos(40.0 ) i (20.0 km) sin(40.0 ) j (15.3 km) i (12.9 km) j.r        

 

Similarly, the third displacement is 

 

3

km 50.0 min ˆ ˆ60.0  i = ( 50.0 km) i.
h 60 min/h

r
   

      
   

 

Thus, the total displacement is 

 

1 2 3
ˆ ˆ ˆ ˆ(40.0 km)i (15.3 km) i (12.9 km) j (50.0 km) i

ˆ ˆ(5.30 km) i (12.9 km) j.

r r r r        

 
 

 

The time for the trip is t  (40.0 + 20.0 + 50.0) min = 110 min, which is equivalent to 

1.83 h. Eq. 4-8 then yields 

 

avg

ˆ ˆ(5.30 km) i (12.9 km) j ˆ ˆ (2.90 km/h) i (7.01 km/h) j.
1.83 h

v


    

 

The magnitude of avgv  is 2 2

avg| | (2.90 km/h) (7.01 km/h) 7.59 km/h.v     

 

(b) The angle is given by  

 

 
avg,1 1

avg,

7.01 km/h
tan tan 67.5   (north of east),

2.90 km/h

y

x

v

v
  

   
          

 

 

or 22.5  east of due north. 
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LEARN The displacement of the train is depicted in the figure below: 

 

 
 

Note that the net displacement r  is found by adding 1r , 2r  and 3r  vectorially.  

 

6. To emphasize the fact that the velocity is a function of time, we adopt the notation v(t) 

for / .dx dt  

 

(a) Equation 4-10 leads to 

 

2 2ˆ ˆ ˆ ˆ ˆ( )  (3.00 i 4.00 j + 2.00k) (3.00 m/s)i (8.00 m/s )  j
d

v t t t t
dt

     

 

(b) Evaluating this result at t = 2.00 s produces ˆ ˆ = (3.00i  16.0j) m/s.v   

 

(c) The speed at t = 2.00 s is 2 2 | | (3.00 m/s) ( 16.0 m/s) 16.3 m/s.v v      

 

(d) The angle of 

v  at that moment is 

 

1 16.0 m/s
tan 79.4  or 101

3.00 m/s

  
    

 
 

 

where we choose the first possibility (79.4° measured clockwise from the +x direction, or 

281° counterclockwise from +x) since the signs of the components imply the vector is in 

the fourth quadrant. 

 

7. Using Eq. 4-3 and Eq. 4-8, we have 

 

avg

ˆ ˆ ˆ ˆ ˆ ˆ( 2.0i + 8.0j 2.0k) m (5.0i 6.0j + 2.0k) m ˆ ˆ ˆ( 0.70i +1.40j 0.40k) m/s.
10 s

v
   

     

 

8. Our coordinate system has i  pointed east and j  pointed north. The first displacement 

is ˆ(483 km)iABr   and the second is ˆ( 966 km)j.BCr    
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(a) The net displacement is 

 
ˆ ˆ(483 km)i (966 km)jAC AB BCr r r     

 

which yields 2 2 3|  | (483 km) ( 966 km) 1.08 10  km.ACr       

 

(b) The angle is given by 

1 966 km
tan 63.4 .

483 km
   
    

 
 

 

We observe that the angle can be alternatively expressed as 63.4° south of east, or 26.6° 

east of south. 

 

(c) Dividing the magnitude of 

rAC  by the total time (2.25 h) gives  

 

 avg

ˆ ˆ(483 km)i (966 km)j ˆ ˆ(215 km/h)i (429 km/h) j
2.25 h

v


    

 

with a magnitude 2 2

avg| | (215 km/h) ( 429 km/h) 480 km/h.v      

 

(d) The direction of avgv is 26.6° east of south, same as in part (b). In magnitude-angle 

notation, we would have avg (480 km/h  63.4 ).v       

 

(e) Assuming the AB trip was a straight one, and similarly for the BC trip, then | |

rAB  is the 

distance traveled during the AB trip, and | |

rBC  is the distance traveled during the BC trip. 

Since the average speed is the total distance divided by the total time, it equals 

 

483 km  966 km
644 km/h.

2.25 h


  

 

9. The (x,y) coordinates (in meters) of the points are A = (15, 15), B = (30, 45), C = (20, 

15), and D = (45, 45). The respective times are tA  = 0, tB  = 300 s, tC  = 600 s, and tD  = 

900 s.  Average velocity is defined by Eq. 4-8.  Each displacement r   


 is understood to 

originate at point A. 

 

(a) The average velocity having the least magnitude (5.0 m/600 s) is for the displacement 

ending at point C: avg| | 0.0083 m/s.v   

 

(b) The direction of avgv  is 0 (measured counterclockwise from the +x axis). 
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(c) The average velocity having the greatest magnitude ( 2 2(15 m) (30 m) / 300 s ) is 

for the displacement ending at point B: | | 0.11 m/s.avgv    

 

(d) The direction of 
avgv  is 297 (counterclockwise from +x) or 63  (which is 

equivalent to measuring 63 clockwise from the +x axis). 

 

10. We differentiate 2ˆ ˆ5.00 i ( ) jr t et ft   . 

 

(a) The particle’s motion is indicated by the derivative of r : v  = 5.00 i
^
  +  (e + 2ft) j

^
 .  

The angle of its direction of motion is consequently  

 

 = tan
1

(vy /vx ) = tan
1

[(e + 2ft)/5.00]. 

 

The graph indicates o = 35.0, which determines the parameter e:   

 

e = (5.00 m/s) tan(35.0) = 3.50 m/s. 

 

(b) We note (from the graph) that  = 0 when t = 14.0 s.  Thus, e + 2ft = 0 at that time.  

This determines the parameter f :   

 

 23.5 m/s
0.125 m/s

2 2(14.0 s)

e
f

t

 
    . 

 

11. In parts (b) and (c), we use Eq. 4-10 and Eq. 4-16. For part (d), we find the direction 

of the velocity computed in part (b), since that represents the asked-for tangent line. 

 

(a) Plugging into the given expression, we obtain 

 

2.00
ˆ ˆ ˆ ˆ [2.00(8) 5.00(2)]i + [6.00 7.00(16)] j  (6.00i  106 j) mtr        

 

(b) Taking the derivative of the given expression produces 

 

 2 3ˆ ˆ( ) = (6.00   5.00) i  28.0  jv t t t   

 

where we have written v(t) to emphasize its dependence on time. This becomes, at  

t = 2.00 s, ˆ ˆ = (19.0i  224 j) m/s.v   

 

(c) Differentiating the 

v t( )  found above, with respect to t produces 2ˆ ˆ12.0 i 84.0 j,t t  

which yields 2ˆ ˆ =(24.0i 336 j) m/sa   at t = 2.00 s. 

 

(d) The angle of 

v , measured from +x, is either 
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1 224 m/s
tan 85.2 or 94.8

19.0 m/s

  
    

 
 

 

where we settle on the first choice (–85.2°, which is equivalent to 275° measured 

counterclockwise from the +x axis) since the signs of its components imply that it is in 

the fourth quadrant. 

 

12. We adopt a coordinate system with i  pointed east and j  pointed north; the 

coordinate origin is the flagpole. We “translate” the given information into unit-vector 

notation as follows: 

o o
ˆ ˆ(40.0 m)i     and     = ( 10.0 m/s)j

ˆ ˆ(40.0 m) j     and     (10.0 m/s)i.

r v

r v

 

 
 

 

(a) Using Eq. 4-2, the displacement 

r  is 

 

 o
ˆ ˆ( 40.0 m)i (40.0 m)jr r r       

 

with a magnitude 2 2| | ( 40.0 m) (40.0 m) 56.6 m.r      

 

(b) The direction of 

r  is  

 

 1 1 40.0 m
tan tan 45.0  or 135 .

40.0 m

y

x
     
        

    
 

 

Since the desired angle is in the second quadrant, we pick 135 ( 45  north of due west). 

Note that the displacement can be written as  o 56.6 135r r r      in terms of the 

magnitude-angle notation. 

 

(c) The magnitude of 

vavg  is simply the magnitude of the displacement divided by the 

time (t = 30.0 s). Thus, the average velocity has magnitude (56.6 m)/(30.0 s) = 1.89 m/s. 

 

(d) Equation 4-8 shows that 

vavg  points in the same direction as 


r , that is, 135 ( 45  

north of due west). 

 

(e) Using Eq. 4-15, we have 

 

2 2o
avg

ˆ ˆ(0.333 m/s )i (0.333 m/s )j.
v v

a
t


  


 

 

The magnitude of the average acceleration vector is therefore equal to 
2 2 2 2 2

avg| | (0.333 m/s ) (0.333 m/s ) 0.471m/sa    . 
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(f) The direction of 
avga  is 

2
1

2

0.333 m/s
tan 45  or 135 .

0.333 m/s
   
     

 
 

  

Since the desired angle is now in the first quadrant, we choose 45 , and 
avga  points 

north of due east. 

 

13. THINK Knowing the position of a particle as function of time allows us to calculate 

its corresponding velocity and acceleration by taking time derivatives.   

 

EXPRESS From the position vector ( )r t , the velocity and acceleration of the particle 

can be found by differentiating ( )r t  with respect to time: 

 
2

2
, .

dr dv d r
v a

dt dt dt
    

 

ANALYZE (a) Taking the derivative of the position vector 2ˆ ˆ ˆ( ) i (4 )j kr t t t    with 

respect to time, we have, in SI units (m/s), 

 

2ˆ ˆ ˆ ˆ ˆ(i 4 j k) 8 j  k.
d

v t t t
dt

      

(b) Taking another derivative with respect to time leads to, in SI units (m/s
2
), 

 

ˆ ˆ ˆ(8 j  k) 8 j.
d

a t
dt

    

 

LEARN The particle undergoes constant acceleration in the +y-direction. This can be 

seen by noting that the y component of ( )r t  is 4t
2
, which is quadratic in t. 

 

14. We use Eq. 4-15 with 

v1  designating the initial velocity and 


v2  designating the later 

one. 

 

(a) The average acceleration during the t =  4 s  interval is 

 

2 2

avg

ˆ ˆ ˆ ˆ ˆ ˆ( 2.0 i 2.0 j+5.0k) m/s (4.0 i 22 j+3.0k) m/s ˆ ˆ( 1.5 m/s ) i (0.5m/s )k.
4 s

a
   

     

 

(b) The magnitude of 

aavg  is 2 2 2 2 2( 1.5 m/s ) (0.5 m/s ) 1.6m/s .     

 

(c) Its angle in the xz plane (measured from the +x axis) is one of these possibilities: 
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2

1

2

0.5 m/s
tan 18 or 162

1.5 m/s

  
    

 
 

 

where we settle on the second choice since the signs of its components imply that it is in 

the second quadrant. 

 

15. THINK Given the initial velocity and acceleration of a particle, we’re interested in 

finding its velocity and position at a later time.   

 

EXPRESS Since the acceleration, 2 2ˆ ˆ ˆ ˆi j ( 1.0 m/s )i ( 0.50 m/s ) jx ya a a      , is 

constant in both x and y directions, we may use Table 2-1 for the motion along each 

direction. This can be handled individually (for x and y) or together with the unit-vector 

notation (for r ).  

 

Since the particle started at the origin, the coordinates of the particle at any time t are 

given by 
  
r v t at 0

1
2

2 . The velocity of the particle at any time t is given by 
  
v v at 0 , 

where 

v0

 is the initial velocity and 

a  is the (constant) acceleration. Along the x-direction, 

we have 

 2

0 0

1
( ) , ( )

2
x x x x xx t v t a t v t v a t     

Similarly, along the y-direction, we get 

  

2

0 0

1
( ) , ( )

2
y y y y yy t v t a t v t v a t    . 

 

Known: 2 2

0 03.0 m/s, 0, 1.0 m/s , 0.5 m/sx y x yv v a a      . 

 

ANALYZE (a) Substituting the values given, the components of the velocity are 

 
2

0
2

0

( ) (3.0 m/s) (1.0 m/s )

( ) (0.50 m/s )
x x x

y y y

v t v a t t

v t v a t t

   

   
 

 

When the particle reaches its maximum x coordinate at t = tm, we must have vx = 0. 

Therefore, 3.0 – 1.0tm = 0 or tm = 3.0 s. The y component of the velocity at this time is 

  
2( 3.0 s) (0.50 m/s )(3.0) 1.5 m/syv t       

Thus, ˆ( 1.5 m/s)jmv   . 

 

(b) At t = 3.0 s , the components of the position are  
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2 2 2

0

2 2 2

0

1 1
( 3.0 s) (3.0 m/s)(3.0 s) ( 1.0 m/s )(3.0 s) 4.5 m

2 2
1 1

( 3.0 s) 0 ( 0.5 m/s )(3.0 s) 2.25 m
2 2

x x

y y

x t v t a t

y t v t a t

      

       

 

 

Using unit-vector notation, the results can be written as ˆ ˆ(4.50 m) i (2.25 m) j.mr    

 

LEARN The motion of the particle in this problem is two-dimensional, and the 

kinematics in the x- and y-directions can be analyzed separately.   

 

16. We make use of Eq. 4-16. 

 

(a) The acceleration as a function of time is 

 

    2 ˆ ˆ ˆ6.0 4.0 i + 8.0 j 6.0 8.0 i
dv d

a t t t
dt dt

      

 

in SI units. Specifically, we find the acceleration vector at 3.0 st   to be 

  2ˆ ˆ6.0 8.0(3.0) i ( 18 m/s )i.    

 

(b) The equation is 

a t 6 0 8 0. . b gi = 0 ; we find t = 0.75 s. 

 

(c) Since the y component of the velocity, vy = 8.0 m/s, is never zero, the velocity cannot 

vanish. 

 

(d) Since speed is the magnitude of the velocity, we have  

 

| |v v    
2 226.0 4.0 8.0 10t t     

 

in SI units (m/s). To solve for t, we first square both sides of the above equation, followed 

by some rearrangement: 

 

    
2 2

2 26.0 4.0 64   100 6.0 4.0 36t t t t       

 

Taking the square root of the new expression and making further simplification lead to  

 

 2 26.0 4.0 6.0 4.0 6.0 6.0 0t t t t       

 

Finally, using the quadratic formula, we obtain 
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6.0 36 4 4.0 6.0
 

2 8.0
t

  
  

 

where the requirement of a real positive result leads to the unique answer: t = 2.2 s. 

 

17. We find t by applying Eq. 2-11 to motion along the y axis (with vy = 0 characterizing 

y = ymax ):   

0 = (12 m/s) + (2.0 m/s
2
)t      t = 6.0 s. 

 

Then, Eq. 2-11 applies to motion along the x axis to determine the answer:   

 

vx = (8.0 m/s) + (4.0 m/s
2
)(6.0 s) = 32 m/s. 

 

Therefore, the velocity of the cart, when it reaches y = ymax , is (32 m/s)i
^
. 

 

18. We find t by solving 2

0 0

1

2
x xx x v t a t    : 

 2 21
12.0 m 0 (4.00 m/s) (5.00 m/s )

2
t t    

 

where we have used x = 12.0 m, vx = 4.00 m/s, and ax = 5.00 m/s
2 

. We use the quadratic 

formula and find t = 1.53 s. Then, Eq. 2-11 (actually, its analog in two dimensions) 

applies with this value of t.  Therefore, its velocity (when x = 12.00 m) is  

 

 
2 2

0
ˆ ˆ ˆ(4.00 m/s)i (5.00 m/s )(1.53 s)i  (7.00 m/s )(1.53 s)j

ˆ ˆ(11.7 m/s) i (10.7 m/s) j.

v v at    

 
 

 

Thus, the magnitude of v is 2 2| | (11.7 m/s) (10.7 m/s) 15.8 m/s.v     

 

(b) The angle of 

v , measured from +x, is  

 

1 10.7 m/s
tan 42.6 .

11.7 m/s

  
  

 
 

 

19. We make use of Eq. 4-16 and Eq. 4-10.  

 

Using ˆ ˆ3 i 4 ja t t  , we have (in m/s) 

 

    2 2

0
0 0

ˆ ˆ ˆ ˆ ˆ ˆ( )  (5.00i 2.00j) (3 i 4 j) 5.00 3 / 2 i 2.00 2 j
t t

v t v a dt t t dt t t            

 

Integrating using Eq. 4-10 then yields (in meters) 
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2 2

0
0 0

3 3

3 3

ˆ ˆ ˆ ˆ( ) (20.0i 40.0j) [(5.00 3 / 2)i (2.00 2 )j]

ˆ ˆ ˆ ˆ                    (20.0i 40.0j) (5.00 / 2)i (2.00 2 /3)j

ˆ ˆ                    (20.0 5.00 / 2)i (40.0 2.00 2 /3)j

t t

r t r vdt t t dt

t t t t

t t t t

       

     

     

 
 

 

(a) At 4.00 st  , we have ˆ ˆ( 4.00 s) (72.0 m)i (90.7 m)j.r t     

 

(b) ˆ ˆ( 4.00 s) (29.0 m/s)i (34.0 m/s)jv t    . Thus, the angle between the direction of 

travel and +x, measured counterclockwise, is 1tan [(34.0 m/s) /(29.0 m/s)] 49.5 .      

 

20. The acceleration is constant so that use of Table 2-1 (for both the x and y motions) is 

permitted. Where units are not shown, SI units are to be understood. Collision between 

particles A and B requires two things. First, the y motion of B must satisfy (using Eq. 2-15 

and noting that  is measured from the y axis) 

 

2 2 21 1
  30 m (0.40 m/s ) cos .

2 2
yy a t t       

 

Second, the x motions of A and B must coincide: 

 

2 2 21 1
(3.0 m/s) (0.40 m/s ) sin .

2 2
xvt a t t t       

 

We eliminate a factor of t in the last relationship and formally solve for time: 

 

2

2 2(3.0 m/s)
.

(0.40 m/s ) sinx

v
t

a 
   

 

This is then plugged into the previous equation to produce 

 
2

2

2

1 2(3.0 m/s)
30 m (0.40 m/s ) cos

2 (0.40 m/s ) sin




 
    

 
 

 

which, with the use of sin
2
  = 1 – cos

2
 , simplifies to 

 

  
2

2

9.0 cos 9.0
30 1 cos cos .

0.20 1 cos 0.20 30


 


   


 

 

We use the quadratic formula (choosing the positive root) to solve for cos : 
 

  21.5 1.5 4 1.0 1.0 1
cos

2 2
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which yields 
F
HG
I
KJ  cos .1 1

2
60  

 

21. We adopt the positive direction choices used in the textbook so that equations such as 

Eq. 4-22 are directly applicable. The initial velocity is horizontal so that v
y0 0  and 

v v
x0 0 10  m s. 

 

(a) With the origin at the initial point (where the dart leaves the thrower’s hand), the y 

coordinate of the dart is given by y gt  1
2

2 , so that with y = –PQ we have 

  
221

2
9.8 m/s 0.19 s 0.18 m.PQ    

 

(b) From x = v0t we obtain x = (10 m/s)(0.19 s) = 1.9 m. 

 

22. We adopt the positive direction choices used in the textbook so that equations such as 

Eq. 4-22 are directly applicable. 

 

(a) With the origin at the initial point (edge of table), the y coordinate of the ball is given 

by y gt  1
2

2 .  If t is the time of flight and y = –1.20 m indicates the level at which the 

ball hits the floor, then 

 
2

2 1.20 m
0.495s.

9.80 m/s
t


 


 

 

(b) The initial (horizontal) velocity of the ball is 

v v 0

i . Since x = 1.52 m is the 

horizontal position of its impact point with the floor, we have x = v0t. Thus, 

 

0

1.52 m
3.07 m/s.

0.495 s

x
v

t
    

 

23. (a) From Eq. 4-22 (with 0 = 0), the time of flight is 

 

2

2 2(45.0 m)
3.03 s.

9.80 m/s

h
t

g
    

 

(b) The horizontal distance traveled is given by Eq. 4-21: 

 

0 (250 m/s)(3.03s) 758 m.x v t     

 

(c) And from Eq. 4-23, we find 

 
2(9.80 m/s )(3.03 s) 29.7 m/s.yv gt    
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24. We use Eq. 4-26 

 

 
22 2

0 0
max 0 2

max

9.50m/s
sin 2 9.209 m 9.21m

9.80m/s

v v
R

g g


 
     
 

 

 

to compare with Powell’s long jump; the difference from Rmax is only R =(9.21m – 

8.95m) = 0.259 m. 

 

25. Using Eq. (4-26), the take-off speed of the jumper is  

 

 
2

0

0

(9.80 m/s )(77.0 m)
43.1 m/s

sin 2 sin 2(12.0 )

gR
v


  


 

 

26. We adopt the positive direction choices used in the textbook so that equations such as 

Eq. 4-22 are directly applicable. The coordinate origin is the throwing point (the stone’s 

initial position). The x component of its initial velocity is given by v v
x0 0 0 cos  and the 

y component is given by v v
y0 0 0 sin , where v0 = 20 m/s is the initial speed and 0 = 

40.0° is the launch angle. 

 

(a) At t = 1.10 s, its x coordinate is 

 

x v t   0 0 200 110 400 169cos . . cos . . m/ s s mb gb g  

 

(b) Its y coordinate at that instant is 

 

     
22 2

0 0

1 1
sin 20.0m/s 1.10s sin 40.0 9.80m/s 1.10s 8.21 m.

2 2
y v t gt       

 

(c) At t' = 1.80 s, its x coordinate is x   20 0 180 40 0 27 6. . cos . .m / s s m.b gb g  

 

(d) Its y coordinate at t' is 

 

      2 21
20.0m/s 1.80s sin 40.0 9.80m/s 1.80s 7.26m.

2
y      

 

(e) The stone hits the ground earlier than t = 5.0 s. To find the time when it hits the 

ground solve y v t gt  0 0
1
2

2 0sin  for t. We find 

 

t
v

g
   

2 2 20 0

9 8
40 2 620

0sin
.

.
sin .

m / s

m / s
s.

2

b g
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Its x coordinate on landing is 

 

  0 0cos 20.0 m/s 2.62 s cos 40 40.2 m.x v t      

 

(f) Assuming it stays where it lands, its vertical component at t = 5.00 s is y = 0. 

 

27. We adopt the positive direction choices used in the textbook so that equations such as 

Eq. 4-22 are directly applicable. The coordinate origin is at ground level directly below 

the release point. We write 0 = –30.0° since the angle shown in the figure is measured 

clockwise from horizontal. We note that the initial speed of the decoy is the plane’s speed 

at the moment of release: v0 = 290 km/h, which we convert to SI units: (290)(1000/3600) 

= 80.6 m/s. 

 

(a) We use Eq. 4-12 to solve for the time: 

 

0 0

700 m
( cos ) 10.0 s.

(80.6 m/s)cos( 30.0 )
x v t t    

 
 

 

(b) And we use Eq. 4-22 to solve for the initial height y0: 

 

2 2 2

0 0 0 0

1 1
( sin ) 0 ( 40.3 m/s)(10.0 s) (9.80 m/s )(10.0 s)

2 2
y y v t gt y         

 

which yields y0 = 897 m. 

 

28. (a) Using the same coordinate system assumed in Eq. 4-22, we solve for y = h: 

 

2

0 0 0

1
sin

2
h y v t gt    

 

which yields h = 51.8 m for y0 = 0, v0 = 42.0 m/s, 0 = 60.0°, and t = 5.50 s. 

 

(b) The horizontal motion is steady, so vx = v0x = v0 cos 0, but the vertical component of 

velocity varies according to Eq. 4-23. Thus, the speed at impact is 

 

   
2 2

0 0 0 0cos sin 27.4 m/s.v v v gt      

 

(c) We use Eq. 4-24 with vy = 0 and y = H: 

 

H
v

g
 

0 0

2

2
67 5

sin
.

b g
 m.  
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29. We adopt the positive direction choices used in the textbook so that equations such as 

Eq. 4-22 are directly applicable. The coordinate origin is at its initial position (where it is 

launched). At maximum height, we observe vy = 0 and denote vx = v (which is also equal 

to v0x). In this notation, we have v v0 5 .  Next, we observe v0 cos 0 = v0x = v, so that we 

arrive at an equation (where v  0  cancels) which can be solved for 0: 

 

1

0 0

1
(5 )cos cos 78.5 .

5
v v    

     
 

 

 

30. Although we could use Eq. 4-26 to find where it lands, we choose instead to work 

with Eq. 4-21 and Eq. 4-22 (for the soccer ball) since these will give information about 

where and when and these are also considered more fundamental than Eq. 4-26. With y 

= 0, we have 

2

0 0 2

1 (19.5 m/s)sin 45.0
( sin )    2.81 s.

2 (9.80 m/s ) / 2
y v t gt t


       

 

Then Eq. 4-21 yields x = (v0 cos 0)t = 38.7 m. Thus, using Eq. 4-8, the player must 

have an average velocity of 

 

avg 

ˆ ˆ(38.7 m) i (55 m)i ˆ( 5.8 m/s) i
2.81s

r
v

t

 
   


 

 

which means his average speed (assuming he ran in only one direction) is 5.8 m/s.  

  

31. We first find the time it takes for the volleyball to hit the ground. Using Eq. 4-22, we 

have 

 2 2 2

0 0 0

1 1
  ( sin ) 0 2.30 m ( 20.0 m/s)sin(18.0 ) (9.80 m/s )

2 2
y y v t gt t t          

 

which gives 0.30 st  . Thus, the range of the volleyball is  

 

  0 0cos (20.0 m/s)cos18.0 (0.30 s) 5.71 mR v t     

 

On the other hand, when the angle is changed to 0 8.00   , using the same procedure as 

shown above, we find   

 

2 2 2

0 0 0

1 1
  ( sin ) 0 2.30 m ( 20.0 m/s)sin(8.00 ) (9.80 m/s )

2 2
y y v t gt t t               

 

which yields 0.46 st  , and the range is 

 

 0 0cos (20.0 m/s)cos18.0 (0.46 s) 9.06 mR v t      

 



 

  

139 

Thus, the ball travels an extra distance of 

 

 9.06 m 5.71 m 3.35 mR R R       

 

32. We adopt the positive direction choices used in the textbook so that equations such as 

Eq. 4-22 are directly applicable. The coordinate origin is at the release point (the initial 

position for the ball as it begins projectile motion in the sense of §4-5), and we let 0 be 

the angle of throw (shown in the figure).  Since the horizontal component of the velocity 

of the ball is vx = v0 cos 40.0°, the time it takes for the ball to hit the wall is 

 

22.0 m
1.15 s.

(25.0 m/s)cos 40.0x

x
t

v


  


 

 

(a) The vertical distance is 

 

2 2 2

0 0

1 1
( sin ) (25.0 m/s)sin 40.0 (1.15 s) (9.80 m/s )(1.15 s) 12.0 m.

2 2
y v t gt        

 

(b) The horizontal component of the velocity when it strikes the wall does not change 

from its initial value: vx = v0 cos 40.0° = 19.2 m/s. 

 

(c) The vertical component becomes (using Eq. 4-23) 

 
2

0 0sin (25.0 m/s) sin 40.0 (9.80 m/s )(1.15 s) 4.80 m/s.yv v gt       

 

(d) Since vy > 0 when the ball hits the wall, it has not reached the highest point yet. 

 

33. THINK This problem deals with projectile motion. We’re interested in the horizontal 

displacement and velocity of the projectile before it strikes the ground. 

 

EXPRESS We adopt the positive direction 

choices used in the textbook so that equations such 

as Eq. 4-22 are directly applicable. The coordinate 

origin is at ground level directly below the release 

point. We write 0 = –37.0° for the angle measured 

from +x, since the angle 0 53.0   given in the 

problem is measured from the –y direction. The 

initial setup of the problem is shown in the figure 

to the right (not to scale). 

 
ANALYZE (a) The initial speed of the projectile is the plane’s speed at the moment of 

release.  Given that 0 730 my   and 0y   at 5.00 st  , we use Eq. 4-22 to find v0: 
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2 2 2

0 0 0 0

1 1
  ( sin ) 0 730 m sin( 37.0 )(5.00 s) (9.80 m/s )(5.00 s)

2 2
y y v t gt v        

 

which yields v0 = 202 m/s. 

 

(b) The horizontal distance traveled is  

 

 
0 0( cos ) [(202 m/s)cos( 37.0 )](5.00 s) 806 mxR v t v t      . 

 

(c) The x component of the velocity (just before impact) is  

 

0 0cos (202 m/s)cos( 37.0 ) 161m/sxv v      . 

 

(d) The y component of the velocity (just before impact) is  

 
2

0 0sin (202 m/s)sin( 37.0 ) (9.80 m/s )(5.00 s) 171m/syv v gt        . 

 

LEARN In this projectile problem we analyzed the kinematics in the vertical and 

horizontal directions separately since they do not affect each other. The x-component of 

the velocity, 0 0cosxv v  , remains unchanged throughout since there’s no horizontal 

acceleration.     

 

34. (a) Since the y-component of the velocity of the stone at the top of its path is zero, its 

speed is 

 2 2

0 0cos (28.0 m/s)cos40.0 21.4 m/sx y xv v v v v        . 

 

(b) Using the fact that 0yv   at the maximum height maxy , the amount of time it takes for 

the stone to reach maxy  is given by Eq. 4-23:  

 

 0 0
0 0

sin
0 siny

v
v v gt t

g


     . 

 

Substituting the above expression into Eq. 4-22, we find the maximum height to be   

 
2 2 2

2 0 0 0 0 0 0
max 0 0 0 0

sin sin sin1 1
  ( sin ) sin .

2 2 2

v v v
y v t gt v g

g g g

  
 

   
       

   
 

 

To find the time the stone descends to max / 2y y , we solve the quadratic equation given 

in Eq. 4-22: 
2 2

20 0 0 0
max 0 0

sin (2 2) sin1 1
( sin ) .

2 4 2 2

v v
y y v t gt t

g g
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Choosing t t  (for descending), we have  

 

0 0

0 0
0 0 0 0

cos (28.0 m/s)cos 40.0 21.4 m/s

(2 2) sin 2 2
sin sin (28.0 m/s)sin 40.0 12.7 m/s

2 2 2

x

y

v v

v
v v g v

g




 

   


        

 

 

Thus, the speed of the stone when max / 2y y  is  

 

2 2 2 2(21.4 m/s) ( 12.7 m/s) 24.9 m/sx yv v v      . 

 

(c) The percentage difference is  

 

 
24.9 m/s 21.4 m/s

0.163 16.3%
21.4 m/s


  . 

 

35. THINK This problem deals with projectile motion of a bullet. We’re interested in the 

firing angle that allows the bullet to strike a target at some distance away. 

 

EXPRESS We adopt the positive direction choices used in the textbook so that equations 

such as Eq. 4-22 are directly applicable. The coordinate origin is at the end of the rifle 

(the initial point for the bullet as it begins projectile motion in the sense of § 4-5), and we 

let 0 be the firing angle. If the target is a distance d away, then its coordinates are x = d, 

y = 0. 

 
The projectile motion equations lead to  

2

0 0 0 0

1
( cos ) , 0 sin

2
d v t v t gt     

 

where 0  is the firing angle. The setup of the problem is shown in the figure above (scale 

exaggerated). 

 

ANALYZE The time at which the bullet strikes the target is given by 0 0/( cos )t d v  . 

Eliminating t leads to 2 00

2

0 0v gdsin cos    . Using sin cos sin  0 0
1
2 02 b g , we 

obtain 
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2
2

0 0 0 2 2

0

(9.80 m/s )(45.7 m)
sin  (2 ) sin(2 )

(460 m/s)

gd
v gd

v
      

 

which yields 3

0sin(2 ) 2.11 10   , or  0 = 0.0606°. If the gun is aimed at a point a 

distance   above the target, then tan  0   d  so that   

 

0tan (45.7 m) tan(0.0606 ) 0.0484 m 4.84 cm.d       

 

LEARN Due to the downward gravitational acceleration, in order for the bullet to strike 

the target, the gun must be aimed at a point slightly above the target. 

 

36. We adopt the positive direction choices used in the textbook so that equations such as 

Eq. 4-22 are directly applicable. The coordinate origin is at ground level directly below 

the point where the ball was hit by the racquet. 

 

(a) We want to know how high the ball is above the court when it is at x = 12.0 m. First, 

Eq. 4-21 tells us the time it is over the fence: 

 

 0 0

12.0 m
0.508 s.

cos 23.6 m/s cos 0

x
t

v 
  


 

 

At this moment, the ball is at a height (above the court) of 

 

  2

0 0 0

1
sin 1.10m

2
y y v t gt     

 

which implies it does indeed clear the 0.90-m-high fence. 

 

(b) At t = 0.508 s, the center of the ball is (1.10 m – 0.90 m) = 0.20 m above the net. 

 

(c) Repeating the computation in part (a) with 0 = –5.0° results in t = 0.510 s and 

0.040 my  , which clearly indicates that it cannot clear the net. 

 

(d) In the situation discussed in part (c), the distance between the top of the net and the 

center of the ball at t = 0.510 s is 0.90 m – 0.040 m = 0.86 m. 

 

37. THINK The trajectory of the diver is a projectile motion. We are interested in the 

displacement of the diver at a later time.    

 

EXPRESS The initial velocity has no vertical component ( 0 0  ), but only an x 

component. Eqs. 4-21 and 4-22 can be simplified to  
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0 0

2 2

0 0

1 1
.

2 2

x

y

x x v t

y y v t gt gt

 

    
 

 

where 
0 0x  , 

0 0 2.0 m/sxv v    and y0 = +10.0 m (taking the water surface to be at 

0y  ). The setup of the problem is shown in the figure below. 

 
ANALYZE (a) At 0.80 st  , the horizontal distance of the diver from the edge is 

 

0 0 0 (2.0 m/s)(0.80 s) 1.60 m.xx x v t      

 

(b) Similarly, using the second equation for the vertical motion, we obtain  

 

2 2 2

0

1 1
10.0 m (9.80 m/s )(0.80 s) 6.86 m.

2 2
y y gt      

 

(c) At the instant the diver strikes the water surface, y = 0. Solving for t using the 

equation 21
0 2

0y y gt    leads to 

0

2

2 2(10.0 m)
1.43 s.

9.80 m/s

y
t

g
    

 

During this time, the x-displacement of the diver is R = x = (2.00 m/s)(1.43 s) = 2.86 m. 

 

LEARN Using Eq. 4-25 with 0 0  , the trajectory of the diver can also be written as  

 
2

0 2

02

gx
y y

v
   . 

Part (c) can also be solved by using this equation:  

 
22 2

0 0
0 2 2

0

2 2(2.0 m/s) (10.0 m)
0 2.86 m

2 9.8 m/s

v ygx
y y x R

v g
        . 
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38. In this projectile motion problem, we have v0 = vx = constant, and what is plotted is 

2 2.x yv v v   We infer from the plot that at t = 2.5 s, the ball reaches its maximum height, 

where vy = 0. Therefore, we infer from the graph that vx = 19 m/s. 

 

(a) During t = 5 s, the horizontal motion is x – x0 = vxt = 95 m. 

 

(b) Since 2 2

0(19 m/s) 31 m/syv   (the first point on the graph), we find 0 24.5 m/s.yv   

Thus, with t = 2.5 s, we can use 21
max 0 0 2yy y v t gt   or v v g y yy y

2

0

2

00 2   max ,b g  or 

 1
max 0 02 yyy y v v t    to solve. Here we will use the latter: 

 

max 0 0 max

1 1
( ) (0 24.5m/s)(2.5 s) 31 m

2 2
y yy y v v t y        

 

where we have taken y0 = 0 as the ground level. 

 

39. Following the hint, we have the time-reversed problem with the ball thrown from the 

ground, toward the right, at 60° measured counterclockwise from a rightward axis. We 

see in this time-reversed situation that it is convenient to use the familiar coordinate 

system with +x as rightward and with positive angles measured counterclockwise.  

 

(a) The x-equation (with x0 = 0 and x = 25.0 m) leads to  

 

25.0 m = (v0 cos 60.0°)(1.50 s), 

 

so that v0 = 33.3 m/s.  And with y0 = 0, and y = h > 0 at t = 1.50 s, we have 

y y v t gty  0 0
1
2

2
 where v0y = v0 sin 60.0°.  This leads to h = 32.3 m. 

 

(b) We have  

                           vx = v0x = (33.3 m/s)cos 60.0° = 16.7 m/s 

                 vy = v0y – gt = (33.3 m/s)sin 60.0° – (9.80 m/s
2
)(1.50 s) = 14.2 m/s. 

 

The magnitude of v is given by 

 

 2 2 2 2| | (16.7 m/s) (14.2 m/s) 21.9 m/s.x yv v v      

 

(c) The angle is  

 1 1 14.2 m/s
tan tan 40.4 .

16.7 m/s

y

x

v

v
     
      

  
 

  
(d) We interpret this result (“undoing” the time reversal) as an initial velocity (from the 

edge of the building) of magnitude 21.9 m/s with angle (down from leftward) of 40.4°. 
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40. (a) Solving the quadratic equation Eq. 4-22:  

 

2 2 2

0 0 0

1 1
  ( sin ) 0 2.160 m (15.00 m/s)sin(45.00 ) (9.800 m/s )

2 2
y y v t gt t t       

 

the total travel time of the shot in the air is found to be 2.352 st  . Therefore, the 

horizontal distance traveled is  

 

 0 0cos (15.00 m/s)cos45.00 (2.352 s) 24.95 mR v t    . 

 

(b) Using the procedure outlined in (a) but for 
0 42.00   , we have 

 

2 2 2

0 0 0

1 1
  ( sin ) 0 2.160 m (15.00 m/s)sin(42.00 ) (9.800 m/s )

2 2
y y v t gt t t       

 

and the total travel time is  2.245 st  . This gives 

 

 0 0cos (15.00 m/s)cos42.00 (2.245 s) 25.02 mR v t    . 

 

41. With the Archer fish set to be at the origin, the position of the insect is given by (x, y) 

where 2

0 0/ 2 sin 2 / 2x R v g  , and y corresponds to the maximum height of the 

parabolic trajectory: 2 2

max 0 0sin / 2y y v g  . From the figure, we have 

 
2 2

0 0
02

0 0

sin / 2 1
tan tan

sin 2 / 2 2

v gy

x v g


 


    

  

Given that 36.0   , we find the launch angle to be  

 

     1 1 1

0 tan 2tan tan 2tan36.0 tan 1.453 55.46 55.5           . 

 

Note that 0  depends only on   and is independent of d.  

 

42. (a) Using the fact that the person (as the projectile) reaches the maximum height over 

the middle wheel located at 23 m (23/ 2) m 34.5 mx    , we can deduce the initial 

launch speed from Eq. 4-26: 

 

 
2 2

0 0
0

0

sin 2 2 2(9.8 m/s )(34.5 m)
26.5 m/s

2 2 sin 2 sin(2 53 )

vR gx
x v

g




     

 
. 

 

Upon substituting the value to Eq. 4-25, we obtain 

 



 CHAPTER 4 146 

2 2 2

0 0 2 2 2 2

0 0

(9.8 m/s )(23 m)
tan 3.0 m (23 m) tan53 23.3 m.

2 cos 2(26.5 m/s) (cos53 )

gx
y y x

v



      



 

Since the height of the wheel is 18 m,wh  the clearance over the first wheel is 

23.3 m 18 m 5.3 mwy y h      . 

 

(b) The height of the person when he is directly above the second wheel can be found by 

solving Eq. 4-24. With the second wheel located at 23 m (23/ 2) m 34.5 m,x     we 

have  
2 2 2

0 0 2 2 2 2

0 0

(9.8 m/s )(34.5 m)
tan 3.0 m (34.5 m) tan 53

2 cos 2(26.52 m/s) (cos53 )

25.9 m.

gx
y y x

v



     





 

 

Therefore, the clearance over the second wheel is 25.9 m 18 m 7.9 mwy y h      . 

 

(c) The location of the center of the net is given by 

 
22 2

0 0
0 0 2 2 2

0 0

sin 2 (26.52 m/s) sin(2 53 )
0 tan 69 m.

2 cos 9.8 m/s

vgx
y y x x

v g






 
         

 

43. We designate the given velocity ˆ ˆ(7.6 m/s)i (6.1 m/s) jv    as 
1v , as opposed to the 

velocity when it reaches the max height 

v2  or the velocity when it returns to the ground 

3 ,v  and take 

v0  as the launch velocity, as usual. The origin is at its launch point on the 

ground. 

 

(a) Different approaches are available, but since it will be useful (for the rest of the 

problem) to first find the initial y velocity, that is how we will proceed. Using Eq. 2-16, 

we have 
2 2 2 2 2

1 0 02 (6.1 m/s) 2(9.8 m/s )(9.1 m)y y yv v g y v       

 

which yields v0 y = 14.7 m/s. Knowing that v2 y must equal 0, we use Eq. 2-16 again but 

now with y = h for the maximum height: 

 
2 2 2 2

2 0 2 0 (14.7 m/s) 2(9.8 m/s )y yv v gh h      

 

which yields h = 11 m. 

 

(b) Recalling the derivation of Eq. 4-26, but using v0 y for v0 sin 0 and v0x for v0 cos 0, 

we have 

2

0 0

1
0 ,

2
y xv t gt R v t    
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which leads to
0 02 / .x yR v v g  Noting that v0x = v1x = 7.6 m/s, we plug in values and 

obtain  

R = 2(7.6 m/s)(14.7 m/s)/(9.8 m/s
2
) = 23 m. 

 

(c) Since v3x = v1x = 7.6 m/s and v3y = – v0 y = –14.7 m/s, we have 

 
2 2 2 2

3 3 3 (7.6 m/s) ( 14.7 m/s) 17 m/s.x yv v v       

 

(d) The angle (measured from horizontal) for  

v3

 is one of these possibilities: 

 

1 14.7 m
tan 63   or   117

7.6 m

  
    

 
 

 

where we settle on the first choice (–63°, which is equivalent to 297°) since the signs of 

its components imply that it is in the fourth quadrant. 

 

44. We adopt the positive direction choices used in the textbook so that equations such as 

Eq. 4-22 are directly applicable. The initial velocity is horizontal so that 
0   0yv   and 

0 0 161 km h
x

v v  .  Converting to SI units, this is v0 = 44.7 m/s. 

 

(a) With the origin at the initial point (where the ball leaves the pitcher’s hand), the y 

coordinate of the ball is given by y gt  1
2

2 , and the x coordinate is given by x = v0t. 

From the latter equation, we have a simple proportionality between horizontal distance 

and time, which means the time to travel half the total distance is half the total time. 

Specifically, if x = 18.3/2 m, then t = (18.3/2 m)/(44.7 m/s) = 0.205 s. 

 

(b) And the time to travel the next 18.3/2 m must also be 0.205 s. It can be useful to write 

the horizontal equation as x = v0t in order that this result can be seen more clearly. 

 

(c) Using the equation 21
2

,y gt   we see that the ball has reached the height of 

  
221

2
| 9.80 m/s 0.205 s | 0.205 m  at the moment the ball is halfway to the batter. 

 

(d) The ball’s height when it reaches the batter is   
221

2
9.80 m/s 0.409 s 0.820m  , 

which, when subtracted from the previous result, implies it has fallen another 0.615 m. 

Since the value of y is not simply proportional to t, we do not expect equal time-intervals 

to correspond to equal height-changes; in a physical sense, this is due to the fact that the 

initial y-velocity for the first half of the motion is not the same as the “initial” y-velocity 

for the second half of the motion. 
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45. (a)  Let m = 
d2

 d1

 = 0.600 be the slope of the ramp, so y = mx there.  We choose our 

coordinate origin at the point of launch and use Eq. 4-25.  Thus, 

 
2 2

2 2

(9.80 m/s )
tan(50.0 ) 0.600

2(10.0 m/s) (cos50.0 )

x
y x x   


 

 

which yields x = 4.99 m.  This is less than d1 so the ball does land on the ramp.  

 

(b) Using the value of  x found in part (a), we obtain y = mx = 2.99 m.  Thus, the 

Pythagorean theorem yields a displacement magnitude of x
2
 + y

2 
  = 5.82 m. 

 

(c) The angle is, of course, the angle of the ramp: tan
1

(m) = 31.0º.   

 

46. Using the fact that 0yv   when the player is at the maximum height maxy , the amount 

of time it takes to reach 
maxy  can be solved by using Eq. 4-23:  

 

 0 0
0 0 max

sin
0 siny

v
v v gt t

g


     . 

 

Substituting the above expression into Eq. 4-22, we find the maximum height to be   

 
2 2 2

2 0 0 0 0 0 0
max 0 0 max max 0 0

sin sin sin1 1
( sin ) sin .

2 2 2

v v v
y v t gt v g

g g g

  
 

   
       

   
 

 

To find the time when the player is at max / 2y y , we solve the quadratic equation given 

in Eq. 4-22: 
2 2

20 0 0 0
max 0 0

sin (2 2) sin1 1
( sin ) .

2 4 2 2

v v
y y v t gt t

g g

 
 


       

 

With t t  (for ascending), the amount of time the player spends at a height max / 2y y  

is  

 0 0 0 0 0 0 max
max

max

sin (2 2) sin sin 1
0.707

2 2 2 2

v v v t t
t t t

g g tg

  


 
          . 

 

Therefore, the player spends about 70.7% of the time in the upper half of the jump. Note 

that the ratio max/t t  is independent of 0v  and 0 , even though t  and maxt  depend on 

these quantities.  

 

47. THINK The baseball undergoes projectile motion after being hit by the batter. We’d 

like to know if the ball clears a high fence at some distance away.    
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EXPRESS We adopt the positive direction choices used in the textbook so that equations 

such as Eq. 4-22 are directly applicable. The coordinate origin is at ground level directly 

below impact point between bat and ball. In the absence of a fence, with 0 45   , the 

horizontal range (same launch level) is 107 mR  . We want to know how high the ball 

is from the ground when it is at 97.5 mx  , which requires knowing the initial velocity. 

The trajectory of the baseball can be described by Eq. 4-25: 

 
2

0 0 2

0 0

(tan )
2( cos )

gx
y y x

v



   . 

 

The setup of the problem is shown in the figure below (not to scale). 

 

 
 

ANALYZE (a) We first solve for the initial speed v0. Using the range information 

( 0y y  when x R ) and 0 = 45°, Eq. 4-25 gives 

 

  2

0

0

9.8 m/s 107 m
32.4 m/s.

sin 2 sin(2 45 )

gR
v


  

 
 

 

Thus, the time at which the ball flies over the fence is: 

 

 
0 0

0 0

97.5 m
( cos ) 4.26 s.

cos 32.4 m/s cos 45

x
x v t t

v





      


 

 

At this moment, the ball is at a height (above the ground) of 

 

  2

0 0 0

2 2

1
sin

2
1

1.22 m [(32.4 m/s)sin 45 ](4.26 s) (9.8 m/s )(4.26 s)
2

9.88 m

y y v t gt    

   



 

 

which implies it does indeed clear the 7.32 m high fence. 

 

(b) At 4.26 st  , the center of the ball is 9.88 m – 7.32 m = 2.56 m above the fence. 
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LEARN Using the trajectory equation above, one can show that the minimum initial 

velocity required to clear the fence is given by 
2

0 0 2

0 0

(tan )
2( cos )

gx
y y x

v





    , 

or about 31.9 m/s.   

 

48. Following the hint, we have the time-reversed problem with the ball thrown from the 

roof, toward the left, at 60° measured clockwise from a leftward axis. We see in this 

time-reversed situation that it is convenient to take +x as leftward with positive angles 

measured clockwise. Lengths are in meters and time is in seconds. 

 

(a) With y0 = 20.0 m, and y = 0 at t = 4.00 s, we have y y v t gt
y

  0 0
1
2

2   where 

v v
y0 0 60 sin .  This leads to v0 = 16.9 m/s. This plugs into the x-equation 

0 0xx x v t   

(with x0 = 0 and x = d) to produce  

 

d = (16.9 m/s)cos 60°(4.00 s) = 33.7 m. 

(b) We have  

0
2

0

(16.9 m/s)cos60.0 8.43 m/s

(16.9 m/s)sin 60.0 (9.80m/s )(4.00 s) 24.6 m/s.
x x

y y

v v

v v gt

   

     
 

 

The magnitude of v is 2 2 2 2| | (8.43 m/s) ( 24.6 m/s) 26.0 m/s.x yv v v       

 

(c) The angle relative to horizontal is  

 1 1 24.6 m/s
tan tan 71.1 .

8.43 m/s

y

x

v

v
     
       

  
 

  
We may convert the result from rectangular components to magnitude-angle 

representation: 

(8.43, 24.6) (26.0 71.1 )v        

 

and we now interpret our result (“undoing” the time reversal) as an initial velocity of 

magnitude 26.0 m/s with angle (up from rightward) of 71.1°. 

 

49. THINK In this problem a football is given an initial speed and it undergoes projectile 

motion. We’d like to know the smallest and greatest angles at which a field goal can be 

scored.  

 

EXPRESS We adopt the positive direction choices used in the textbook so that equations 

such as Eq. 4-22 are directly applicable. The coordinate origin is at the point where the 

ball is kicked. We use x and y to denote the coordinates of the ball at the goalpost, and try 

to find the kicking angle(s) 0 so that y = 3.44 m when x = 50 m. Writing the kinematic 

equations for projectile motion:  
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21
0 0 0 0 2
cos , sin ,x v y v t gt     

 

we see the first equation gives t = x/v0 cos 0, and when this is substituted into the second 

the result is 

y x
gx

v
 tan

cos
.


0

2

0

2 2

02
 

 

ANALYZE One may solve the above equation by trial and error: systematically trying 

values of 0 until you find the two that satisfy the equation. A little manipulation, 

however, will give an algebraic solution: Using the trigonometric identity  

 

1 / cos
2
 0 = 1 + tan

2
 0, 

we obtain 

1

2

1

2
0

2

0

2

2

0 0

2

0

2

gx

v
x y

gx

v
tan tan      

 

which is a second-order equation for tan 0. To simplify writing the solution, we denote 

 

    
2 22 2 2

0

1 1
/ 9.80 m/s 50 m / 25 m/s 19.6 m.

2 2
c gx v    

 

Then the second-order equation becomes c tan
2
 0 – x tan 0 + y + c = 0.  Using the 

quadratic formula, we obtain its solution(s). 

 

    

 

2 2

0

4 50 m (50 m) 4 3.44 m 19.6 m 19.6 m
tan .

2 2 19.6 m

x x y c c

c


     
   

 

The two solutions are given by tan0 = 1.95 and tan0 = 0.605. The corresponding (first-

quadrant) angles are 0 = 63° and 0 = 31°. Thus, 

 

(a) The smallest elevation angle is 0 = 31°, and  

 

(b) The greatest elevation angle is 0 = 63°. 

 

LEARN If kicked at any angle between 31° and 63°, the ball will travel above the cross 

bar on the goalposts. 

 

50. We apply Eq. 4-21, Eq. 4-22, and Eq. 4-23. 

 

(a) From x v t
x

 0 , we find 0 40 m/ 2 s 20 m/s.xv    

 

(b) Fromy v t gt
y

 0
1
2

2 , we find  2 21
0 2

53 m (9.8 m/s )(2 s) / 2 36yv    m/s. 
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(c) From v v gty y
  0

 with vy = 0 as the condition for maximum height, we obtain 

2(36 m/s) /(9.8 m/s ) 3.7 s.t    During that time the x-motion is constant, so 

0 (20 m/s)(3.7 s) 74 m.x x     

 

51. (a) The skier jumps up at an angle of 
0 11.3    up from the horizontal and thus 

returns to the launch level with his velocity vector 11.3  below the horizontal. With the 

snow surface making an angle of 9.0    (downward) with the horizontal, the angle 

between the slope and the velocity vector is 
0 11.3 9.0 2.3         . 

 

(b) Suppose the skier lands at a distance d down the slope. Using Eq. 4-25 with 

cosx d   and siny d    (the edge of the track being the origin), we have 

 
2

0 2 2

0 0

( cos )
sin cos tan .

2 cos

g d
d d

v


  


    

Solving for d, we obtain 

 

   
2 2 2

0 0 0 0
0 0 02 2

2

0 0
02

2 cos 2 cos
cos tan sin cos sin cos sin

cos cos

2 cos
sin( ).

cos

v v
d

g g

v

g

 
      

 


 



   

 

 

 

Substituting the values given, we find 

 
2

2 2

2(10 m/s) cos(11.3 )
sin(11.3 9.0 ) 7.117 m.

(9.8 m/s )cos (9.0 )
d


   


 

 

which gives 

sin (7.117 m)sin(9.0 ) 1.11 m.y d         

 

Therefore, at landing the skier is approximately 1.1 m below the launch level.  

 

(c) The time it takes for the skier to land is  

 

 
0 0

cos (7.117 m)cos(9.0 )
0.72 s

cos (10 m/s)cos(11.3 )x

x d
t

v v






   


. 

 

Using Eq. 4-23, the x-and y-components of the velocity at landing are 

 

0 0
2

0 0

cos (10 m/s)cos(11.3 ) 9.81m/s

sin (10 m/s)sin(11.3 ) (9.8 m/s )(0.72 s) 5.07 m/s
x

y

v v

v v gt





   

      
 



 

  

153 

 

Thus, the direction of travel at landing is  

 

1 1 5.07 m/s
tan tan 27.3 .

9.81m/s

y

x

v

v
     
       

  
 

 

or 27.3  below the horizontal. The result implies that the angle between the skier’s path 

and the slope is 27.3 9.0 18.3      , or approximately 18  to two significant figures.  

 

52. From Eq. 4-21, we find 
0/ xt x v . Then Eq. 4-23 leads to 

 

 
0 0

0

.y y y

x

gx
v v gt v

v
     

 

Since the slope of the graph is 0.500, we conclude  

 

0

1

2x

g

v
    vox = 19.6 m/s. 

 

And from the “y intercept” of the graph, we find voy = 5.00 m/s. Consequently,  

 

o = tan
1

(voy   vox) = 14.3 14  . 

 

53. Let y0 = h0 = 1.00 m at x0 = 0 when the ball is hit. Let y1 = h (the height of the wall) 

and x1 describe the point where it first rises above the wall one second after being hit; 

similarly, y2 = h and x2 describe the point where it passes back down behind the wall four 

seconds later. And yf = 1.00 m at xf = R is where it is caught. Lengths are in meters and 

time is in seconds. 

 

(a) Keeping in mind that vx is constant, we have x2 – x1 = 50.0 m = v1x (4.00 s), which 

leads to v1x = 12.5 m/s. Thus, applied to the full six seconds of motion:  

 

xf – x0 = R = vx(6.00 s) = 75.0 m. 

 

(b) We apply 
21

0 0 2yy y v t gt    to the motion above the wall, 

 

   
2

2 1 1

1
0 4.00 s 4.00 s

2
yy y v g     

 

and obtain v1y = 19.6 m/s. One second earlier, using v1y = v0y – g(1.00 s), we find 

0 29.4 m/syv  . Therefore, the velocity of the ball just after being hit is 

 

 0 0
ˆ ˆ ˆ ˆi j (12.5 m/s) i  (29.4 m/s) jx yv v v     
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Its magnitude is 2 2| | (12.5 m/s) +(29.4 m/s) 31.9 m/s.v    

 

(c) The angle is  

 1 1 29.4 m/s
tan tan 67.0 .

12.5 m/s

y

x

v

v
     
      

  
 

  
We interpret this result as a velocity of magnitude 31.9 m/s, with angle (up from 

rightward) of 67.0°. 

 

(d) During the first 1.00 s of motion, y y v t gt
y

  0 0
1
2

2  yields  

 

     
221

2
1.0 m 29.4 m/s 1.00 s 9.8 m/s 1.00 s 25.5 m.h      

 

54. For y = 0, Eq. 4-22 leads to t = 2vosino/g, which immediately implies tmax = 2vo/g 

(which occurs for the “straight up” case: o = 90). Thus, 

 
1

2
 tmax = vo/g     

1

2
  = sino. 

 

Therefore, the half-maximum-time flight is at angle o = 30.0. Since the least speed 

occurs at the top of the trajectory, which is where the velocity is simply the x-component 

of the initial velocity (vocoso = vocos30 for the half-maximum-time flight), then we 

need to refer to the graph in order to find vo – in order that we may complete the solution.  

In the graph, we note that the range is 240 m when o = 45.0.  Equation 4-26 then leads 

to vo = 48.5 m/s. The answer is thus (48.5 m/s)cos30.0 = 42.0 m/s. 

 

55. THINK In this problem a ball rolls off the top of a stairway with an initial speed, and 

we’d like to know on which step it lands first.  

 

 

EXPRESS  We denote h as the height of a step and w 

as the width. To hit step n, the ball must fall a distance 

nh and travel horizontally a distance between (n – 1)w 

and nw. We take the origin of a coordinate system to 

be at the point where the ball leaves the top of the 

stairway, and we choose the y axis to be positive in the 

upward direction, as shown in the figure. 
 

The coordinates of the ball at time t are given by x = v0xt and y gt  1
2

2 (since v0y = 0).  

 

ANALYZE We equate y to  –nh and solve for the time to reach the level of step n: 
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t
nh

g


2
.  

The x coordinate then is 

 

0 2

2 2 (0.203 m)
(1.52 m/s) (0.309 m) .

9.8 m/s
x

nh n
x v n

g
    

 

The method is to try values of n until we find one for which x/w is less than n but greater 

than n – 1. For n = 1, x = 0.309 m and x/w = 1.52, which is greater than n. For n = 2, x = 

0.437 m and x/w = 2.15, which is also greater than n. For n = 3, x = 0.535 m and x/w = 

2.64. Now, this is less than n and greater than n – 1, so the ball hits the third step. 

 

LEARN To check the consistency of our calculation, we can substitute n = 3 into the 

above equations. The results are t = 0.353 s, y = 0.609 m and x = 0.535 m. This indeed 

corresponds to the third step.  

 

56. We apply Eq. 4-35 to solve for speed v and Eq. 4-34 to find acceleration a. 

 

(a) Since the radius of Earth is 6.37  10
6
 m, the radius of the satellite orbit is  

 

r = (6.37  10
6
  + 640  10

3
 ) m = 7.01  10

6
 m. 

 

Therefore, the speed of the satellite is 

 

v
r

T
 


 

2 2 7 01 10

98 0 60
7 49 10

6

3  .

. / min
.

m

min s
m / s.

c h
b gb g  

 

(b) The magnitude of the acceleration is 

 

a
v

r
 






2 3
2

6

7 49 10

7 01 10
8 00

.

.
. .

m / s

m
m / s2

c h
 

 

57. The magnitude of centripetal acceleration (a = v
2
/r) and its direction (toward the 

center of the circle) form the basis of this problem. 

 

(a) If a passenger at this location experiences 

a 183. m/ s2  east, then the center of the 

circle is east of this location. The distance is r = v
2
/a = (3.66 m/s)

2
/(1.83 m/s

2
) = 7.32 m.  

 

(b) Thus, relative to the center, the passenger at that moment is located 7.32 m toward the 

west. 
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(c) If the direction of 

a  experienced by the passenger is now south—indicating that the 

center of the merry-go-round is south of him, then relative to the center, the passenger at 

that moment is located 7.32 m toward the north. 

 

58. (a) The circumference is c = 2r = 2(0.15 m) = 0.94 m. 

 

(b) With T = (60 s)/1200 = 0.050 s, the speed is v = c/T = (0.94 m)/(0.050 s) = 19 m/s. 

This is equivalent to using Eq. 4-35. 

 

(c) The magnitude of the acceleration is a = v
2
/r = (19 m/s)

2
/(0.15 m) = 2.4  10

3
 m/s

2
. 

 

(d) The period of revolution is (1200 rev/min)
–1

 = 8.3  10
–4

 min, which becomes, in SI 

units, T = 0.050 s = 50 ms. 

 

59. (a) Since the wheel completes 5 turns each minute, its period is one-fifth of a minute, 

or 12 s. 

 

(b) The magnitude of the centripetal acceleration is given by a = v
2
/R, where R is the 

radius of the wheel, and v is the speed of the passenger. Since the passenger goes a 

distance 2R for each revolution, his speed is 

 

v  
2 15

12
7 85

 m

s
m / s

b g
.  

 

and his centripetal acceleration is a  
7 85

15
41

2
.

. .
m / s

m
m / s2b g

 

 

(c) When the passenger is at the highest point, his centripetal acceleration is downward, 

toward the center of the orbit. 

 

(d) At the lowest point, the centripetal acceleration is 24.1 m/sa  , same as part (b). 

 

(e) The direction is up, toward the center of the orbit.   

 

60. (a) During constant-speed circular motion, the velocity vector is perpendicular to the 

acceleration vector at every instant.  Thus,  v  


 ·  a  


  = 0. 

 

(b) The acceleration in this vector, at every instant, points toward the center of the circle, 

whereas the position vector points from the center of the circle to the object in motion.  

Thus, the angle between  r  


 and  a  


 is 180º  at every instant, so  r  


   a  


 = 0. 

 

61. We apply Eq. 4-35 to solve for speed v and Eq. 4-34 to find centripetal acceleration a. 

 

(a) v = 2r/T = 2(20 km)/1.0 s = 126 km/s = 1.3  10
5
 m/s. 
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(b) The magnitude of the acceleration is 

 

 a
v

r
   

2 2

5
126

20
7 9 10

km / s

km
m / s2b g

. .  

 

(c) Clearly, both v and a will increase if T is reduced. 

 

62. The magnitude of the acceleration is 

 

a
v

r
  

2 2
10

25
4 0

m / s

m
m / s2b g

. .  

 

63. We first note that a1  
   

 (the acceleration at t1 = 2.00 s) is perpendicular to a2  
   

 (the 

acceleration at t2=5.00 s), by taking their scalar (dot) product:   

 

 2 2 2 2

1 2
ˆ ˆ ˆ ˆ[(6.00 m/s )i+(4.00 m/s )j] [(4.00 m/s )i+( 6.00 m/s )j]=0.a a     

 

Since the acceleration vectors are in the (negative) radial directions, then the two 

positions (at t1 and t2) are a quarter-circle apart (or three-quarters of a circle, depending 

on whether one measures clockwise or counterclockwise).  A quick sketch leads to the 

conclusion that if the particle is moving counterclockwise (as the problem states) then it 

travels three-quarters of a circumference in moving from the position at time t1 to the 

position at time t2 .  Letting T stand for the period, then t2 –  t1  = 3.00 s = 3T/4. This gives 

T = 4.00 s.  The magnitude of the acceleration is 

 

 2 2 2 2 2 2(6.00 m/s ) (4.00 m/s) 7.21 m/s .x ya a a      

 

Using Eqs. 4-34 and 4-35, we have 2 24 /a r T , which yields 

 

 
2 2 2

2 2

(7.21 m/s )(4.00 s)
2.92 m.

4 4

aT
r

 
    

 

64. When traveling in circular motion with constant speed, the instantaneous acceleration 

vector necessarily points toward the center.  Thus, the center is “straight up” from the 

cited point.   

 

(a) Since the center is “straight up” from (4.00 m, 4.00 m), the x coordinate of the center 

is 4.00 m.  

 

(b) To find out “how far up” we need to know the radius. Using Eq. 4-34 we find 
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22

2

5.00 m/s
2.00 m.

12.5 m/s

v
r

a
    

 

Thus, the y coordinate of the center is 2.00 m + 4.00 m = 6.00 m.  Thus, the center may 

be written as (x, y) = (4.00 m, 6.00 m). 

 

65. Since the period of a uniform circular motion is 2 /T r v , where r is the radius and 

v is the speed, the centripetal acceleration can be written as 

 

 

22 2

2

1 2 4
.

v r r
a

r r T T

  
   

 
 

 

Based on this expression, we compare the (magnitudes) of the wallet and purse 

accelerations, and find their ratio is the ratio of r values.  Therefore, awallet = 1.50 apurse .   

Thus, the wallet acceleration vector is  

 

 2 2 2 2ˆ ˆ ˆ ˆ1.50[(2.00 m/s )i +(4.00 m/s )j]=(3.00 m/s )i +(6.00 m/s )ja  . 

 

66. The fact that the velocity is in the +y direction and the acceleration is in the +x 

direction at t1 = 4.00 s implies that the motion is clockwise. The position corresponds to 

the “9:00 position.” On the other hand, the position at t2 = 10.0 s is in the “6:00 position” 

since the velocity points in the x direction and the acceleration is in the +y direction. 

The time interval 10.0 s 4.00 s 6.00 st     is equal to 3/4 of a period: 

 

 
3

6.00 s     8.00 s.
4

T T    

Equation 4-35 then yields  

 

 
(3.00 m/s)(8.00 s)

3.82 m.
2 2

vT
r

 
    

 

(a) The x coordinate of the center of the circular path is 5.00 m 3.82 m 8.82 m.x     

 

(b) The y coordinate of the center of the circular path is 6.00 m.y   

 

In other words, the center of the circle is at (x,y) = (8.82 m, 6.00 m). 

 

67. THINK In this problem we have a stone whirled in a horizontal circle. After the 

string breaks, the stone undergoes projectile motion.  

 

EXPRESS The stone moves in a circular path (top view shown below left) initially, but 

undergoes projectile motion after the string breaks (side view shown below right). Since 
2 /a v R , to calculate the centripetal acceleration of the stone, we need to know its 
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speed during its circular motion (this is also its initial speed when it flies off). We use the 

kinematic equations of projectile motion (discussed in §4-6) to find that speed. 

(top view)  
 

(side view) 

 

Taking the +y direction to be upward and placing the origin at the point where the stone 

leaves its circular orbit, then the coordinates of the stone during its motion as a projectile 

are given by x = v0t and y gt  1
2

2 (since v0y = 0). It hits the ground at x = 10 m and 

2.0 my   .  

 

ANALYZE Formally solving the y-component equation for the time, we obtain 

t y g 2 / , which we substitute into the first equation: 

 

v x
g

y
0

2
10

9 8

2 2 0
157   


m

m / s

m
m / s.

2

b g b g
.

.
.  

 

Therefore, the magnitude of the centripetal acceleration is 

 

 
22

20
15.7 m/s

160 m/s .
1.5 m

v
a

R
    

 

LEARN The above equations can be combined to give 
2

2

gx
a

yR



. The equation implies 

that the greater the centripetal acceleration, the greater the initial speed of the projectile, 

and the greater the distance traveled by the stone. This is precisely what we expect. 

 

68. We note that after three seconds have elapsed (t2 – t1 = 3.00 s) the velocity (for this 

object in circular motion of period T ) is reversed; we infer that it takes three seconds to 

reach the opposite side of the circle.  Thus, T = 2(3.00 s) = 6.00 s.   

 

(a) Using Eq. 4-35, r = vT/2, where 2 2(3.00 m/s) (4.00 m/s) 5.00 m/sv   , we obtain 

4.77 mr  . The magnitude of the object’s centripetal acceleration is therefore a = v
2
/r = 

5.24 m/s
2
.  
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(b) The average acceleration is given by Eq. 4-15: 

 

2 22 1
avg

2 1

ˆ ˆ ˆ ˆ( 3.00i 4.00j) m/s (3.00i 4.00j) m/s ˆ ˆ( 2.00 m/s )i+( 2.67 m/s ) j
5.00 s 2.00 s

v v
a

t t

    
    

 

 

which implies 2 2 2 2 2

avg| | ( 2.00 m/s ) ( 2.67 m/s ) 3.33 m/s .a       

 

69. We use Eq. 4-15 first using velocities relative to the truck (subscript t) and then using 

velocities relative to the ground (subscript g). We work with SI units, so 

20 km/ h 5.6 m/ s , 30 km/ h 8.3 m/ s , and 45 km/ h 12.5  m/ s . We choose 

east as the  i  direction. 

 

(a) The velocity of the cheetah (subscript c) at the end of the 2.0 s interval is (from Eq.  

4-44) 

c t c g t g
ˆ ˆ ˆ(12.5 m/s) i ( 5.6 m/s) i (18.1 m/s) iv v v       

 

relative to the truck. Since the velocity of the cheetah relative to the truck at the 

beginning of the 2.0 s interval is ˆ( 8.3 m/s)i , the (average) acceleration vector relative to 

the cameraman (in the truck) is 

2

avg

ˆ ˆ(18.1m/s)i ( 8.3 m/s)i ˆ(13 m/s )i,
2.0 s

a
 

   

or 2

avg| | 13 m/s .a   

 

(b) The direction of avga is ˆ+i , or eastward. 

 

(c) The velocity of the cheetah at the start of the 2.0 s interval is (from Eq. 4-44) 

 

0 cg 0 ct 0 tg
ˆ ˆ ˆ( 8.3 m/s)i ( 5.6 m/s)i ( 13.9 m/s)iv v v         

 

relative to the ground. The (average) acceleration vector relative to the crew member (on 

the ground) is 

2 2

avg avg

ˆ ˆ(12.5 m/s)i ( 13.9 m/s)i ˆ(13 m/s )i,   | | 13 m/s
2.0 s

a a
 

    

 

identical to the result of part (a). 

 

(d) The direction of avga  is ˆ+i , or eastward. 

 

70. We use Eq. 4-44, noting that the upstream corresponds to the ˆ+i direction. 

 

(a) The subscript b is for the boat, w is for the water, and g is for the ground. 
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bg bw wg
ˆ ˆ ˆ(14 km/h) i ( 9 km/h) i (5 km/h) i.v v v       

 

Thus, the magnitude is 
bg| | 5 km/h.v   

 

(b) The direction of bgv is +x, or upstream. 

 

(c) We use the subscript c for the child, and obtain 

 
  
v v vc g c b b g  km/ h) i  km/ h) i (  km/ h) i      (  (  6 5 1 . 

 

The magnitude is cg| | 1 km/h.v   

 

(d) The direction of cgv is x, or downstream. 

 

71. While moving in the same direction as the sidewalk’s motion (covering a distance d 

relative to the ground in time t1 = 2.50 s), Eq. 4-44 leads to 

vsidewalk + vman running = 
d

 t1
  . 

 

While he runs back (taking time t2 = 10.0 s) we have 

vsidewalk  vman running = 
d

 t2
  . 

 

Dividing these equations and solving for the desired ratio, we get  
12.5

7.5
  =  

5

3
  = 1.67. 

 

72. We denote the velocity of the player with 
PFv  and 

the relative velocity between the player and the ball be 

BPv . Then the velocity 
BFv  of the ball relative to the 

field is given by 
BF PF BPv v v  . The smallest angle 

min corresponds to the case when 
BF PFv v . Hence, 

 

1 1

min

| | 4.0 m/s
180 cos  180 cos  130 .

| | 6.0 m/s

PF

BP

v

v
     

        
  

  

73. We denote the police and the motorist with subscripts p and m, respectively. The 

coordinate system is indicated in Fig. 4-46. 

 

(a) The velocity of the motorist with respect to the police car is 

 

 
ˆ ˆ ˆ ˆ( 60 km/h)j ( 80 km/h)i (80 km/h)i (60 km/h)j.m p m pv v v         
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(b) 

vm p  does happen to be along the line of sight. Referring to Fig. 4-46, we find the 

vector pointing from one car to another is ˆ ˆ(800 m)i (600 m) jr    (from M to P). Since 

the ratio of components in 

r  is the same as in 


vm p , they must point the same direction. 

 

(c) No, they remain unchanged. 

 

74. Velocities are taken to be constant; thus, the velocity of the plane relative to the 

ground is ˆ ˆ(55 km)/(1/4 hour) j= (220 km/h)jPGv  . In addition, 

 

 ˆ ˆ ˆ ˆ(42 km/h)(cos20 i sin 20 j) (39 km/h)i (14 km/h)j.AGv        

 

Using PG PA AGv v v  , we have  

 

 ˆ ˆ(39 km/h)i (234 km/h)j.PA PG AGv v v      

 

which implies | | 237 km/hPAv  , or 240 km/h (to two significant figures.) 

 

75. THINK This problem deals with relative motion in two dimensions. Raindrops 

appear to fall vertically by an observer on a moving train.  

 

 

EXPRESS Since the raindrops fall vertically 

relative to the train, the horizontal component 

of the velocity of a raindrop, vh = 30 m/s, must 

be the same as the speed of the train, i.e., 

trainhv v  (see figure).  

 
On the other hand, if vv is the vertical component of the velocity and  is the angle 

between the direction of motion and the vertical, then tan  = vh/vv.  Knowing vv and vh 

allows us to determine the speed of the raindrops. 

 

ANALYZE With 70   , we find the vertical component of the velocity to be  

 

vv = vh/tan  = (30 m/s)/tan 70° = 10.9 m/s. 

 

Therefore, the speed of a raindrop is  

 

v v vh v    2 2 30 10 9 32( ( . m / s)  m/ s)  m / s2 2 . 
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LEARN As long as the horizontal component of the velocity of the raindrops coincides 

with the speed of the train, the passenger on board will see the rain falling perfectly 

vertically.    

 

76. The destination is D  


 = 800 km j
^
  where we orient axes so that +y points north and +x 

points east.  This takes two hours, so the (constant) velocity of the plane (relative to the 

ground) is 
pgv  = (400 km/h) j

^
 .  This must be the vector sum of the plane’s velocity with 

respect to the air which has (x,y) components (500cos70º, 500sin70º), and the velocity of 

the air (wind) relative to the ground agv .  Thus, 

 

(400 km/h) j
^
  = (500 km/h) cos70º i

^
 + (500 km/h) sin70º j

^
  + 

agv  

 

which yields 

agv  =( –171 km/h)i
^
  –( 70.0 km/h)j

^
 . 

 

(a) The magnitude of agv  is 2 2

ag| | ( 171 km/h) ( 70.0 km/h) 185 km/h.v       

 

(b) The direction of agv  is 

 1 70.0 km/h
tan 22.3   (south of west).

171 km/h
   
   

 
 

 

77. THINK This problem deals with relative motion in two dimensions. Snowflakes 

falling vertically downward are seen to fall at an angle by a moving observer.  

 

EXPRESS Relative to the car the velocity of the snowflakes has a vertical component of 

8.0 m/svv   and a horizontal component of 50 km/h 13.9 m/shv   .  

 

ANALYZE The angle   from the vertical is found from 

 

13.9 m/s
tan 1.74

8.0 m/s

h

v

v

v
     

which yields  = 60°. 

 

LEARN The problem can also be solved 

by expressing the velocity relation in 

vector notation: rel car snowv v v  , as shown 

in the figure. 
 

 

78. We make use of Eq. 4-44 and Eq. 4-45. 

 

The velocity of Jeep P relative to A at the instant is  
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 ˆ ˆ ˆ ˆ(40.0 m/s)(cos60 i sin60 j) (20.0 m/s)i (34.6 m/s)j.PAv        

 

Similarly, the velocity of Jeep B relative to A at the instant is  

 
ˆ ˆ ˆ ˆ(20.0 m/s)(cos30 i sin30 j) (17.3 m/s)i (10.0 m/s)j.BAv        

 

Thus, the velocity of P relative to B is  

 
ˆ ˆ ˆ ˆ ˆ ˆ(20.0i 34.6j) m/s (17.3i 10.0j) m/s (2.68 m/s)i (24.6 m/s)j.PB PA BAv v v         

 

(a) The magnitude of 
PBv  is 2 2| | (2.68 m/s) (24.6 m/s) 24.8 m/s.PBv     

 

(b) The direction of PBv  is 1tan [(24.6 m/s) /(2.68 m/s)] 83.8     north of east (or 6.2º 

east of north). 

 

(c) The acceleration of P is 

 
2 2 2ˆ ˆ ˆ ˆ(0.400 m/s )(cos60.0 i sin60.0 j) (0.200 m/s )i (0.346 m/s )j,PAa        

 

and PA PBa a . Thus, we have 2| | 0.400 m/s .PBa   

 

(d) The direction is 60.0 north of east (or 30.0 east of north). 

 

79. THINK This problem involves analyzing the relative motion of two ships sailing in 

different directions. 

 

EXPRESS Given that 45A   , and 40B   , as 

defined in the figure, the velocity vectors (relative to 

the shore) for ships A and B are given by 

 

ˆ ˆ ( cos 45 ) i ( sin 45 ) j

ˆ ˆ ( sin 40 ) i ( cos 40 ) j,

A A A

B B B

v v v

v v v

    

    
 

 

with vA = 24 knots and vB = 28 knots. We take east as 

 i  and north as j .  

The velocity of ship A relative to ship B is simply given by  AB A Bv v v  .   

 

ANALYZE (a) The relative velocity is 
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ˆ ˆ ( sin 40 cos 45 )i ( cos 40 sin 45 ) j

ˆ ˆ(1.03 knots)i (38.4 knots) j

A B A B B A B Av v v v v v v       

 
 

 

the magnitude of which is 2 2

 | | (1.03 knots) (38.4 knots) 38.4 knots.A Bv     

 

(b) The angle 
AB which 


vA B 

 makes with north is given by 

 

,1 1

,

1.03 knots
tan tan 1.5

38.4 knots

AB x

AB

AB y

v

v
  

   
            

 

which is to say that 

vA B 

 points 1.5° east of north.  

 

(c) Since the two ships started at the same time, their relative velocity describes at what 

rate the distance between them is increasing. Because the rate is steady, we have 

 

| | 160 nautical miles
4.2 h.

| | 38.4 knots

AB

AB

r
t

v


  

 
 

(d) The velocity 

vA B 

 does not change with time in 

this problem, and 

rA B  is in the same direction as 


vA B 

 

since they started at the same time. Reversing the 

points of view, we have 
 
v vA B B A     so that 

 
r rA B B A     (i.e., they are 180° opposite to each 

other). Hence, we conclude that B stays at a bearing 

of 1.5° west of south relative to A during the journey 

(neglecting the curvature of Earth). 

 
 

LEARN The relative velocity is depicted in the figure on the right. When analyzing 

relative motion in two dimensions, a vector diagram such as the one shown can be very 

helpful. 

 

80. This is a classic problem involving two-dimensional relative motion. We align our 

coordinates so that east corresponds to +x and north corresponds to +y. We write the 

vector addition equation as 
  
v v vBG BW WG  .  We have 


vWG   ( . )2 0 0  in the magnitude-

angle notation (with the unit m/s understood), or 

vWG  2 0. i  in unit-vector notation. We 

also have 

vBW   ( . )80 120  where we have been careful to phrase the angle in the 

‘standard’ way (measured counterclockwise from the +x axis), or ˆ ˆ( 4.0i+6.9j) m/s.BWv    

 

(a) We can solve the vector addition equation for 

vBG:  
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ˆ ˆ ˆ ˆ ˆ(2.0 m/s) i ( 4.0i+6.9j) m/s ( 2.0 m/s)i (6.9 m/s) j.BG BW WGv v v         

 

Thus, we find | | .

vBG  7 2  m/s.  

 

(b) The direction of 
BGv  is 1tan [(6.9 m/s) /( 2.0 m/s)] 106     (measured 

counterclockwise from the +x axis), or 16° west of north. 

 

(c) The velocity is constant, and we apply y – y0 = vyt in a reference frame. Thus, in the 

ground reference frame, we have (200 m) (7.2 m/s)sin(106 ) 29t t     s. Note: If a 

student obtains “28 s,” then the student has probably neglected to take the y component 

properly (a common mistake). 

 

81. Here, the subscript W refers to the water. Our coordinates are chosen with +x being 

east and +y being north. In these terms, the angle specifying east would be 0° and the 

angle specifying south would be –90° or 270°. Where the length unit is not displayed, km 

is to be understood. 

 

(a) We have 
  
v v vA W A B B W     , so that  

 

vA B  = (22   – 90°) – (40   37°) = (56   – 125°) 

 

in the magnitude-angle notation (conveniently done with a vector-capable calculator in 

polar mode).  Converting to rectangular components, we obtain 

 

 
ˆ ˆ( 32km/h) i (46 km/h) j .A Bv     

 

Of course, this could have been done in unit-vector notation from the outset. 

 

(b) Since the velocity-components are constant, integrating them to obtain the position is 

straightforward ( )
  
r r v dt  z0    

 
ˆ ˆ(2.5 32 ) i (4.0 46 ) jr t t     

 

with lengths in kilometers and time in hours. 

 

(c) The magnitude of this 

r  is r t t   ( . ) ( . )2 5 32 4 0 462 2 . We minimize this by 

taking a derivative and requiring it to equal zero — which leaves us with an equation for t 

 

dr

dt

t

t t




  


1

2

6286 528

2 5 32 4 0 46
0

2 2( . ) ( . )
 

 

which yields t = 0.084 h. 
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(d) Plugging this value of t back into the expression for the distance between the ships (r), 

we obtain r = 0.2 km. Of course, the calculator offers more digits (r = 0.225…), but they 

are not significant; in fact, the uncertainties implicit in the given data, here, should make 

the ship captains worry. 

 

82. We construct a right triangle starting from the clearing on the 

south bank, drawing a line (200 m long) due north (upward in our 

sketch) across the river, and then a line due west (upstream, leftward 

in our sketch) along the north bank for a distance (82 m) (1.1 m/s)t , 

where the t-dependent contribution is the distance that the river will 

carry the boat downstream during time t. 

 

The hypotenuse of this right triangle (the arrow in our sketch) also 

depends on t and on the boat’s speed (relative to the water), and we 

set it equal to the Pythagorean “sum” of the triangle’s sides: 

 

4 0 200 82 112 2
. .b g b gt t    

 

which leads to a quadratic equation for t 

 

46724 180 4 14 8 02  . . .t t  

 

(b) We solve for t first and find a positive value: t = 62.6 s.  

 

(a) The angle between the northward (200 m) leg of the triangle and the hypotenuse 

(which is measured “west of north”) is then given by 

 

 
F

HG
I
KJ 

F
HG
I
KJ   tan

.
tan .1 182 11

200

151

200
37

t
 

 

83. We establish coordinates with i  pointing to the far side of the river (perpendicular to 

the current) and j  pointing in the direction of the current. We are told that the magnitude 

(presumed constant) of the velocity of the boat relative to the water is | |  = 6.4 km/h.bwv  

Its angle, relative to the x axis is .  With km and h as the understood units, the velocity 

of the water (relative to the ground) is ˆ(3.2 km/h)j.wgv   

 

(a) To reach a point “directly opposite” means that the velocity of her boat relative to 

ground must be ˆ = ibg bgv v  where vbg  0 is unknown. Thus, all j  components must cancel 

in the vector sum 
  
v v vbw wg bg +   =  , which means the 

bwv  sin  = (–3.2 km/h) j , so  

 

 = sin
–1

 [(–3.2 km/h)/(6.4 km/h)] = –30°. 
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(b) Using the result from part (a), we find vbg = vbw cos = 5.5 km/h. Thus, traveling a 

distance of   = 6.4 km requires a time of (6.4 km)/(5.5 km/h) = 1.15 h or 69 min. 

 

(c) If her motion is completely along the y axis (as the problem implies) then with vwg = 

3.2 km/h (the water speed) we have 

 

total  =  +  = 1.33 h
 +   bw wg bw wg

D D
t

v v v v
 

 

where D = 3.2 km. This is equivalent to 80 min. 

 

(d) Since 

 
+  bw wg bw wg bw wg bw wg

D D D D

v v v v v v v v
  

  
 

 

the answer is the same as in the previous part, that is, total  = 80 mint . 

 

(e) The shortest-time path should have 0 .    This can also be shown by noting that the 

case of general  leads to 

 
ˆ ˆcos  i  ( sin  + ) jbg bw wg bw bw wgv v v v v v      

 

where the x component of 

vbg  must equal l/t. Thus, 

 

 = 
cosbw

l
t

v 
 

 

which can be minimized using dt/d = 0.  

 

(f) The above expression leads to t = (6.4 km)/(6.4 km/h) = 1.0 h, or 60 min. 

 

84. Relative to the sled, the launch velocity is 0relv  = vox i
^
  + voy j

^
 .  Since the sled’s 

motion is in the negative direction with speed vs (note that we are treating vs as a positive 

number, so the sled’s velocity is actually –vs i
^
 ), then the launch velocity relative to the 

ground is 0v  = (vox – vs) i
^
  + voy j

^
 .  The horizontal and vertical displacement (relative to 

the ground) are therefore 

 

          xland – xlaunch = xbg = (vox – vs) tflight 

 

          yland – ylaunch =  0  = voy tflight  +  
1

2
 (g)(tflight)

2
 . 

 

Combining these equations leads to  
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xbg = 
0 0 02 2x y y

s

v v v
v

g g

 
 
 

. 

 

The first term corresponds to the “y intercept” on the graph, and the second term (in 

parentheses) corresponds to the magnitude of the “slope.” From the figure, we have 

 

 40 4 .bg sx v    

 

This implies voy = (4.0 s)(9.8 m/s
2
)/2 = 19.6 m/s, and that furnishes enough information to 

determine vox. 

 

(a) vox = 40g/2voy = (40 m)(9.8 m/s
2
)/(39.2 m/s) = 10 m/s. 

 

(b) As noted above, voy = 19.6 m/s. 

 

(c) Relative to the sled, the displacement xbs does not depend on the sled’s speed, so 

xbs = vox tflight = 40 m. 

 

(d) As in (c), relative to the sled, the displacement xbs does not depend on the sled’s 

speed, and xbs = vox tflight = 40 m. 

 

85. Using displacement = velocity × time (for each constant-velocity part of the trip), 

along with the fact that 1 hour = 60 minutes, we have the following vector addition 

exercise (using notation appropriate to many vector-capable calculators): 

 

(1667 m  0º)  + (1333 m  90º) + (333 m  180º) + (833 m  90º) + (667 m  180º) 

+ (417 m  90º) = (2668 m  76º). 

 

(a) Thus, the magnitude of the net displacement is 2.7 km. 

 

(b) Its direction is 76 clockwise (relative to the initial direction of motion). 

 

86. We use a coordinate system with +x eastward and +y upward.  

 

(a) We note that 123° is the angle between the initial position and later position vectors, 

so that the angle from +x to the later position vector is 40° + 123° = 163°. In unit-vector 

notation, the position vectors are 

 

1

2

ˆ ˆ ˆ ˆ = (360 m)cos(40 ) i + (360 m)sin(40 ) j = (276 m)i +(231 m) j

ˆ ˆ ˆ ˆ = (790 m) cos(163 ) i +(790 m) sin(163 ) j = ( 755 m)i +(231 m) j

r

r

 

  
 

 

respectively. Consequently, we plug into Eq. 4-3 
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ˆ ˆ ˆ = [( 755 m) (276 m)]i +(231 m 231 m) j (1031 m) i.r       

 

The magnitude of the displacement r  is | | 1031 m.r   

 

(b) The direction of r is î , or westward. 

 

87. THINK This problem deals with the projectile motion of a baseball. Given the 

information on the position of the ball at two instants, we are asked to analyze its 

trajectory.  

 

EXPRESS The trajectory of the baseball 

is shown in the figure on the right. 

According to the problem statement, at 

1 3.0 s,t   the ball reaches it maximum 

height max ,y  and at 2 1 2.5 s 5.5 st t   , 

it barely clears a fence at 2 97.5 mx  .  

Eq. 2-15 can be applied to the vertical (y axis) motion related to reaching the maximum 

height (when t1 = 3.0 s and vy = 0): 

ymax – y0  =  vyt – 
1

2
gt

2
  . 

 

ANALYZE (a) With ground level chosen so y0 = 0, this equation gives the result  

 

 2 2 2

max 1

1 1
(9.8 m/s )(3.0 s) 44.1 m

2 2
y gt    

 

(b) After the moment it reached maximum height, it is falling; at 2 1 2.5 s 5.5 st t   , it 

will have fallen an amount given by Eq. 2-18:  

 

2

fence max 2 1

1
0 ( )

2
y y g t t    . 

Thus, the height of the fence is 

 

2 2 2

fence max 2 1

1 1
( ) 44.1 m (9.8 m/s )(2.5 s) 13.48 m

2 2
y y g t t      . 

 

(c) Since the horizontal component of velocity in a projectile-motion problem is constant 

(neglecting air friction), we find from 97.5 m = v0x(5.5 s) that v0x = 17.7 m/s. The total 

flight time of the ball is 12 2(3.0 s) 6.0 sT t   . Thus, the range of the baseball is  

 

 0 (17.7 m/s)(6.0 s) 106.4 mxR v T    

 

which means that the ball travels an additional distance 
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2 106.4 m 97.5 m 8.86 mx R x       

 

beyond the fence before striking the ground.  

 

LEARN Part (c) can also be solved by noting that after passing the fence, the ball will 

strike the ground in 0.5 s (so that the total "fall-time" equals the "rise-time"). With v0x = 

17.7 m/s, we have x = (17.7 m/s)(0.5 s) = 8.86 m. 

 

88. When moving in the same direction as the jet stream (of speed vs), the time is 

 

 1

ja s

d
t

v v



, 

 

where d = 4000 km is the distance and vja is the speed of the jet relative to the air (1000 

km/h). When moving against the jet stream, the time is 

 

2

ja s

d
t

v v



, 

where  t2 – t1 = 
70

60
 h . Combining these equations and using the quadratic formula to solve 

gives vs = 143 km/h. 

 

89. THINK We have a particle moving in a two-dimensional plane with a constant 

acceleration. Since the x and y components of the acceleration are constants, we can use 

Table 2-1 for the motion along both axes.  

 

EXPRESS Using vector notation with 

r0 0 , the position and velocity of the particle as 

a function of time are given by 2

0

1
( )

2
r t v t at   and 0( ) ,v t v at   respectively. Where 

units are not shown, SI units are to be understood. 

 

ANALYZE (a) Given the initial velocity 0
ˆ(8.0 m/s) jv   and the acceleration 

2 2ˆ ˆ(4.0 m/s )i (2.0 m/s ) ja   , the position vector of the particle is  

 

       2 2 2 2

0

1 1ˆ ˆ ˆ ˆ ˆ8.0 j 4.0i 2.0 j 2.0 i + 8.0 +1.0 j.
2 2

r v t at t t t t t       

 

Therefore, the time that corresponds to x = 29 m can be found by solving the equation 

2.0t
2
 = 29, which leads to t = 3.8 s. The y coordinate at that time is 

  

y = (8.0 m/s)(3.8 s) + (1.0 m/s
2
)(3.8 s)

2
 = 45 m. 
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(b) The velocity of the particle is given by 
  
v v at 0 . Thus, at t = 3.8 s, the velocity is 

 

  2 2ˆ ˆ ˆ ˆ ˆ(8.0 m/s) j (4.0 m/s ) i (2.0 m/s ) j 3.8 s (15.2 m/s) i (15.6 m/s) jv       

 

which has a magnitude of 2 2 2 2(15.2 m/s) (15.6 m/s) 22 m/s.x yv v v      

 

LEARN Instead of using the vector notation, we can also deal with thex- and the y-

components individually. 

 

90. Using the same coordinate system assumed in Eq. 4-25, we rearrange that equation to 

solve for the initial speed: 

v
x g

x y
0

2
 =  

cos 
 

 (  tan   0 0   )
 

 

which yields v0 = 23 ft/s for g = 32 ft/s
2
, x = 13 ft, y = 3 ft and 0 = 55°. 

 

91. We make use of Eq. 4-25. 

 

(a) By rearranging Eq. 4-25, we obtain the initial speed: 

 

v
x g

x y
0

0 02


cos ( tan ) 
 

 

which yields v0 = 255.5  2.6  10
2
 m/s for x = 9400 m, y = –3300 m, and 0 = 35°. 

 

(b) From Eq. 4-21, we obtain the time of flight: 

 

0 0

9400 m
45 s.

cos (255.5 m/s)cos35

x
t

v 
  


 

 

(c) We expect the air to provide resistance but no appreciable lift to the rock, so we 

would need a greater launching speed to reach the same target. 

 

92. We apply Eq. 4-34 to solve for speed v and Eq. 4-35 to find the period T. 

 

(a) We obtain 

v ra  50 7 0 9 8 19. . .m m / s m / s.2b gb gc h  

 

(b) The time to go around once (the period) is T = 2r/v = 1.7 s. Therefore, in one minute 

(t = 60 s), the astronaut executes 
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60 s
35

1.7 s

t

T
   

 

revolutions. Thus, 35 rev/min is needed to produce a centripetal acceleration of 7g when 

the radius is 5.0 m. 

 

(c) As noted above, T = 1.7 s. 

 

93. THINK This problem deals with the two-dimensional kinematics of a desert camel 

moving from oasis A to oasis B.  

 

EXPRESS The journey of the camel is 

illustrated in the figure on the right. We use a 

‘standard’ coordinate system with +x East and 

+y North. Lengths are in kilometers and times 

are in hours. Using vector notation, we write 

the displacements for the first two segments of 

the trip as:  

1

2

ˆ ˆ(75 km)cos(37 ) i (75 km) sin(37 ) j

ˆ( 65 km) j

r

r

    

  
 

 

The net displacement is 12 1 2  .r r r     As can be seen from the figure, to reach oasis B 

requires an additional displacement 3r . 

 

ANALYZE (a) We perform the vector addition of individual displacements to find the 

net displacement of the camel: 12 1 2
ˆ ˆ(60 km) i (20 km)j.r r r       Its corresponding 

magnitude is  
2 2

12| | (60 km) ( 20 km)  63 km.r      

 

(b) The direction of 12r  is 1

12 tan [( 20 km) /(60 km)] 18      , or 18 south of east. 

 

(c) To calculate the average velocity for the first two segments of the journey (including 

rest), we use the result from part (a) in Eq. 4-8 along with the fact that  

 

12 1 2 rest 50 h 35 h 5.0 h 90 h.t t t t          

 

In unit vector notation, we have 
12,avg

ˆ ˆ(60i 20 j) km ˆ ˆ= (0.67 i 0.22 j) km/h.
90 h

v


   

This leads to 12,avg|  | 0.70 km/h.v   

 

(d) The direction of 12,avgv is 1

12 tan [( 0.22 km/h) /(0.67 km/h)] 18 ,       or 

18 south of east. 
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(e) The average speed is distinguished from the magnitude of average velocity in that it 

depends on the total distance as opposed to the net displacement. Since the camel travels 

140 km, we obtain (140 km)/(90 h) = 1.56 km/h 1.6 km/h.  

 

(f) The net displacement is required to be the 90 km East from A to B. The displacement 

from the resting place to B is denoted 
3.r  Thus, we must have 

  

1 2 3
ˆ +  +  = (90 km) ir r r    

 

which produces 
3

ˆ ˆ(30 km)i (20 km)jr    in unit-vector notation, or (36  33 )   in 

magnitude-angle notation.  Therefore, using Eq. 4-8 we obtain 

 

3,avg

36km
|  | 1.2km/h.

(120 90) h
v  


 

(g) The direction of 3,avgv is the same as 
3r  (that is, 33° north of east). 

 

LEARN With a vector-capable calculator in polar mode, we could perform the vector 

addition of the displacements as (75  37 ) (65   90 ) (63   18 )          . Note the 

distinction between average velocity and average speed. 

 

94. We compute the coordinate pairs (x, y) from x = (v0 cost and 21
0 2

siny v t gt   

for t = 20 s and the speeds and angles given in the problem.  

 

(a) We obtain  

       
       

, 10.1 km, 0.556 km , 12.1 km,1.51 km

, 14.3 km, 2.68 km , 16.4 km, 3.99 km
A A B B

C C D D

x y x y

x y x y

 

 
 

 

and (xE, yE) = (18.5 km, 5.53 km) which we plot in the next part. 

 

 

(b) The vertical (y) and horizontal (x) axes are 

in kilometers. The graph does not start at the 

origin.  The curve to “fit” the data is not 

shown, but is easily imagined (forming the 

“curtain of death”). 

 

 

 
 

95. (a) With x = 8.0 m, t = t1, a = ax , and vox = 0,  Eq. 2-15 gives 
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8.0 m = 
1

2
 ax(t1)

2 
, 

 

and the corresponding expression for motion along the y axis leads to 

 

y = 12 m = 
1

2
 ay(t1)

2 
. 

 

Dividing the second expression by the first leads to / 3/ 2y xa a  = 1.5.  

 

(b) Letting t = 2t1, then Eq. 2-15 leads to x = (8.0 m)(2)
2
 = 32 m, which implies that its 

x coordinate is now (4.0 + 32) m = 36 m.  Similarly, y = (12 m)(2)
2
 = 48 m, which 

means its y coordinate has become (6.0 + 48) m = 54 m. 

 

96. We assume the ball’s initial velocity is perpendicular to the plane of the net. We 

choose coordinates so that (x0, y0) = (0, 3.0) m, and vx > 0 (note that v0y = 0). 

 

(a) To (barely) clear the net, we have 

 

 2 2 2

0 0

1 1
2.24 m 3.0 m 0 9.8 m/s

2 2
yy y v t gt t        

 

which gives t = 0.39 s for the time it is passing over the net. This is plugged into the x-

equation to yield the (minimum) initial velocity vx = (8.0 m)/(0.39 s) = 20.3 m/s. 

 

(b) We require y = 0 and find time t from the equation 21
0 0 2y

y y v t gt   . This value 

  22 3.0 m /(9.8 m/s )(t  0.78 s)  is plugged into the x-equation to yield the 

(maximum) initial velocity  

vx = (17.0 m)/(0.78 s) = 21.7 m/s. 

 

97. THINK A bullet fired horizontally from a rifle strikes the target at some distance 

below its aiming point. We’re asked to find its total flight time and speed. 

 

EXPRESS The trajectory of the 

bullet is shown in the figure on the 

right (not to scale). Note that the 

origin is chosen to be at the firing 

point. With this convention, the y 

coordinate of the bullet is given by 

y gt  1
2

2 . Knowing the coordinates 
 

(x, y) at the target allows us to calculate the total flight time and speed of the bullet. 

 

ANALYZE (a) If t is the time of flight and y = – 0.019 m indicates where the bullet hits 

the target, then 
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  2

2

2 0.019 m2
6.2 10 s.

9.8 m/s

y
t

g


 

     

 

(b) The muzzle velocity is the initial (horizontal) velocity of the bullet. Since x = 30 m is 

the horizontal position of the target, we have x = v0t. Thus, 

 

2

0 2

30 m
4.8 10 m/s.

6.3 10 s

x
v

t 
   


 

 

LEARN Alternatively, we may use Eq. 4-25 to solve for the initial velocity. With 0 0   

and 0 0y  , the equation simplifies to
2

2

02

gx
y

v
  , from which we find 

  
2 2 2

2

0

(9.8 m/s )(30 m)
4.8 10 m/s

2 2( 0.019 m)

gx
v

y
     


, 

 

in agreement with what we calculated in part (b).  

  

98. For circular motion, we must have v  with direction perpendicular to  r  


  and (since 

the speed is constant) magnitude 2 /v r T  where 2 2(2.00 m) ( 3.00 m)r     and 

7.00 sT  . The  r  


 (given in the problem statement) specifies a point in the fourth 

quadrant, and since the motion is clockwise then the velocity must have both components 

negative.  Our result, satisfying these three conditions, (using unit-vector notation which 

makes it easy to double-check that 0r v  ) for v = (–2.69 m/s)i
^
 + (–1.80 m/s)j

^
. 

 

99. Let vo = 2(0.200 m)/(0.00500 s)  251 m/s (using Eq. 4-35) be the speed it had in 

circular motion and o = (1 hr)(360º/12 hr [for full rotation]) = 30.0º.  Then Eq. 4-25 leads 

to

 2 2

2 2

(9.8 m/s )(2.50 m)
(2.50 m) tan30.0 1.44 m

2(251 m/s) (cos30.0 )
y   


 

 

which means its height above the floor is 1.44 m + 1.20 m = 2.64 m. 

 

100. Noting that 

v2 0 , then, using Eq. 4-15, the average acceleration is 

 

 
  2

avg

ˆ ˆ0 6.30i 8.42 j m/s
ˆ ˆ2.1i 2.8 j m/s

3 s

v
a

t

 
    


 

 

101. Using Eq. 2-16, we obtain 2 2

0 2v v gh  , or 2 2

0( ) / 2 .h v v g   
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(a) Since 0v  at the maximum height of an upward motion, with 
0 7.00 m/sv  , we 

have 
2 2(7.00 m/s) / 2(9.80 m/s ) 2.50 m.h    

 

(b) The relative speed is 0 7.00 m/s 3.00 m/s 4.00 m/sr cv v v      with respect to the 

floor. Using the above equation we obtain 2 2(4.00 m/s) / 2(9.80 m/s ) 0.82 m.h    

 

(c) The acceleration, or the rate of change of speed of the ball with respect to the ground 

is 9.80 m/s
2
 (downward). 

 

(d) Since the elevator cab moves at constant velocity, the rate of change of speed of the 

ball with respect to the cab floor is also 9.80 m/s
2
 (downward). 

 

102. (a) With r = 0.15 m and a = 3.0  10
14

 m/s
2
, Eq. 4-34 gives 

 

v ra  67 106.  m/ s. 

 

(b) The period is given by Eq. 4-35: 

T
r

v
   2

14 10 7
. s.  

 

103. (a) The magnitude of the displacement vector 

r  is given by 

 
2 2 2| | (21.5 km) (9.7 km) (2.88 km) 23.8 km.r      

Thus, 

avg

| | 23.8 km
| | 6.79 km/h.

3.50 h

r
v

t


  


 

 

(b) The angle  in question is given by 

 

1

2 2

2.88 km
tan 6.96 .

(21.5 km) (9.7 km)
 

 
   
  

 

 

104. The initial velocity has magnitude v0 and because it is horizontal, it is equal to vx the 

horizontal component of velocity at impact. Thus, the speed at impact is 

 

 2 2

0 03yv v v   

 

where 2yv gh  and we have used Eq. 2-16 with x replaced with h = 20 m. Squaring 

both sides of the first equality and substituting from the second, we find 
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v gh v0

2

0

2
2 3  b g  

 

which leads to 2

04gh v  and therefore to 2

0 (9.8 m/s )(20 m) / 2 7.0 m/s.v    

 

105. We choose horizontal x and vertical y axes such that both components of 

v0  are 

positive. Positive angles are counterclockwise from +x and negative angles are clockwise 

from it. In unit-vector notation, the velocity at each instant during the projectile motion is 

 

 0 0 0 0
ˆ ˆcos i sin j.v v v gt     

 

(a) With v0 = 30 m/s and 0 = 60°, we obtain ˆ ˆ(15i +6.4 j) m/sv  , for t = 2.0 s. The 

magnitude of v is 2 2| | (15 m/s) (6.4 m/s) 16 m/s.v     

 

(b) The direction of v is  
1tan [(6.4 m/s) /(15 m/s)] 23 ,     

 

measured counterclockwise from +x. 

 

(c) Since the angle is positive, it is above the horizontal. 

 

(d) With t = 5.0 s, we find ˆ ˆ(15i 23 j) m/sv   , which yields 

 
2 2| | (15 m/s) ( 23 m/s) 27 m/s.v      

 

(e) The direction of v is 1tan [( 23 m/s) /(15 m/s)] 57      , or 57 measured 

clockwise from +x. 

 

(f) Since the angle is negative, it is below the horizontal. 

 

106. We use Eq. 4-2 and Eq. 4-3. 

 

(a) With the initial position vector as 

r1  and the later vector as 


r2 ,  Eq. 4-3 yields 

 
ˆ ˆ ˆ ˆ ˆ[( 2.0 m) 5.0 m]i [(6.0m) ( 6.0 m)]j (2.0 m 2.0 m)k ( 7.0 m) i (12 m) jr           

 

for the displacement vector in unit-vector notation.  

 

(b) Since there is no z component (that is, the coefficient of k̂  is zero), the displacement 

vector is in the xy plane. 
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107. We write our magnitude-angle results in the form R b g  with SI units for the 

magnitude understood (m for distances, m/s for speeds, m/s
2
 for accelerations). All angles 

 are measured counterclockwise from +x, but we will occasionally refer to angles  , 

which are measured counterclockwise from the vertical line between the circle-center and 

the coordinate origin and the line drawn from the circle-center to the particle location (see 

r in the figure). We note that the speed of the particle is v = 2r/T where r = 3.00 m and T 

= 20.0 s; thus, v = 0.942 m/s. The particle is moving counterclockwise in Fig. 4-56. 

 

(a) At t = 5.0 s, the particle has traveled a fraction of 

 

5.00 s 1

20.0 s 4

t

T
   

 

of a full revolution around the circle (starting at the origin). Thus, relative to the circle-

center, the particle is at 

    
1

4
360 90( )       

 

measured from vertical (as explained above). Referring to Fig. 4-56, we see that this 

position (which is the “3 o’clock” position on the circle) corresponds to x = 3.0 m and y = 

3.0 m relative to the coordinate origin. In our magnitude-angle notation, this is expressed 

as    4.2 45R     . Although this position is easy to analyze without resorting to 

trigonometric relations, it is useful (for the computations below) to note that these values 

of x and y relative to coordinate origin can be gotten from the angle  from the relations  

 

sin , cosx r y r r    . 

 

Of course, R x y 2 2  and  comes from choosing the appropriate possibility from 

tan
–1

 (y/x) (or by using particular functions of vector-capable calculators). 

 

(b) At t = 7.5 s, the particle has traveled a fraction of 7.5/20 = 3/8 of a revolution around 

the circle (starting at the origin). Relative to the circle-center, the particle is therefore at  

= 3/8 (360°) = 135° measured from vertical in the manner discussed above. Referring to 

Fig. 4-56, we compute that this position corresponds to  

 

x = (3.00 m)sin 135° = 2.1 m  

y = (3.0 m) – (3.0 m)cos 135° = 5.1 m  

 

relative to the coordinate origin. In our magnitude-angle notation, this is expressed as (R 

  ) = (5.5   68°). 

 

(c) At t = 10.0 s, the particle has traveled a fraction of 10/20 = 1/2 of a revolution around 

the circle. Relative to the circle-center, the particle is at  = 180° measured from vertical 

(see explanation above). Referring to Fig. 4-56, we see that this position corresponds to x 
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= 0 and y = 6.0 m relative to the coordinate origin. In our magnitude-angle notation, this 

is expressed as    6.0 90R     . 

 

(d) We subtract the position vector in part (a) from the position vector in part (c):  

 

     6.0 90 4.2 45 4.2 135         

 

using magnitude-angle notation (convenient when using vector-capable calculators). If 

we wish instead to use unit-vector notation, we write 

 
ˆ ˆ ˆ ˆ(0 3.0 m) i (6.0 m 3.0 m) j ( 3.0 m)i (3.0 m)jR         

 

which leads to | | 4.2 mR   and  = 135°. 

 

(e) From Eq. 4-8, we have avg /v R t   . With  5.0 st  , we have 

 

avg
ˆ ˆ( 0.60 m/s) i (0.60 m/s) jv     

 

in unit-vector notation or (0.85   135°) in magnitude-angle notation. 

 

(f) The speed has already been noted (v = 0.94 m/s), but its direction is best seen by 

referring again to Fig. 4-56. The velocity vector is tangent to the circle at its “3 o’clock 

position” (see part (a)), which means 

v  is vertical. Thus, our result is  0.94 90  . 

 

(g) Again, the speed has been noted above (v = 0.94 m/s), but its direction is best seen by 

referring to Fig. 4-56. The velocity vector is tangent to the circle at its “12 o’clock 

position” (see part (c)), which means 

v  is horizontal. Thus, our result is  0.94 180  . 

 

(h) The acceleration has magnitude a = v
2
/r = 0.30 m/s

2
, and at this instant (see part (a)) it 

is horizontal (toward the center of the circle). Thus, our result is  0.30 180  . 

 

(i) Again, a = v
2
/r = 0.30 m/s

2
, but at this instant (see part (c)) it is vertical (toward the 

center of the circle). Thus, our result is  0.30 270  . 

 

108. Equation 4-34 describes an inverse proportionality between r and a, so that a large 

acceleration results from a small radius. Thus, an upper limit for a corresponds to a lower 

limit for r. 

 

(a) The minimum turning radius of the train is given by 

 



 

  

181 

r
v

a
min

max . .
.   

2 2

3
216

0 050 9 8
7 3 10

km / h

m / s
m.

2

b g
b gc h  

 

(b) The speed of the train must be reduced to no more than 

 

  2 3

max 0.050 9.8 m/s 1.00 10  m 22 m/sv a r     

 

which is roughly 80 km/h. 

 

109. (a) Using the same coordinate system assumed in Eq. 4-25, we find 

 

y x
gx

v

gx

v
    tan

cos
.


0

2

0 0

2

2

0

2
2 2

0b g     if 0  

 

Thus, with v0 = 3.0  10
6
 m/s and x = 1.0 m, we obtain y = –5.4  10

–13
 m, which is not 

practical to measure (and suggests why gravitational processes play such a small role in 

the fields of atomic and subatomic physics). 

 

(b) It is clear from the above expression that |y| decreases as v0 is increased. 

 

110. When the escalator is stalled the speed of the person is pv t , where   is the 

length of the escalator and t is the time the person takes to walk up it. This is vp = (15 

m)/(90 s) = 0.167 m/s. The escalator moves at ve = (15 m)/(60 s) = 0.250 m/s. The speed 

of the person walking up the moving escalator is  

 

v = vp + ve = 0.167 m/s + 0.250 m/s = 0.417 m/s 

 

and the time taken to move the length of the escalator is 

 

t v   / ( )15 36 m) / (0.417 m/ s  s.  

 

If the various times given are independent of the escalator length, then the answer does 

not depend on that length either. In terms of   (in meters) the speed (in meters per 

second) of the person walking on the stalled escalator is  90 , the speed of the moving 

escalator is  60 , and the speed of the person walking on the moving escalator is 

   90 60 0.0278v    . The time taken is t v    00278 36. s  and is 

independent of  . 

 

111. The radius of Earth may be found in Appendix C. 

 

(a) The speed of an object at Earth’s equator is v = 2R/T, where R is the radius of Earth 

(6.37  10
6
 m) and T is the length of a day (8.64  10

4
 s):  
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v = 2(6.37  10
6
 m)/(8.64  10

4
 s) = 463 m/s. 

 

The magnitude of the acceleration is given by 

 

a
v

R
 




2 2

6

463

6 37 10
0 034

m / s

m
m / s2b g

.
. .  

 

(b) If T is the period, then v = 2R/T is the speed and the magnitude of the acceleration is 

 

 
2 2 2

2

(2 / ) 4v R T R
a

R R T

 
   . 

Thus, 

T
R

a
 


 2 2

6 37 10

9 8
51 10

6
3 

.

.
.

m

m / s
s = 84  min.

2
 

 

112. With gB = 9.8128 m/s
2
 and gM = 9.7999 m/s

2
, we apply Eq. 4-26: 

 

R R
v

g

v

g

v

g

g

g
M B

M B B

B

M

    
F
HG

I
KJ

0

2

0 0

2

0 0

2

02 2 2
1

sin sin sin  
 

which becomes 
2

2

9.8128 m/s
1

9.7999 m/s
M B BR R R

 
   

 
 

 

and yields (upon substituting RB = 8.09 m) RM – RB = 0.01 m = 1 cm. 

 

113. From the figure, the three displacements can be written as  

 

1 1 1 1

2 2 1 2 1 2

3 3 3 2 1

ˆ ˆ ˆ ˆ ˆ ˆ(cos i sin j) (5.00 m)(cos30 i sin 30 j) (4.33 m)i (2.50 m) j

ˆ ˆ ˆ ˆ[cos(180 )i sin(180 )j] (8.00 m)(cos160 i sin160 j)

ˆ ˆ( 7.52 m)i (2.74 m) j

ˆ[cos(360 )i sin

d d

d d

d d

 

   

  

       

         

  

     3 2 1
ˆ ˆ ˆ(360 )j] (12.0 m)(cos 260 i sin 260 j)

ˆ ˆ( 2.08 m)i (11.8 m) j

        

  

 

where the angles are measured from the +x axis. The net displacement is  

 

 1 2 3
ˆ ˆ( 5.27 m)i (6.58 m)j.d d d d       

 

(a) The magnitude of the net displacement is 
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2 2| | ( 5.27 m) ( 6.58 m) 8.43 m.d       

 

(b) The direction of d is 1 1 6.58 m
tan tan 51.3  or 231 .

5.27 m

y

x

d

d
     
       

  
 

 

We choose 231 (measured counterclockwise from +x) since the desired angle is in the 

third quadrant. An equivalent answer is 129  (measured clockwise from +x).   

 

114. Taking derivatives of ˆ ˆ2 i 2sin( / 4) jr t t   (with lengths in meters, time in seconds, 

and angles in radians) provides expressions for velocity and acceleration: 

 

 
2

ˆ ˆ2i cos j
2 4

ˆsin j.
8 4

dr t
v

dt

dv t
a

dt

 

 

 
    

 

 
    

 

 

Thus, we obtain: 

 

time t (s)  0.0 1.0 2.0 3.0 4.0 

 

(a) 
r  


  

position 

x (m) 0.0 2.0 4.0 6.0 8.0 

y (m) 0.0 1.4 2.0 1.4 0.0 

 

(b) 
v  

velocity 

vx(m/s)  2.0 2.0 2.0  

vy (m/s)  1.1 0.0 1.1  

 

(c) 
a  


  

acceleration 

ax (m/s
2
)  0.0 0.0 0.0  

ay (m/s
2
)  0.87 1.2 0.87  

 

115. Since this problem involves constant downward acceleration of magnitude a, similar 

to the projectile motion situation, we use the equations of  §4-6 as long as we substitute a 

for g. We adopt the positive direction choices used in the textbook so that equations such 

as Eq. 4-22 are directly applicable. The initial velocity is horizontal so that v
y0 0  and 

 

 9

0 0 1.00 10xv v   cm/s. 

 

(a) If  is the length of a plate and t is the time an electron is between the plates, then 

  v t0 , where v0 is the initial speed. Thus 

 

9

9

0

2.00cm
2.00 10 s.

1.00 10 cm/s
t

v
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(b) The vertical displacement of the electron is 

 

  
2

2 17 2 91 1
1.00 10 cm/s 2.00 10 s 0.20cm 2.00 mm,

2 2
y at            

 

or | | 2.00 mm.y   

 

(c) The x component of velocity does not change:  

 

vx = v0 = 1.00  10
9
 cm/s = 1.00  10

7
 m/s. 

 

(d) The y component of the velocity is 

 

  17 2 9 8

6

1.00 10 cm/s 2.00 10 s 2.00 10 cm/s

2.00 10 m/s.

y yv a t      

 
 

 

116. We neglect air resistance, which justifies setting a = –g = –9.8 m/s
2
 (taking down as 

the –y direction) for the duration of the motion of the shot ball. We are allowed to use 

Table 2-1 (with y replacing x) because the ball has constant acceleration motion. We 

use primed variables (except t) with the constant-velocity elevator (so ' 10 m/sv  ), and 

unprimed variables with the ball (with initial velocity 0 20 30 m/sv v   , relative to the 

ground). SI units are used throughout. 

 

(a) Taking the time to be zero at the instant the ball is shot, we compute its maximum 

height y (relative to the ground) with 2 2

0 02 ( )v v g y y   , where the highest point is 

characterized by v = 0. Thus, 

y y
v

g
  o m0

2

2
76  

 

where o o 2 30 my y    (where o 28 my   is given in the problem) and v0 = 30 m/s 

relative to the ground as noted above. 

 

(b) There are a variety of approaches to this question. One is to continue working in the 

frame of reference adopted in part (a) (which treats the ground as motionless and “fixes” 

the coordinate origin to it); in this case, one describes the elevator motion with 

oy y v t     and the ball motion with Eq. 2-15, and solves them for the case where they 

reach the same point at the same time.  Another is to work in the frame of reference of the 

elevator (the boy in the elevator might be oblivious to the fact the elevator is moving 

since it isn’t accelerating), which is what we show here in detail: 

 




y v t gt t
v v g y

g
e

e e

e

e   
 

0

2 0 0

2
1

2

2
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where v0e = 20 m/s is the initial velocity of the ball relative to the elevator and ye =  

–2.0 m is the ball’s displacement relative to the floor of the elevator. The positive root is 

chosen to yield a positive value for t; the result is t = 4.2 s. 

 

117. We adopt the positive direction choices used in the textbook so that equations such 

as Eq. 4-22 are directly applicable. The coordinate origin is at the initial position for the 

football as it begins projectile motion in the sense of §4-5), and we let 0 be the angle of 

its initial velocity measured from the +x axis. 

 

(a) x = 46 m and y = –1.5 m are the coordinates for the landing point; it lands at time t = 

4.5 s. Since x = v0xt, 

0

46 m
10.2 m/s.

4.5 s
x

x
v

t
    

Since y v t gt
y

 0
1
2

2 , 

v

y gt

t
y0

21

2
15

1

2
9 8 4 5

4 5
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( . ( . )( .

.
.

 m)  m / s  s)

 s
 m / s.

2 2

 

 

The magnitude of the initial velocity is 

 

v v v
x y0 0

2

0

2 10 2 217 24    ( . ( . m / s)  m / s)  m / s.2 2  

 

(b) The initial angle satisfies tan 0 = v0y/v0x. Thus,  

 

0 = tan
–1

 [(21.7 m/s)/(10.2 m/s) ] = 65°. 

 

118. The velocity of Larry is v1 and that of Curly is v2. Also, we denote the length of the 

corridor by L. Now, Larry’s time of passage is t1 = 150 s (which must equal L/v1), and 

Curly’s time of passage is t2 = 70 s (which must equal L/v2). The time Moe takes is 

therefore 

1 1
1 2 1 2 150 s 70 s

1 1
48s.

/ /

L
t

v v v L v L
   

  
 

 

119. The boxcar has velocity 

v vc g  i 1

  relative to the ground, and the bullet has velocity 

 

v v v

b g0 2 2 
 i  j cos  sin    

 

relative to the ground before entering the car (we are neglecting the effects of gravity on 

the bullet). While in the car, its velocity relative to the outside ground is 

 

v v vbg  08 2. cos  sin   i 0.8  j2  
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(due to the 20% reduction mentioned in the problem). The problem indicates that the 

velocity of the bullet in the car relative to the car is (with v3 unspecified) 

v vb c  j 3

 . Now, 

Eq. 4-44 provides the condition 

   

2 2 3 1

                                    

ˆ ˆ ˆ ˆ0.8 cos  i 0.8 sin j  j  i

b g b c c gv v v

v v v v 

 

  
 

 

so that equating x components allows us to find . If one wished to find v3 one could also 

equate the y components, and from this, if the car width were given, one could find the 

time spent by the bullet in the car, but this information is not asked for (which is why the 

width is irrelevant). Therefore, examining the x components in SI units leads to 

 

 1000 m/km
3600 s/h1 11

2

85 km/h
cos cos  

0.8 0.8 (650 m/s)

v

v
  

  
    

   
 

 

which yields 87° for the direction of 

vb g  (measured from i , which is the direction of 

motion of the car). The problem asks, “from what direction was it fired?” — which 

means the answer is not 87° but rather its supplement 93° (measured from the direction of 

motion). Stating this more carefully, in the coordinate system we have adopted in our 

solution, the bullet velocity vector is in the first quadrant, at 87° measured 

counterclockwise from the +x direction (the direction of train motion), which means that 

the direction from which the bullet came (where the sniper is) is in the third quadrant, at  

–93° (that is, 93° measured clockwise from +x). 

 

120. (a) Using 2 / ,a v R  the radius of the track is  

 
2 2

2

(9.20 m/s)
22.3 m

3.80 m/s

v
R

a
   . 

 

(b) Using 2 / ,T R v  the period of the circular motion is  

 

 
2 2 (22.3 m)

15.2 s
9.20 m/s

R
T

v

 
    

 

121. (a) With 7/10 3 10 m/sv c    and 220 196 m/s ,a g   Eq. 4-34 gives 

 
2 12/ 4.6 10  m.r v a    

 

(b) The period is given by Eq. 4-35: 52 / 9.6 10  s.T r v   Thus, the time to make a 

quarter-turn is T/4 = 2.4  10
5
 s or about 2.8 days. 
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122. Since 
22

0 2y y
v v g y   , and vy=0 at the target, we obtain 

 

  2

0 2 9.80 m/s 5.00 m 9.90 m/syv    

 

(a) Since v0 sin 0 = v0y, with v0 = 12.0 m/s, we find 0 = 55.6°. 

 

(b) Now, vy = v0y – gt gives t = (9.90 m/s)/(9.80 m/s
2
) = 1.01 s. Thus,  

 

x = (v0 cos 0)t = 6.85 m. 

 

(c) The velocity at the target has only the vx component, which is equal to v0x = v0 cos 0 

= 6.78 m/s. 

 

123. With v0 = 30.0 m/s and R = 20.0 m, Eq. 4-26 gives 

 

sin 2  =   =  0.218.0
gR

v0

2
 

Because sin  = sin (180° – ), there are two roots of the above equation: 

 
1

02 sin (0.218) 12.58 and  167.4 .      

 

which correspond to the two possible launch angles that will hit the target (in the absence 

of air friction and related effects). 

 

(a) The smallest angle is 0 = 6.29°. 

 

(b) The greatest angle is and 0 = 83.7°.  

 

An alternative approach to this problem in terms of Eq. 4-25 (with y = 0 and 1/cos
2
 = 1 + 

tan
2
) is possible — and leads to a quadratic equation for tan0 with the roots providing 

these two possible 0 values. 

 

124. We make use of Eq. 4-21 and Eq.4-22. 

 

(a) With vo = 16 m/s, we square Eq. 4-21 and Eq. 4-22 and add them, then (using 

Pythagoras’ theorem) take the square root to obtain r: 

 

 

2 2 2 2 2

0 0 0 0 0 0

2 2 2

0 0 0

( ) ( ) ( cos ) ( sin / 2)

                                sin / 4

r x x y y v t v t gt

t v v g t g t

 



      

  

 

 

Below we plot r as a function of time for o = 40.0º: 
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(b) For this next graph for r versus t we set o = 80.0º. 

 

 
 

(c) Differentiating r with respect to t, we obtain 

 

 
2 2 2

0 0 0

2 2 2

0 0 0

3 sin / 2 / 2

sin / 4

v v gt g tdr

dt v v g t g t





 


 
 

 

Setting / 0dr dt  , with 0 16.0 m/sv  and 0 40.0   , we have 2256 151 48 0t t   . 

The equation has no real solution. This means that the maximum is reached at the end of 

the flight, with  

 
2

0 02 sin / 2(16.0 m/s)sin(40.0 ) /(9.80 m/s ) 2.10 s.totalt v g     

 

(d) The value of r is given by  

 
2 2 2(2.10) (16.0) (16.0)(9.80)sin 40.0 (2.10) (9.80) (2.10) / 4 25.7 m.r       

 

(e) The horizontal distance is  0 0cos (16.0 m/s)cos40.0 (2.10 s) 25.7 m.xr v t     

 

(f) The vertical distance is 0yr  . 

 

(g) For the 0 = 80º launch, the condition for maximum r is 2256 232 48 0t t   , or 

1.71 st  (the other solution, t = 3.13 s, corresponds to a minimum.) 
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(h) The distance traveled is 

 

2 2 2(1.71) (16.0) (16.0)(9.80)sin80.0 (1.71) (9.80) (1.71) / 4 13.5 m.r       

 

(i) The horizontal distance is  

 

0 0cos (16.0 m/s)cos80.0 (1.71s) 4.75 m.xr v t     

 

(j) The vertical distance is 

 
2 2 2

0 0

(9.80 m/s )(1.71s)
sin (16.0 m/s)sin80 (1.71s) 12.6 m.

2 2
y

gt
r v t       

 

125. Using the same coordinate system assumed in Eq. 4-25, we find x for the elevated 

cannon from 

y x
gx

v
y   tan

cos



0

2

0 0

2
2

30b g  where  m. 

 

Using the quadratic formula (choosing the positive root), we find 

 

x v
v v gy

g


 F
H
GG

I
K
JJ0 0

0 0 0 0

2
2

cos
sin sin


 b g

 

 

which yields x = 715 m for v0 = 82 m/s and 0 = 45°. This is 29 m longer than the 

distance of 686 m. 

 

126. At maximum height, the y-component of a projectile’s velocity vanishes, so the 

given 10 m/s is the (constant) x-component of velocity. 

 

(a) Using v0y to denote the y-velocity 1.0 s before reaching the maximum height, then 

(with vy = 0) the equation vy = v0y – gt leads to v0y = 9.8 m/s. The magnitude of the 

velocity vector (or speed) at that moment is therefore 

 
2 2 2 2

0 (10 m/s) (9.8 m/s) 14 m/s.x yv v     

 

(b) It is clear from the symmetry of the problem that the speed is the same 1.0 s after 

reaching the top, as it was 1.0 s before (14 m/s again). This may be verified by using vy = 

v0y – gt again but now “starting the clock” at the highest point so that v0y = 0 (and 

1.0 st  ). This leads to vy = –9.8 m/s and  
22(10 m/s) 9.8 m/s 14 m/s   . 
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(c) The x0 value may be obtained from x = 0 = x0 + (10 m/s)(1.0s), which yields 

0 10m.x    

 

(d) With v0y = 9.8 m/s denoting the y-component of velocity one second before the top of 

the trajectory, then we have y y v t gt
y

   0 0 0
1
2

2 where t = 1.0 s. This yields 

0 4.9 m.y    

 

(e) By using x – x0 = (10 m/s)(1.0 s) where x0 = 0, we obtain x = 10 m. 

 

(f) Let t = 0 at the top with 0 0 0yy v  . From 21
0 0 2yy y v t gt   , we have, for t = 1.0 s, 

 
2 2(9.8 m/s )(1.0 s) / 2 4.9 m.y      

 

127. With no acceleration in the x direction yet a constant acceleration of 1.40 m/s
2
 in the 

y direction, the position (in meters) as a function of time (in seconds) must be 

 

21ˆ ˆ(6.00 )i + (1.40)  j
2

r t t
 

  
 

 

 

and 

v  is its derivative with respect to t. 

 

(a) At t = 3.00 s, therefore, ˆ ˆ(6.00i 4.20j)v    m/s. 

 

(b) At t = 3.00 s, the position is ˆ ˆ(18.0i 6.30j)r    m. 

 

128. We note that   
v v vPG PA AG   

 

describes a right triangle, with one leg being 

vPG  (east), another leg being 


vAG  

(magnitude = 20, direction = south), and the hypotenuse being 

vPA  (magnitude = 70). 

Lengths are in kilometers and time is in hours. Using the Pythagorean theorem, we have 

 

2 2 2 2| |  | |   70 km/h | | (20 km/h)PA PG AG PGv v v v      

 

which can be solved to give the ground speed: | |

vPG  =  67 km/ h.  

 

129. The figure offers many interesting points to analyze, and others are easily inferred 

(such as the point of maximum height). The focus here, to begin with, will be the final 

point shown (1.25 s after the ball is released) which is when the ball returns to its original 

height. In English units, g = 32 ft/s
2
. 
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(a) Using x – x0 = vxt we obtain vx = (40 ft)/(1.25 s) = 32 ft/s. And y y v t gt
y

   0 0
1
2

20  

yields   21
0 2

32 ft/s 1.25 s 20 ft/s.yv    Thus, the initial speed is 

 

2 2

0 0 | | (32 ft/s) (20 ft/s) 38 ft/s.v v     

 

(b) Since vy = 0 at the maximum height and the horizontal velocity stays constant, then 

the speed at the top is the same as vx = 32 ft/s. 

 

(c) We can infer from the figure (or compute from 00y yv v gt   ) that the time to reach 

the top is 0.625 s. With this, we can use y y v t gt
y

  0 0
1
2

2 to obtain 9.3 ft (where y0 =  

3 ft has been used). An alternative approach is to use  2 2

0 02 .y y
v v g y y    

 

130. We denote 

vPG  as the velocity of the plane relative to the 

ground, 

vAG  as the velocity of the air relative to the ground, 

and 

vPA  as the velocity of the plane relative to the air. 

 

(a) The vector diagram is shown on the right: 
  
v v vPG PA AG  . 

Since the magnitudes vPG and vPA are equal the triangle is 

isosceles, with two sides of equal length.  

 

Consider either of the right triangles formed when the bisector 

of  is drawn (the dashed line). It bisects 

vAG , so 

 

 
 

AG

PG

70.0 mi/h
sin / 2

2 2 135 mi/h

v

v
    

 

which leads to  = 30.1°.  Now 

vAG  makes the same angle with the E-W line as the 

dashed line does with the N-S line. The wind is blowing in the direction 15.0° north of 

west. Thus, it is blowing from 75.0° east of south. 

 

(b) The plane is headed along 

vPA , in the direction 30.0° east of north. There is another 

solution, with the plane headed 30.0° west of north and the wind blowing 15° north of 

east (that is, from 75° west of south). 

 

131. We make use of Eq. 4-24 and Eq. 4-25. 

 

(a) With x = 180 m, o = 30º, and vo = 43 m/s, we obtain 

 
2 2

2 2

(9.8 m/s )(180 m)
tan(30 )(180 m) 11 m

2(43 m/s) (cos30 )
y     
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or | | 11 my  . This implies the rise is roughly eleven meters above the fairway.  

 

(b) The horizontal component (in the absence of air friction) is unchanged, but the 

vertical component increases (see Eq. 4-24). The Pythagorean theorem then gives the 

magnitude of final velocity (right before striking the ground): 45 m/s. 

 

132. We let gp denote the magnitude of the gravitational acceleration on the planet. A 

number of the points on the graph (including some “inferred” points — such as the max 

height point at x = 12.5 m and t = 1.25 s) can be analyzed profitably; for future reference, 

we label (with subscripts) the first ((x0, y0) = (0, 2) at t0 = 0) and last (“final”) points ((xf, 

yf) = (25, 2) at tf = 2.5), with lengths in meters and time in seconds. 

 

(a) The x-component of the initial velocity is found from xf  –  x0 = v0x tf. Therefore, 

0 25/ 2.5 10 m/s.xv    We try to obtain the y-component from 

 
21

0 0 2
0 .f y f p fy y v t g t     

 

This gives us v0y = 1.25gp, and we see we need another equation (by analyzing another 

point, say, the next-to-last one) 21
0 0 2y py y v t g t    with y = 6 and t = 2; this produces 

our second equation v0y = 2 + gp. Simultaneous solution of these two equations produces 

results for v0y and gp (relevant to part (b)). Thus, our complete answer for the initial 

velocity is ˆ ˆ(10 m/s)i (10 m/s)j .v    

 

(b) As a by-product of the part (a) computations, we have gp = 8.0 m/s
2
. 

 

(c) Solving for tg (the time to reach the ground) in y y v t g tg y g p g   0 0 0
1
2

2   leads to a 

positive answer: tg = 2.7 s. 

 

(d) With g = 9.8 m/s
2
, the method employed in part (c) would produce the quadratic 

equation 24.9 10 2 0g gt t     and then the positive result tg = 2.2 s. 

 

133. (a) The helicopter’s speed is v' = 6.2 m/s, which implies that the speed of the 

package is v0 = 12 – v' = 5.8 m/s, relative to the ground. 

 

(b) Letting +x be in the direction of 

v0  for the package and +y be downward, we have 

(for the motion of the package) 

 

 x v t y gt 0

21

2
and          

 

where y = 9.5 m. From these, we find t = 1.39 s and x = 8.08 m for the package, while 

x' (for the helicopter, which is moving in the opposite direction) is –v' t = –8.63 m. Thus, 

the horizontal separation between them is 8.08 – (–8.63) = 16.7 m 17 m.  
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(c) The components of 

v  at the moment of impact are (vx, vy) = (5.8, 13.6) in SI units. 

The vertical component has been computed using Eq. 2-11. The angle (which is below 

horizontal) for this vector is tan
–1

(13.6/5.8) = 67°. 

 

134. The type of acceleration involved in steady-speed circular motion is the centripetal 

acceleration a = v
2
/r which is at each moment directed towards the center of the circle. 

The radius of the circle is r = (12)
2
/3 = 48 m.  

 

(a) Thus, if at the instant the car is traveling clockwise around the circle, it is 48 m west 

of the center of its circular path. 

 

(b) The same result holds here if at the instant the car is traveling counterclockwise. That 

is, it is 48 m west of the center of its circular path. 

 

135. (a) Using the same coordinate system assumed in Eq. 4-21 and Eq. 4-22 (so that 0 

= –20.0°), we use v0 = 15.0 m/s and find the horizontal displacement of the ball at t =  

2.30 s: 

x v t 0 0 32 4cos .b g  m. 

 

(b) The vertical displacement is   2

0 0

1
sin 37.7 m.

2
y v t gt      

 

136. We take the initial (x, y) specification to be (0.000, 0.762) m, and the positive x 

direction to be towards the “green monster.” The components of the initial velocity are 

( . )3353  55   (19.23,  27.47) m/ s.    

 

(a) With t = 5.00 s, we have x = x0 + vxt = 96.2 m. 

 

(b) At that time, y y v t gt
y

 =   +     =  15.59 m ,1
20 0

2  which is 4.31 m above the wall. 

 

(c) The moment in question is specified by t = 4.50 s. At that time, x   x0 = (19.23)(4.50) 

= 86.5 m. 

 

(d) The vertical displacement is 21
0 0 2

 =  +     = 25.1 m.
y

y y v t gt  

 

137. When moving in the same direction as the jet stream (of speed vs), the time is 

/( ),ja st d v v   where d = 4350 km is the distance and 966 km/hjav   is the speed of the 

jet relative to the air. When moving against the jet stream, the time is /( ),ja st d v v    

with 50 min (5/ 6)h.t t     Combining the expressions gives 

 

2 2

2 5
h

6

s

ja s ja s ja s

dvd d
t t

v v v v v v
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Upon rearranging and using the quadratic formula to solve for vs, we get vs = 88.63 km/h. 

 

138. We establish coordinates with i  pointing to the far side of the river (perpendicular 

to the current) and j  pointing in the direction of the current. We are told that the 

magnitude (presumed constant) of the velocity of the boat relative to the water is 

| |  = 6.4 km/h.bwv  Its angle, relative to the x axis is .  With km and h as the understood 

units, the velocity of the water (relative to the ground) is 

vwg  =  3.2j.  

 

(a) To reach a point “directly opposite” means that the velocity of her boat relative to 

ground must be ˆ = ibg bgv v  where v  0 is unknown. Thus, all j  components must cancel 

in the vector sum   
v v vbw wg bg +   =   

 

which means the u sin  = –3.2, so  = sin
–1

 (–3.2/6.4) = –30°. 

 

(b) Using the result from part (a), we find vbg = vbw cos = 5.5 km/h. Thus, traveling a 

distance of   = 6.4 km requires a time of 6.4/5.5 = 1.15 h or 69 min. 

 

(c) If her motion is completely along the y axis (as the problem implies) then with vwg = 

3.2 km/h (the water speed) we have 

 

total  =  +  = 1.33 h
 +   bw wg bw wg

D D
t

v v v v
 

where D = 3.2 km. This is equivalent to 80 min. 

 

(d) Since 

 +  =  + 
 +       bw wg bw wg bw wg bw wg

D D D D

v v v v v v v v  
 

 

the answer is the same as in the previous part, i.e., total  = 80 mint . 

 

(e) The shortest-time path should have  = 0. This can also be shown by noting that the 

case of general  leads to 

 
ˆ ˆ =  +  = cos  i + ( sin  + ) jbg bw wg bw bw wgv v v v v v   

 

where the x component of 

vbg  must equal l/t. Thus, 

cosbw

l
t

v 
 ,  which can be 

minimized using the condition dt/d = 0. The above expression leads to t = 6.4/6.4 = 1.0 

h, or 60 min. 

 


