Problem \#1

A small car with mass 0.800 kg travels at constant speed on the inside of a track that is a vertical circle with radius 5.00 m . If the normal force exerted by the track on the car when it is at the top of the track (point B) is 6.00 N , what is the normal force on the car when it is at the bottom of the track (point A)?

Problem \#2

In the figure below, block B has mass 5.00 kg and block A has mass 8.00 kg . There is no friction between block A and the tabletop, but the coefficient of static friction between block B and block A is 0.75 . What is the largest mass that block C can have such that blocks A and B still slide together when the system is released from rest?

Problem \#3

Two blocks with masses 4.00 kg and 8.00 kg are connected by a string and slid down a ramp, as shown. The coefficient of kinetic friction between the 4.00 kg block and the ramp is 0.25 and between the 8.00 kg block and the ramp is 0.35 .
(a) What is the acceleration of each block? (b) What is the tension in the string?

Problem \#4

The "Giant Swing" at a county fair consists of a vertical rotating central shaft connected to a seat by two cables (as shown in the figure). The seat swings in a horizontal circle at a rate of $32.0 \mathrm{rev} / \mathrm{min}$. If the seat weighs 255 N and an 825N person is sitting in it, find the tension in each cable.

